Электронная библиотека » Юрат Мусин » » онлайн чтение - страница 2


  • Текст добавлен: 30 апреля 2024, 09:20


Автор книги: Юрат Мусин


Жанр: Физика, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 2 (всего у книги 11 страниц) [доступный отрывок для чтения: 3 страниц]

Шрифт:
- 100% +
Рождение физики

Физика – сравнительно молодая наука. Общепринято датировать её рождение 17-ым веком и связывать с именами Галилея и Ньютона. Ранее она была растворена в «Натуральной Философии» – сложном коктейле сведений, весьма разбухшем по сравнению с античной натурфилософией. В него включились разнородные факты из механики, астрономии, химии, геологии, физиологии и т. п., разбавленные буферным раствором религиозно-философских идей.

Дистилляция этого раствора началась в западной Европе, что в конечном итоге позволило всему христианскому Западу занять доминирующие позиции перед лицом более древних и могущественных цивилизаций Востока. Сам исходный раствор был очень богат не только полезными компонентами (фактами, технологиями, как созданными в Европе, так и заимствованными у Китая и мусульманского Востока), но и буферными (не позволяющими менять концентрацию религиозно-философских идей). Европейская критика Аристотеля в 15–16 веках была очень робкой, так как его идеи (где они не противоречили учению церкви) стали базисом физических объяснений. Очевидные нелепости частных утверждений великого Философа разрешалось устранять, но основные его положения поддерживала церковь как авторитетом Отцов Церкви, так и кострами Святой инквизиции.

Основным механизмом «дистилляции» натурфилософии был Эксперимент – физический аналог юридической процедуры дискуссии между защитой и обвинением. Физик выдвигает гипотезу (обвинение), а природа пытается «защищаться» в эксперименте путем согласия, отрицания или умолчания. В европейской традиции закрепился принцип презумпции невиновности: «Бремя доказательства вины лежит на обвинителе». Он существовал еще в Древней Греции, но на Западе вновь возник во времена инквизиции как противовес уверенности инквизиторов в виновности преследуемых ими еретиков. В Китае вплоть до Нового времени действовал принцип презумпции виновности, который требовал от судей пытать обвиняемых, чтобы добиться от них правды (китайские пытки, особенно в древности, были одними из самых жестоких и изощрённых в мире). В любом случае представления о необходимости «пытать природу» сохранились в названиях современных научных объединений (например, МОИП – Московское общество испытателей природы, существующее с 1805 года). Для пыток необходимы пыточные орудия, у физиков эти устройства называются физическими приборами. В наше время их существует невероятное множество с самыми сложными функциями и в широчайшем диапазоне размеров: от микроскопических чипов до ускорителей, не умещающихся в границах одного государства, или системы радиотелескопов, расположенных на разных континентах. В момент рождения физики приборов было мало и в основном они использовались в навигации и астрономии (астролябия и секстант для измерения углов, компас), а также в торговле (мерная линейка, бочка, весы) и в грубом измерении времени (песочные, водяные и механические часы).

Галилей и экспериментальный подход

Галилео Галилей – итальянский физик, механик, астроном, философ, математик, оказавший значительное влияние на науку своего времени. Галилей – основатель экспериментальной физики. Своими экспериментами он убедительно опроверг умозрительную физику Аристотеля и заложил фундамент классической механики. Одним из первых использовал телескоп для наблюдения небесных тел и сделал ряд выдающихся астрономических открытий. Наиболее известная фигура в конфликте науки с церковью, считается одним из «отцов» классической механики.


Галилео Галилей (1564–1642)


Согласно легенде, в 1589 году Галилей провёл эксперимент, сбросив два шара различной массы со знаменитой падающей башни в Пизе, чтобы продемонстрировать, что время падения не зависит от массы шара (Аристотель считал, что массивные тела падают быстрее). Современные историки науки полагают, что этот опыт был только мысленным, так как никаких записей об этом эксперименте Галилей не сделал, но подробно описал свои менее убедительные опыты, посвященные этой же тематике.

Каким же образом Галилей пришел к своему знаменитому утверждению? Известно, что он экспериментировал с гладкой наклонной плоскостью, по которой скатывал тяжелые шары. Выбирая достаточно протяженную плоскость и малые углы её наклона, можно уменьшить скорость движения тела, что позволит с достаточной точностью измерить время движения тела по плоскости даже с помощью грубых измерителей времени (Галилей использовал водяные часы и собственный пульс).

Результаты экспериментов и позволили Галилею утверждать, что:

1. Свободное падение всех тел в пренебрежении сопротивлением воздуха происходит с постоянным ускорением.

2. Скорость падения нарастает пропорционально времени движения.

3. Пройденный путь пропорционален квадрату времени движения.


Таким образом, Галилея серией простых опытов смог решить задачу о падении тела, не прибегая к спекулятивным рассуждениям и философским гипотезам Аристотеля, и, более того, получил математические выражения для законов изменения скорости падающего тела и проходимого телом пути. Фактически он указал путь, по которому дальше пошла наука физика – выполнение экспериментов, то есть многократное повторение опытов в контролируемых условиях с последующей математической обработкой результатов измерений.

Выдающийся физик современности Стивен Хокинг писал: «Галилей, пожалуй, больше, чем кто-либо другой из отдельных людей, ответствен за рождение современной науки. Знаменитый спор с Католической Церковью занимал центральное место в философии Галилея, ибо он одним из первых объявил, что у человека есть надежда понять, как устроен мир, и, более того, что этого можно добиться, наблюдая наш реальный мир».

Фигура Галилея настолько значительна в истории возникновения научной механики, что представляется целесообразным привести о нем краткие биографические сведения и вспомнить историю с его знаменитой фразой «И все-таки она вертится!».

Галилей родился в 1564 году в итальянском городе Пиза в семье родовитого, но обедневшего дворянина Винченцо Галилея, видного теоретика музыки и лютниста. В семье Винченцо Галилея и Джулии Амманнати было шестеро детей, но выжить удалось четверым: Галилео (старшему из детей), дочерям Вирджинии, Ливии и младшему сыну Микеланджело. В 1572 году Винченцо переехал во Флоренцию, столицу Тосканского герцогства. Правящая там династия Медичи оказывала постоянное покровительство искусству и наукам. Начальное образование Галилей получил в монастыре, как тогда было принято. В учебе продемонстрировал большие успехи и подумывал о карьере священника, но отец хотел пустить его по медицинской линии, и по настоянию отца 17-летний Галилео оказался на медицинском факультете Пизанского университета, где проучился три года, но завершить обучение не смог, так как у отца начались финансовые проблемы и он не смог больше платить за обучение. Тем не менее эти три года были очень значимы для юноши – он впервые познакомился с математикой, основательно изучил труды античных философов и элементы астрономии. Тогда же он познакомился с гелиоцентрической теорией Коперника. Как это все совмещалось с изучением медицинских предметов – непонятно. Во всяком случае пизанские профессора не дали ему бесплатную стипендию для продолжения обучения, и диплома врача он не получил. Тем не менее через пять лет, в 1589 году, Галилей вернулся в Пизанский университет, но уже не студентом, а профессором и стал преподавать астрономию, механику и математику! (Ему оказал протекцию сам тосканский герцог Фердинанд Медичи. Правда, жалованье ему назначили минимальное: 60 скудо в год, тогда как профессор медицины получал 2000 скудо). В 1591 году умер отец, и ответственность за семью перешла к Галилео (в первую очередь он должен был позаботиться о воспитании младшего брата и о приданом двух незамужних сестёр).

В 1592 году Галилей переехал в Падую (Венецианская республика), где продолжил преподавать в местном (весьма престижном) университете. К этому времени он стал уже известным профессором, «… справедливо признаваемым за самого сведущего в математических науках». Годы пребывания в Падуе (1592–1610) были вершиной популярности Галилея. Студенты толпами сбегались на его лекции, правительство поручало разработку технических устройств, с ним активно переписывались молодой Кеплер, Браге и другие научные авторитеты того времени. Пик популярности приносит изобретение телескопа, который он изготовил в 1609 году, узнав об изобретении зрительной трубы в Голландии. Используя свой телескоп, Галилей открывает горы на Луне, показывает, что Млечный Путь состоит из отдельных звёзд, но особенно поразили современников обнаруженные им четыре спутника Юпитера (1610). В честь четырёх сыновей своего покойного покровителя Фердинанда Медичи Галилей назвал эти спутники «Медичийскими звёздами». Популярность зашкаливает, наблюдения в телескоп становятся модным. Наступает всеобщее признание. Галилей становится самым знаменитым учёным Европы, в его честь сочиняются оды, где он сравнивается с Колумбом. Свои первые открытия с телескопом Галилей описал в сочинении «Звёздный вестник» (1610). Книга имела сенсационный успех по всей Европе, даже коронованные особы спешили заказать себе телескоп (французский король Генрих IV просит Галилея «… открыть и для него какую-нибудь звездочку»).

В эти годы Галилей наконец выдает замуж своих сестер (залезая в огромные долги), вступает в гражданский брак с венецианкой Мариной Гамба, становится отцом (сын и две дочери). Общеевропейская слава и нужда в деньгах толкнули Галилея на неосмотрительный, как позже оказалось, шаг: в 1610 году он покидает Венецию, где он был недоступен для инквизиции и перебирается во Флоренцию. Герцог Козимо II Медичи, сын Фердинанда, обещал Галилею почётное и доходное место советника при тосканском дворе. Обещание он сдержал, что позволило Галилею решить проблему долгов, но лишило его защиты от нападок Святой инквизиции. Доносы в инквизицию поступали на Галилея и раньше, но хода им не давали покровители. Галилей переоценил свое влияние на Папу Римского Урбана VIII и решил дать бой устаревшей системе Птолемея, чтобы освободить дорогу гелиоцентрической системе, которую он развивал в течение 30 лет. Для этого он опубликовал книгу «Диалог о двух главнейших системах мира – птолемеевой и коперниковой» (1632), которую для маскировки снабдил предисловием, где объявлял себя сторонником птолемеевой системы. Однако столь наивная уловка не сработала, и давние враги Галилея – монахи-иезуиты – убедили Урбана, что под одним из действующих героев «Диалогов» простаком-Симпличио выведен сам Урбан (Книга была написана в форме диалога между тремя любителями науки: коперниканцем Сальвиати, нейтральным участником Сагредо и Симпличио, приверженцем Птолемея). Книга была написана не на латыни, как тогда было принято для научных публикаций, а на «народном» итальянском языке, то есть предназначалась для широкой публики. Аргументы Сальвиати (Галилея) были неотразимы, а сам текст был превосходен, так как Галилей обладал несомненным литературным талантом (даже сейчас чтение «Диалогов» доставляет большое удовольствие). Упрямый и самовлюбленный Урбан впал в ярость – книга была запрещена и изъята, а сам Галилей был вызван в Рим на суд Святой инквизиции по обвинению в ереси. Несмотря на заступничество герцога Фердинанда, Галилея пытали (а чем Италия лучше Китая?) и заставили подписать отречение от своих коперниканских убеждений. Легенда говорит, что после произнесения слов отречения, Галилей тихо добавил: «И все-таки она вертится!». Галилей сравнительно легко отделался – его объявили не еретиком, а «сильно заподозренным в ереси», что спасало от костра. Вскоре Галилею было разрешено отправиться на родину, и он поселился в Арчетри, рядом с монастырём, где находились его дочери. Здесь он провёл остаток жизни под домашним арестом и под постоянным надзором инквизиции. Церковь реабилитировала Галилея только в 1992 году (божьи жернова работают медленно, но верно).

Несмотря на варварское обращение со светилом мировой науки, решение Урбана оказалось полезным для развития физики. Изолировав Галилея от пропаганды идей гелиоцентризма, оно позволило последнему сосредоточиться на обдумывании идей, положивших начало двум новым физическим наукам. Несмотря на полную потерю зрения в 1635 году, он продолжал научные исследования, опираясь на верных учеников: Кастелли, Торричелли и Вивиани. Галилей, понимавший необходимость точного измерения времени за год до смерти предложил идею маятниковых часов, реализованную через 15 лет Гюйгенсом (маятниковые часы на 300 лет стали наиболее точным прибором для измерения времени). Еще один физический прибор – термометр – Галилей изобрел и изготовил сам. Даже в живший в 19-веке Майер в восторге писал про него: «Термометр – могущественный инструмент в титанической борьбе между истиной и заблуждением». Последней книгой Галилея стали «Беседы и математические доказательства двух новых наук» (1638), где излагаются основы кинематики и сопротивления материалов. Этот труд стал настольной книгой Гюйгенса и Ньютона, завершивших начатое Галилеем построение оснований механики.

Механика Ньютона

Если, используя библейские термины, уподобить Галилея Иоанну Предтече от механики, то Ньютону будет соответствовать Иисус Христос! Сами англичане берут даже выше и отождествляют его с Саваофом – создателем Мира. Как сказано в книге Бытия,


В начале сотворил Бог небо и землю.

Земля же была безвидна и пуста, и тьма над бездною,

и Дух Божий носился над водою.

И сказал Бог: да будет свет. И стал свет.


Известная эпиграмма А. Поупа из 18 века, копируя Библию, вещала:


Был этот мир кромешной тьмой окутан;

Да будет свет! – и вот явился Ньютон.


Роль Ньютона в выходе Механики на прочную научную основу действительно была определяющей. После него Механика стала надежным научным инструментом изучения Мироздания. Это не только небесная механика, положившая конец спекулятивным построениям теории эпициклов и обеспечившая построение надежных, применяющихся даже в наши дни математических методов расчета движения планет, комет и прочих небесных тел. Механика Ньютона стала фундаментом инженерного подхода к конструированию самых различных машин и механизмов. Опираясь на законы Кеплера, Ньютон вывел закон всемирного тяготения, что вместе с четкой формулировкой законов классической механики позволило построить модель Солнечной системы и исследовать её эволюцию со временем. Правда, сам Ньютон отрицал возможность какой-либо эволюции Солнечной системы: после того как Бог её сотворил и дал планетам касательный «первотолчок», она оставалась неизменной, но для устранения накапливающихся возмущений время от времени требовалось божественное вмешательство (что-то типа коррекции часового механизма).

Успех механики был настолько ошеломляющим, что привел к возникновению нового философского течения, получившего название «Механицизм» (Мир – это механизм, и все сложные явления в нем можно свести к механике). Так считали как современники Ньютона, так и физики жившие много позже.

Механистическая картина мира была основана на следующих положениях:

• Мир строится на едином фундаменте – на законах механики Ньютона.

• Все наблюдаемые в природе превращения, а также тепловые явления на уровне микроявлений сводятся к механике атомов и подчиняются закону сохранения и превращения энергии.

• Все причинно-следственные связи однозначны, господствует жесткий детерминизм. В таком Мире существуют точность и возможность однозначного предсказания будущего.


Роль Ньютона в становлении физики столь важна, что и сегодня его идеи и он сам как личность интересны не только историкам науки, но и современным физикам, поэтому приведем краткий биографический очерк его жизненного пути.

Исаак Ньютон – английский математик, механик, оптик, философ. Один из создателей математического анализа, открывшего новую эпоху в количественном описании природных явлений. Разработал основы классической механики и физической оптики. Один из «родителей» физической науки. Считается самым знаменитым физиком Англии за всю её историю.


Исаак Ньютон 1643–1727


Родился в семье мелкопоместных дворян в окрестностях г. Вулсторпа (графство Линкольншир, Англия). Отца в живых не застал (тот умер за три месяца до рождения сына). Вступив в повторный брак, мать оставила двухлетнего Исаака на попечение его бабушки. Своеобразное эксцентричное поведение уже взрослого ученого многие биографы как раз и приписывают тому факту, что до 9-ти лет мальчик был полностью лишен родительской заботы. После смерти отчима мать вернулась домой, однако основное внимание уделяла троим младшим детям и обширному хозяйству. Начав обучаться в гимназии, Исаак перешел в ремесленном училище, так как мать хотела, чтобы он стал во главе семейного хозяйства, и какое-то время юный Ньютон изучал основы сельского хозяйства, но не проявлял интереса к учебе и был возвращен гимназию, по окончании которой юноша успешно поступил в Тринити-колледж Кембриджского университета. Ньютон быстро овладел учебной программой и перешел к изучению трудов ведущих ученых того времени. Весной 1665 года он получил ученую степень бакалавра, но вынужден был вернуться назад в Вулсторп, успев захватить с собой всего несколько книг – в Англию пришла бубонная чума, Кембриджский университет был закрыт.

Два года, проведенные в изоляции, оказались невероятно плодотворными для Ньютона (вспоминается «Болдинская осень» Пушкина). За вынужденные каникулы были созданы:

• основы дифференциального и интегрального исчисления;

• теория цвета;

• закон всемирного тяготения.


Сам Ньютон писал: «В начале 1665 года я нашёл метод приближённых рядов и правило превращения любой степени двучлена в такой ряд… в ноябре получил прямой метод флюксий (дифференциальное исчисление); в январе следующего года я получил теорию цветов, а в мае приступил к обратному методу флюксий (интегральное исчисление). В те дни я был в расцвете своих изобретательских сил, и Математика и Философия с тех пор меня уже ни разу не захватывали так сильно, как тогда».

После возвращения в Кембридж в 1667 году Ньютон был избран в ученый совет Тринити-колледжа и через год стал магистром. Ему выделили просторную отдельную комнату для жилья, назначили оклад (2 фунта в год) и передали группу студентов, с которыми он несколько часов в неделю занимался стандартными учебными предметами (преподавателем он оказался слабым, и его лекции посещались плохо). Постепенно приходило признание, хотя друзей, кроме своего кембриджского учителя и покровителя – математика Барроу, он так и не завел. В 1669 Барроу принял приглашение короля стать придворным капелланом и оставил преподавание, а 26-летний Ньютон был избран его преемником на должности профессора математики и оптики Тринити-колледжа. На этой должности Ньютон получил оклад 100 фунтов в год, не считая других бонусов и стипендий. Барроу оставил Ньютону обширную алхимическую лабораторию; с этого момента Ньютон увлёкся алхимией, которой в дальнейшем отдал много лет своей жизни.

Упрочив своё положение, Ньютон совершил путешествие в Лондон, где незадолго до того, в 1660 году, было создано Лондонское королевское общество, одна из первых Академий наук. Продемонстрированный «академикам» телескоп-рефлектор Ньютона с 40-кратным увеличением произвел впечатление, и в январе 1672 года Ньютон был избран членом Королевского общества. Теория света Ньютона противоречила волновой теории света, которой придерживался тогдашний секретарь общества Роберт Гук. Конфликты Ньютона с Гуком, а также с Гюйгенсом и Лейбницем привели Ньютона в депрессивное состояние (1673–1679), углубленное нервным расстройством, обострившимся после смерти его матери. Но в 1679 году Ньютон вернулся к работе и снискал себе славу, исследуя траектории движения планет и их спутников. В результате этих исследований, также сопровождавшихся спорами с Гуком о приоритете, были сформулированы закон всемирного тяготения и законы механики Ньютона, как мы теперь их называем. Свои исследования Ньютон обобщил в книге «Математические начала натуральной философии», представленной Королевскому обществу в 1686 году и опубликованной годом позже. Эта работа принесла Ньютону всемирное признание.

В 1704 году вышла в свет монография «Оптика», определявшая развитие этой науки до начала 19 века. Фактически это последний труд Ньютона по естественным наукам, хотя он прожил ещё более 20 лет. Последние годы жизни Ньютон посвятил написанию «Хронологии древних царств», которой занимался около 40 лет, а также подготовкой третьего издания «Начал», которое вышло в 1726 году. Каталог оставленной им библиотеки содержал книги в основном по алхимии, истории, теологии, и именно этим занятиям Ньютон посвятил остаток жизни. Ньютон оставался управителем Монетного двора, поскольку этот пост не требовал от него особой активности. В 1705 году королева Анна возвела Ньютона в рыцарское достоинство. Отныне он сэр Исаак Ньютон. Впервые в английской истории звание рыцаря было присвоено за научные заслуги. Ньютон принимал участие в работе английского парламента, правда, единственное зарегистрированное его выступление там было просьбой закрыть окно из-за сквозняка в зале. В 1725 году здоровье Ньютона начало заметно ухудшаться, и он переселился в Кенсингтон неподалёку от Лондона, где в 1727 году и скончался ночью, во сне. По воспоминаниям очевидцев, похороны были пышными: «В них участвовал весь Лондон. Сначала тело было выставлено на всеобщее обозрение в пышном катафалке, по бокам которого горели огромные светильники, затем было перенесено в Вестминстерское аббатство, где Ньютон был похоронен среди королей и выдающихся государственных деятелей. Во главе траурной процессии шёл лорд-канцлер, за которым следовали все королевские министры».

Как и у всех знаменитых людей, реальная история жизни Ньютона украшена большим количеством легенд. Обсудим одну из самых известных.


Титульный лист книги Исаака Ньютона «Математические начала натуральной философии»


Практически всем известна история о том, как однажды на Ньютона, отдыхавшего в своем саду под яблоней, упало яблоко, что и подтолкнуло его к открытию закона всемирного тяготения. Однако эта история вряд ли соответствует действительности. Яблоко на голову ученому не падало. Да и вывести закон обратных квадратов, наблюдая падающие яблоки, едва ли возможно. Легенду о яблоке, по-видимому, придумал сам Ньютон. Но наибольшую известность ей придал Вольтер. Он приводит эту «правдивую историю» в книге, которая появилась спустя год после смерти великого учёного и посвящена изложению его идей. Как известно, Ньютон никогда не был женат и поэтому нуждался в экономке, которая вела бы его хозяйство. Долгие 30 лет её роль исполняла племянница Ньютона Катарина Бартон. Вольтер ссылается на её свидетельство: «В 1666 году Ньютон был вынужден на некоторое время вернуться из Кембриджа в своё поместье Вулсторп, так как в Лондоне была эпидемия чумы. Когда он однажды отдыхал в саду, ему при виде падающего яблока пришла в голову мысль, что сила тяжести не ограничена поверхностью Земли, а простирается гораздо дальше. Почему бы и не до Луны?» Лишь через 20 лет (в 1687 г.) были опубликованы «Математические начала натуральной философии», где Ньютон доказал, что Луна удерживается на своей орбите той же силой тяготения, под действием которой падают тела на поверхность Земли. На самом деле, тот факт, что сила притяжения должна быть обратно пропорциональна квадрату расстояния, Ньютону стал известен только в 1684 году от Роберта Гука, который пришел к такой зависимости опытным (!) путем. Ход его рассуждений, опиравшихся на опыты с коническим маятником, может быть восстановлен только частично, так как все оригинальные приборы и бумаги Гука были уничтожены Ньютоном. Легендарное дерево пережило Ньютона почти на сто лет и погибло в 1820 г. во время сильной грозы. Кресло, сделанное из него, хранится в Англии в частной коллекции. Однако по всему миру продолжают расходиться «подлинные» семечки от легендарной яблони, которая каким-то образом воскресла. В 2010 году на МКС была доставлена даже «подлинная» щепка от неё. Аналогичные «подлинные» реликвии были очень популярны в средневековье. Кроме щепок от креста, на котором распяли Христа, были даже щепки от «лестницы, которую святой Иаков видел во сне»! Простаки были и будут всегда.

После рождения механики Ньютона все следующие «роды» происходили все быстрее и быстрее. Физические науки выпадали из общего натурфилософского раствора и сами (дифференцируясь) начинали давать «потомство» в виде частных наук (гидравлика, теплопередача, газодинамика, волновая и геометрическая оптики и т. д.). При этом почти каждое появление новой науки из физического ареала рано или поздно, но приводило к возникновению новой технологии, что давало толчки социальному и экономическому развитию Человечества. Иногда это воздействие было настолько мощным, что приводило к революционным сдвигам не только в экономике, но и в мироощущениях людей. Недаром 19 век современниками воспринимался вначале как «век пара и железа», а заканчивался как «век электричества». Создание парового двигателя (Уатт, 1784 г), паровоза (Стефенсон, 1814), парохода (Фултон, 1819), возникновение новой отрасли производства – машиностроения, все это привело к Первой промышленной революции на Западе и его индустриализации, то есть переходу от аграрной экономики к промышленному производству. Возник капитализм как новая форма ведения хозяйства, которая породила и новые нормы взаимоотношений между людьми. В глобальном противостоянии Востока и Запада последний получил подавляющее преимущество, чем и не преминул воспользоваться.


Страницы книги >> Предыдущая | 1 2 3 | Следующая
  • 5 Оценок: 1

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации