Электронная библиотека » Адам Беккер » » онлайн чтение - страница 2


  • Текст добавлен: 19 апреля 2023, 16:07


Автор книги: Адам Беккер


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 2 (всего у книги 25 страниц) [доступный отрывок для чтения: 7 страниц]

Шрифт:
- 100% +

Часть I
Философия умиротворения

Математики Тлёна утверждают, что сам процесс счета изменяет количество и превращает его из неопределенного в определенное. Тот факт, что несколько индивидуумов, подсчитывая одно и то же количество, приходят к одинаковому результату, представляет для психологов пример ассоциации идей или хорошей работы памяти.

Хорхе Луис Борхес. Тлён, Укбар, Орбис Терциус[9]9
  Пер. В. Кулагина-Ярцева. М., 1992.


[Закрыть]


Эта эпистемологическая оргия должна прийти к концу.

Альберт Эйнштейн, из письма Эрвину Шрёдингеру, 1935

1
Мера всех вещей

Две великие теории потрясли мир в первой четверти XX века. Они не оставили камня на камне от воздвигнутого за столетия здания физической науки и навсегда изменили наше понимание реальности. Одна из них, теория относительности, была, будто в научно-фантастической повести, создана в уединении одиноким гением, который, казалось, ушел из науки только для того, чтобы триумфально вернуться в нее, осветив мир сиянием новой истины. Это был, конечно, Альберт Эйнштейн.

История рождения второй – теории квантов – более сложная. Эта теория возникла в результате коллективных усилий десятков физиков, работавших над ней около тридцати лет. Эйнштейн входил в их число, но не он был лидером. Самым авторитетным в этой неорганизованной и строптивой банде революционеров оказался великий датчанин Нильс Бор. Его Институт теоретической физики в Копенгагене лет на пятьдесят стал Меккой квантовых теоретиков: почти каждый из тех, кто сделал себе имя работами в этой зарождающейся области, в какой-то момент оказывался здесь, чтобы продолжить исследования или чему-то научиться. Тут физики сделали выдающиеся открытия почти во всех областях своей науки: они не только разработали основы теории квантов, но и объяснили внутреннюю логику периодической таблицы химических элементов и воспользовались энергией радиоактивности, чтобы выявить механизмы работы живых клеток. Именно Бор и группа его самых талантливых учеников и сотрудников – Вернер Гейзенберг, Вольфганг Паули, Макс Борн, Паскаль Йордан и другие – разработали и отстаивали копенгагенскую интерпретацию – комплекс идей, который быстро стал стандартным подходом в толковании смысла математического аппарата квантовой физики. Что квантовая теория сообщает нам о мире? Если следовать копенгагенской интерпретации, ответ на этот вопрос звучит очень просто: квантовая физика не сообщает нам о мире ничего.

Копенгагенская интерпретация утверждает: квантовая физика – это не описание мира квантов, населенного атомами и субатомными частицами. Это всего лишь инструмент для вычисления вероятностей различных исходов экспериментов. Если следовать Бору, картины квантового мира не существует потому, что «не существует никакого квантового мира. Есть лишь абстрактное квантово-теоретическое описание»[10]10
  Max Jammer 1974, The Philosophy of Quantum Mechanics (John Wiley & Sons), p. 204. Однако см. также N. David Mermin 2004a, «What’s Wrong with This Quantum World?» Physics Today, February, pp. 10–11.


[Закрыть]
. Это описание не позволяет нам делать ничего, кроме предсказаний вероятностей квантовых событий – ведь квантовые объекты не существуют в том смысле, в каком существует повседневный окружающий мир. Гейзенберг сказал: «Идея объективного реального мира, мельчайшие части которого объективно существуют в том же самом смысле, в котором существуют камни или деревья, независимо от того, наблюдаем мы их или нет, – эта идея невозможна»[11]11
  Heisenberg 1958, p. 129.


[Закрыть]
. Но результаты наших экспериментов вполне реальны – мы создаем эти результаты в процессе их измерения. Занимаясь измерениями положения электрона, Йордан заметил, что «электрон вынужден принять решение. Мы принуждаем его занять определенное положение, в то время как раньше он был, вообще говоря, ни здесь, ни там. <…> Результаты наших измерений создаем мы сами»[12]12
  Jammer 1974, p. 164. Заметим, что позиция Йордана противоречит точке зрения Бора, а Гейзенберг, возможно, не согласен с ними обоими. Фактически под общим именем копенгагенской интерпретации объединяют много противоречащих друг другу течений, декларирующих тем не менее свое единство. Больше об этом см. в главе 3.


[Закрыть]
.

Альберту Эйнштейну такие утверждения казались смехотворными. «Эта теория немного напоминает мне систему бредовых представлений какого-то высокообразованного параноика»[13]13
  Письмо Эйнштейна Д. Липкину от 5 июля 1952 г., цит. по Arthur Fine 1996, The Shaky Game, 2nd ed. (University of Chicago Press), p. 1.


[Закрыть]
, – писал он другу. Несмотря на то что он сам сыграл важнейшую роль в развитии квантовой физики, копенгагенскую интерпретацию Эйнштейн принять не мог. Он называл ее «философией умиротворения, чем-то вроде религии», которая подкладывает «мягкую подушечку всякому истинно верующему в нее, [но которая] на меня ни черта не действует»[14]14
  Kaiser 2011, How the Hippies Saved Physics: Science, Counterculture, and the Quantum Revival (W. W. Norton), p. 8.


[Закрыть]
. Эйнштейн настаивал на такой интерпретации квантовой физики, которая давала бы связное описание мира, позволяла бы получать ответы на вопросы даже в том случае, когда никаких измерений не производится. Его раздражало, что копенгагенская интерпретация не отвечает на такие вопросы, за что он и назвал связанный с ней образ мышления «эпистемологической оргией»[15]15
  Fine 1996, p. 94.


[Закрыть]
.

Но призывы Эйнштейна к созданию более полной теории оставались без ответа, отчасти из-за построенного Джоном фон Нейманом доказательства невозможности такой теории. В те годы фон Нейман был, возможно, величайшим из живущих математических гениев[16]16
  Max Born 2005, The Born-Einstein Letters: Friendship, Politics and Physics in Uncertain Times (Macmillan), p. 140.


[Закрыть]
. Восьми лет от роду он самостоятельно изучил высшую математику, в девятнадцать опубликовал свой первый математический труд, а в двадцать два получил докторскую степень. Он сыграл решающую роль в создании атомной бомбы и был одним из отцов компьютерной науки. Он бегло говорил на семи языках. Его коллеги по Принстонскому университету полушутя говорили, что фон Нейман может доказать все что угодно и все его доказательства окажутся верными[17]17
  Richard Rhodes 1986, The Making of the Atomic Bomb (Simon and Schuster), pp. 108–109.


[Закрыть]
.

Доказательство единственности копенгагенской интерпретации фон Нейман опубликовал в написанном им в 1932 году учебнике квантовой физики. Знал ли Эйнштейн о существовании этого доказательства, неизвестно[18]18
  См. Fine 1996, p. 42n3, где этот вопрос долго обсуждается.


[Закрыть]
, но многие другие физики, конечно, знали. Для них самого факта существования доказательства, построенного знаменитым фон Нейманом, было достаточно, чтобы считать вопрос исчерпанным. Философ Пауль Фейерабенд воочию убедился в таких настроениях ученых, когда посетил прочитанную Бором публичную лекцию: «После лекции Бор сразу же ушел, и дискуссия продолжалась без него. Некоторые выступавшие критиковали его аргументацию, в которой, по-видимому, было много нестыковок. Но сторонники Бора не отвечали на критику по существу: стоило им упомянуть предложенное фон Нейманом доказательство, как споры, будто по мановению волшебной палочки, прекращались. Имя фон Неймана и слово “доказательство” сразу же заставляли замолчать тех, кто пробовал возражать»[19]19
  Цит. по Mara Beller 1999b, Quantum Dialogue: The Making of a Revolution (University of Chicago Press), pp. 213–214.


[Закрыть]
.

Нашелся все же по крайней мере один человек, заметивший недостаток в доказательстве фон Неймана вскоре после его публикации. Грета Герман, немецкий математик и философ, напечатала в 1935 году статью с критикой доказательства. Герман указывала, что фон Нейману не удалось обосновать одно из своих главных положений, а значит, и все доказательство рушится[20]20
  Jammer 1974, pp. 273–274; см. также английский перевод соответствующей части статьи Герман: http://mpseevinck.ruhosting.nl/seevinck/trans.pdf, просм. 20 сентября 2017 г.


[Закрыть]
. Но ее никто не слушал – отчасти потому, что в сообществе физиков она была чужаком, отчасти потому, что она женщина[21]21
  См. N. David Mermin 1993, «Hidden Variables and the Two Theorems of John Bell», Reviews of Modern Physics 65 (3): 805. «Грета Герман указала на грубый просчет в аргументации, но на это, кажется, никто просто не обратил никакого внимания. Все продолжали ссылаться на доказательство фон Неймана». Больше о Герман см. в слайд-презентации M. П. Сивинк о Грете Герман (2012). См. также ресурсы на http://web.mit.edu/redingtn/www/netadv/PHghermann.html, просм. 20 сентября 2017 г.


[Закрыть]
.

Несмотря на найденную в доказательстве фон Неймана ошибку, копенгагенская интерпретация сохраняла свое господствующее положение в физике. Эйнштейна считали неадекватным стариком «не от мира сего». Усомниться в справедливости копенгагенской интерпретации стало равносильно тому, чтобы поставить под вопрос грандиозные успехи всей квантовой физики. На протяжении последовавших двадцати лет квантовая физика продолжала одерживать одну победу за другой, и никто не вспоминал о червоточине, таящейся в самой ее сердцевине[22]22
  См. Jammer 1974, p. 247: «Несмотря на то что некоторые ведущие физики, такие как Эйнштейн и Шрёдингер, находились в оппозиции к взглядам Бора, огромное большинство физиков принимали идею дополнительности, то есть копенгагенскую интерпретацию, в общем безоговорочно, по крайней мере в первые два десятилетия после ее появления».


[Закрыть]
.

* * *

Но почему квантовая физика вообще нуждается в интерпретации? Почему она просто не рассказывает нам, что представляет собой окружающий мир? Почему между Эйнштейном и Бором возник спор? Конечно же, ни Эйнштейн, ни Бор не сомневались, что квантовая физика работает. Но если они оба разделяли ее теорию, откуда могли у них взяться разногласия по поводу содержания этой теории?

Интерпретация нужна квантовой физике потому, что остается не вполне ясным, что именно эта теория говорит нам об устройстве мира. Используемый квантовой физикой математический аппарат непривычен и замысловат. Связь между этой математикой и миром, в котором мы живем, трудно увидеть. Все это резко отличается от физической теории, которую квантовая физика заменила собой, – от физики Исаака Ньютона. Ньютоновская физика описывает знакомый и простой трехмерный мир, наполненный твердыми объектами, которые движутся по прямым линиям, пока что-то не собьет их с пути. Математический аппарат ньютоновской физики описывает положение объекта тремя числами, по одному для каждого измерения, – эта тройка чисел называется вектором. Если я стою на лестнице на высоте двух метров от земли и от вас до этой лестницы три метра, я могу описать свое положение так: ноль, три, два. Ноль означает, что я стою прямо перед вами, не отклоняясь ни влево, ни вправо, три – что от вас до меня три метра, два – что я на два метра выше вас. Все просто и ясно, и никому не приходит в голову беспокоиться о том, как интерпретировать ньютоновскую физику.

Квантовая физика и связанная с ней математика устроены гораздо более странно. Если вы хотите знать, где находится электрон, вам требуется гораздо больше трех чисел – вам нужно бесконечное их количество. Для описания мира квантовая физика пользуется бесконечными наборами чисел – волновыми функциями. Эти числа приписываются различным положениям в пространстве: по числу на каждую его точку[23]23
  Примечание для специалистов: я просто использую в качестве примера волновую функцию в пространстве точек для одночастичных стационарных состояний. Позже я перейду к более сложным вещам.


[Закрыть]
. Если бы в вашем телефоне было приложение, измеряющее волновую функцию одиночного электрона, на экране высвечивалось бы одно число, приписанное месту, в котором находится ваш телефон. Там, где вы сейчас сидите, ваш «измеритель волновой функции» мог бы показывать, скажем, 5. Пройдите по улице до перекрестка, и он покажет, например, 0,02[24]24
  Иногда «измеритель волновой функции» может показать на табло и мнимое число, что-то вроде квадратного корня из минус единицы. Но сложности мы пока проигнорируем.


[Закрыть]
. В самом простом виде это и есть волновая функция: множество чисел, приписанных различным местам.

В квантовой физике все имеет волновую функцию: эта книга, стул, на котором вы сидите, даже вы сами. А также атомы воздуха вокруг вас, электроны и другие частицы внутри атомов. Волновая функция объекта определяет его поведение. В свою очередь, поведение волновой функции объекта определяется уравнением Шрёдингера, главным уравнением квантовой физики, сформулированным в 1925 году австрийским физиком Эрвином Шрёдингером. Уравнение Шрёдингера гарантирует, что волновые функции всегда будут изменяться гладко – число, которое волновая функция приписывает определенному положению, никогда не может вдруг прыгнуть с 5 до 500. Нет, числа станут изменяться от точки к точке плавно и предсказуемо: 5,1; 5,2; 5,3 и так далее. Числа, задаваемые волновой функцией, могут расти и снова уменьшаться, наподобие волны – отсюда и ее название, – и, как волна, они всегда будут колебаться плавно, никогда не отпрыгивая слишком далеко друг от друга.

Идея волновой функции не особенно сложная, но кажется странным, что квантовая физика в ней нуждается. Ньютон мог задать положение любого объекта, используя всего три числа. А квантовой физике, чтобы описать положение лишь одного электрона, требуется бесконечное количество чисел, разбросанных по всей Вселенной. Но кто знает – может, электроны вообще странные? Может, они ведут себя не так, как камни, стулья или люди? Может, они размазаны по всему пространству и волновая функция говорит нам, сколько от данного электрона находится в некоторой конкретной точке?

Оказывается, это не так. Никто никогда не видел в одном точно определенном месте половину электрона или вообще что-то меньшее, чем целый электрон. Волновая функция определяет не долю данного электрона в данном месте, а вероятность того, что данный электрон находится в этом месте[25]25
  Технически вероятность равна квадрату волновой функции, но идея та же.


[Закрыть]
. Предсказания квантовой физики даются в терминах вероятностей. И это тоже странно: ведь уравнение Шрёдингера полностью и однозначно детерминистическое, никаких вероятностей в нем нет. При помощи уравнения Шрёдингера вы можете с великолепной точностью предсказать поведение любой волновой функции отныне и навсегда.


Рис. 1.1. Проблема измерения. Слева. Волновая функция мяча в коробке плавно колеблется, подобно ряби на поверхности пруда, подчиняясь уравнению Шрёдингера. Мяч может находиться в любой точке внутри коробки. Справа. Положение мяча измерено: он находится в определенной точке коробки. Волновая функция немедленно и резко коллапсирует, полностью противореча уравнению Шрёдингера. Почему же уравнение Шрёдингера – закон природы – действует, только когда измерение не выполняется? И что вообще считается «измерением»?


Да вот только и это не совсем правда. Как только вы действительно находите этот электрон, с его волновой функцией происходит странная вещь. Вместо того чтобы, как подобает приличной волновой функции, следовать уравнению Шрёдингера, она коллапсирует – мгновенно обращается в нуль повсюду, кроме того места, где вы нашли ваш электрон. Каким-то образом выходит, что законы физики начинают вести себя иначе, когда вы проводите измерение: уравнение Шрёдингера выполняется постоянно, за исключением того момента, когда вы выполняете измерение. В этой точке действие уравнения Шрёдингера приостанавливается, и волновая функция обращается в нуль повсюду, кроме некоторой случайной точки. Эта странная ситуация получила название проблемы измерения (рис. 1.1).

Почему уравнение Шрёдингера применимо, только когда измерения не производятся? Это никак не вяжется с нашим представлением о том, как работают законы природы, – они должны действовать все время, независимо от того, что мы делаем. Если уж листок оторвался от ветки дерева, он упадет на землю – и при этом не имеет значения, смотрит на него кто-нибудь или нет. Тяготение действует всегда.

Но, может быть, в квантовой физике и правда все иначе? Что, если измерения действительно меняют законы, управляющие квантовым миром? Это, конечно, очень странно, однако не невозможно. Но даже если так, это все равно не решает проблему измерения. Теперь мы сталкиваемся с новой трудностью: а что вообще следует считать «измерением»? Должен ли присутствовать тот, кто измеряет? Необходимы ли квантовым явлениям зрители? Можно ли заставить коллапсировать волновую функцию? Следует ли быть при этом в полном сознании или можно сделать это, скажем, во сне? А как насчет новорожденных? Нужны только люди или подойдут и шимпанзе? Эйнштейн как-то спросил: «Если наблюдения ведет мышка, изменит ли это квантовое состояние Вселенной?»[26]26
  Walter Isaacson 2007, Einstein: His Life and Universe (Simon and Schuster), p. 515.


[Закрыть]
А Белл ехидно вопрошал: «Неужели волновая функция мира сотни миллионов лет дожидалась, когда на Земле появится одноклеточное живое существо? Или ей все же пришлось подождать еще немного, чтобы появился чуть более квалифицированный измеритель с докторской степенью?»[27]27
  Bell 2004, p. 117.


[Закрыть]
А если измерение не имеет никакого отношения к живому наблюдателю, в чем же тогда оно заключается? Не значит ли оно просто-напросто, что малый объект, подчиняющийся законам квантовой физики, провзаимодействовал с большим, на который эти законы каким-то образом не распространяются? Но если так, не означает ли это, что измерения происходят, в сущности, все время и уравнение Шрёдингера применить не удается никогда? Но как же тогда оно, это уравнение, вообще работает? И где проходит разделение между квантовым миром малых объектов и ньютоновским миром больших?

Сказать, что неприятно обнаружить в самом сердце фундаментальной физической теории ящик Пандоры, из которого сыплются такие вопросы, значит не сказать ничего. Но, несмотря на все эти странности, квантовая физика достигла в описании мира огромных успехов, гораздо больших, чем добрая старая физика Ньютона (которая тоже была неплохой). Без квантовой физики мы не понимали бы, почему алмазы так тверды, из чего состоят атомы или как создавать электронные приборы. Выходит, что волновые функции с их значениями, рассеянными по всей Вселенной, должны-таки как-то связываться с тем миром, который мы видим вокруг себя каждый день. Если бы это было не так, квантовая физика не могла бы ничего предсказывать, а она делает это прекрасно. Но тогда «проблема измерения» становится еще серьезнее – она показывает, что в природе реальности есть что-то, чего мы не понимаем.

Так как же нам интерпретировать эту странную и чудесную теорию? Что за историю рассказывает нам о мире квантовая физика?

Вместо того чтобы отвечать на этот трудный вопрос, мы можем поступить иначе. Например, не признавать его законным. Заявить, что в квантовой физике имеет значение только одно: предсказание результатов измерений. Теперь нам незачем беспокоиться о том, что происходит, когда мы не занимаемся измерениями! Все трудные вопросы тут же испаряются. Что такое волновая функция? Как она связана с объектами окружающего мира? Под рукой простой и удобный ответ на этот вопрос: волновая функция – это всего лишь математический аппарат, бухгалтерский инструмент, который помогает нам предсказывать результаты измерений. С миром вокруг нас он никак не связан – это только полезный математический прием. Волновые функции ведут себя иначе, когда мы на них не смотрим? Это неважно – за пределами измерений ничто не имеет значения. В промежутке между измерениями даже говорить о существовании вещей ненаучно. Таков, как это ни странно, ортодоксальный подход в квантовой физике – «мягкая подушка» копенгагенской интерпретации.

Но эти подозрительно простые ответы заставляют задать еще один вопрос, на который очевидного ответа нет. Физика – наука о материальном мире. А квантовая теория претендует на роль раздела физики, описывающего самые фундаментальные составляющие этого мира. Но согласно копенгагенской интерпретации бессмысленно задавать вопросы о чем-либо, что описывает квантовая физика. Что же тогда есть реальность? Копенгагенский ответ на этот вопрос – это молчание. И строгий неодобрительный взгляд на того, кто имел дерзость такой вопрос задать.

Такой ответ можно в лучшем случае назвать глубоко неудовлетворительным. Но это стандартный ответ. Физики, которые тем не менее настаивали на своем вопросе, такие как Эйнштейн, а позже Белл и Бом, вступили в открытую конфронтацию с «копенгагенцами». И история поисков ими реальности – это в то же время история их мятежа, столь же давняя, как и история самой квантовой физики.

2
Прогнило что-то в Датском королевстве

На сцену выходит Вернер Гейзенберг. Двадцатичетырехлетний физик получил приглашение сделать доклад в Берлинском университете, главном физическом центре Германии, а может, и всего мира. Ему предстояло выступить с рассказом о своих удивительных новых идеях перед самим Эйнштейном.

«Так как мне никогда прежде не случалось предстать перед таким количеством знаменитостей, я позаботился о как можно более ясном изложении основных положений и математическом обосновании того, что тогда представлялось в высшей степени нетрадиционной теорией, – вспоминал Гейзенберг несколько десятилетий спустя. – По-видимому, мне удалось заинтересовать Эйнштейна – он пригласил меня прогуляться с ним до его дома, продолжив по пути обсуждение новых идей»[28]28
  Heisenberg 1971, p. 62.


[Закрыть]
.

Во время этой прогулки, случившейся весенним днем 1926 года, Эйнштейн с невинным видом расспрашивал Гейзенберга о его жизни и образовании, осторожно обходя любые упоминания о новой теории своего собеседника. Но чуть только они оказались в спокойной домашней обстановке, ловушка захлопнулась.

* * *

Предложенная Гейзенбергом «в высшей степени нетрадиционная теория» была грандиозным прорывом. Она обещала решить величайшую из современных научных проблем: объяснить природу квантового мира. Физики уже лет тридцать знали: в их теории что-то не так. Чтобы понять, что происходит в мире очень малых масштабов – мире атомов, были остро необходимы перемены. Но работать приходилось вслепую. Атомы слишком малы, чтобы увидеть их в обычный микроскоп, независимо от его увеличения. Длина волны видимого света в тысячи раз больше размера атома. Но при нагревании атомы излучают свет разных цветов, причем у каждого вида атомов набор цветов собственный – уникальный, как отпечатки пальцев. Когда в конце XIX – начале XX столетия физики научились распознавать эти отпечатки, они еще не понимали, как именно внутренняя структура атома порождает данные спектры. Но какие-то намеки на математическую регулярность в спектрах прослеживались. То и дело кому-то удавалось найти способ эту регулярность частично объяснить – и больше других в этом преуспел Нильс Бор.

В 1913 году, вдохновленный экспериментами физика Эрнеста Резерфорда, уроженца Новой Зеландии, Бор предложил «планетарную» модель строения атома: вокруг крохотного, но массивного ядра кружились по орбитам электроны. В модели Бора электрон мог находиться только на одной из определенного набора разрешенных орбит. Электроны никогда не могли оказаться между орбитами, но могли «перепрыгивать» с одной орбиты на другую. Каждая орбита соответствовала некоторой энергии, и, когда электроны совершали свои «прыжки», они излучали или поглощали количество света, равное изменению их энергии. Так и получались спектры, наблюдаемые в лаборатории. Эти дискретные энергетические скачки назывались квантами, от латинского слова «сколько», а новая наука о мире атомов стала именоваться квантовой физикой[29]29
  Термин «квантовая физика» возник не из модели атома Бора. Он медленно входил в употребление на протяжении первого десятилетия XX века, по мере того как открывались различные явления, включавшие в себя поглощение или излучение дискретных порций электромагнитной энергии, начиная с планковского закона излучения абсолютно черного тела. Этот период истории физики, сквозь который я быстро пробегаю, – от открытия Планка в 1900 году до упоминаемых в этой главе теорий, развитых Гейзенбергом и Шрёдингером в 1925 году, – стоит того, чтобы посвятить ему отдельную книгу. Много таких книг уже написано: см. в качестве удачных примеров Manjit Kumar 2008, Quantum: Einstein, Bohr, and the Great Debate About the Nature of Reality (Icon Books/Norton) и David Lindley 2007, Uncertainty: Einstein, Heisenberg, Bohr, and the Struggle for the Soul of Science (Anchor).


[Закрыть]
.

Модель Бора удивительно хорошо описывала простейший атом, атом водорода – настолько хорошо, что за свою идею Бор в 1922 году получил Нобелевскую премию. Сейчас, по прошествии времени, модель Бора кажется очень простой, но это только показывает, насколько глубоко его идея изменила прежнее представление об атомах и насколько прочно в сознание людей вошло новое представление о них. Сейчас при слове «атом» в мозгу тут же всплывает мультяшная картинка с шариками электронов, крутящимися вокруг ядра, и это почти всецело заслуга Бора. Его модель оказалась блестящим и оригинальным прозрением, вскрывшим природу вещей. Но при этом она была неполной, и Бор это хорошо понимал. Она оказалась полностью бессильной в предсказании спектров атомов, более сложных, чем водород, – даже гелия, самого простого атома после водорода. Да и для водорода модель Бора могла объяснить далеко не все: цвета водородного спектра она описывала, а вот относительную яркость этих цветов – уже нет. Она предсказывала появление единичных цветовых линий в тех случаях, когда в реальном спектре наблюдались их тесные пары или триплеты. Наконец, атомные спектры были чувствительны к внешним воздействиям, далеко не все из которых модель Бора могла учесть. Поместите атом в магнитное поле, и его спектр изменится. Поместите его в поле электрическое, и его спектр тоже изменится, но по-другому. Цветные линии смещались, размывались, расщеплялись, тускнели и становились ярче, и никакой системы в этом не было видно. Пока не появился Гейзенберг.

В июне 1925 года Гейзенберга свалил ужасающий приступ аллергии – сенной лихорадки. Непрерывно чихающий, почти ослепший, с распухшим лицом, залитым постоянно текущими слезами, несчастный молодой физик уехал в двухнедельный отпуск на Гельголанд, маленький пустынный островок в Северном море, полностью лишенный деревьев и цветов. За несколько дней, проведенных на острове, он немного оправился и вернулся к своим теоретическим исследованиям. Не думая больше о том, что модель Бора говорила об электронных орбитах в атоме, Гейзенберг сосредоточился на реальных результатах эксперимента: спектре света, излучаемого при скачках между энергетическими уровнями. В три часа утра, в одиноком домике на каменистом берегу, о который бились волны холодного моря, с трясущимися от холода и волнения руками, в возбуждении то и дело совершая «бесчисленные арифметические ошибки»[30]30
  Heisenberg 1971, p. 61.


[Закрыть]
, Гейзенберг испытал озарение. «У меня было чувство, что сквозь внешнюю поверхность атомных явлений я разглядел странно прекрасный мир. Кружилась голова при мысли о том, что мне предстоит овладеть богатым многообразием математических структур, которое природа с такой щедростью раскинула передо мной»[31]31
  Ibid.


[Закрыть]
. Тут же Гейзенберг набросал основные очертания странной новой математики, в которой простые утверждения типа «трижды два равно дважды трем» не всегда оказывались верны. Построенный им несколько неуклюжий математический аппарат позволил Гейзенбергу описать спектр квантового осциллятора – крохотного маятника, а с его помощью и показать, как атомные спектры реагируют на магнитное поле.

Когда Гейзенберг вернулся к работе в Геттингенском университете, он из осторожности сначала отправил набросок новой теории своему другу, блестящему физику Вольфгангу Паули – «моему самому строгому критику»[32]32
  Ibid., p. 64.


[Закрыть]
, как вспоминал Гейзенберг много лет спустя. Но Паули восторженно приветствовал работу друга. «[Идеи Гейзенберга дают] новую надежду и возвращают мне радость жизни. <…> Хотя это еще не решение загадки, думаю, что теперь снова стало можно двигаться вперед»[33]33
  Kumar 2008, p. 193.


[Закрыть]
, – писал Паули. Макс Борн, научный руководитель Гейзенберга, был с этим согласен. Борн и его студент Паскаль Йордан помогли Гейзенбергу прояснить структуру и значение новой теории, Борн прозвал ее «матричной механикой» – по названию необычных математических объектов, матриц, на которых она основывалась. Матричная механика Гейзенберга с технической стороны выглядела устрашающе, ее невозможно было свести к визуальным аналогиям, однако она открывала перспективы построения единой теории не только для атомных спектров, но и для всего мира квантов.

* * *

Эйнштейн начал собственную революцию в физике за двадцать лет до описываемых событий. Ему было тогда столько же лет, сколько теперь было Гейзенбергу, – и он тоже находился в изоляции, хоть и не связанной с аллергией. В 1905 году, работая клерком в швейцарском патентном бюро, Эйнштейн опубликовал свою специальную теорию относительности, разрешив таким образом давний спор о природе света. До Эйнштейна считалось, что свет является волной, распространяющейся в некоторой пока не обнаруженной среде с характерным для XIX века названием «светоносный эфир». Но в 1887 году физики Альберт Майкельсон и Эдвард Морли потерпели неудачу при попытке зарегистрировать движение Земли сквозь эфир. Чтобы объяснить результат этого эксперимента, физики стали одну за другой выдвигать все более сложные и искусственные идеи. Один из них предположил, что эфир сжимает объекты, когда они движутся сквозь него. Другой показал, что этого недостаточно – эфир должен также замедлять все физические процессы в движущихся сквозь него телах! Попытки приписать эфиру столь странные свойства лишь для того, чтобы сохранить эту иллюзорную среду, становились все более искусственными и запутанными.

Эйнштейн разрубил этот узел одним великолепным ударом. Его идея была из тех, которые только по прошествии времени кажутся очевидными. Он предположил, что эфир так трудно описать и представить просто потому, что его вовсе не существует. Свет есть волна распространяющегося электромагнитного поля, которая движется всегда с одной и той же скоростью. Для движения этой волны никакая среда не нужна. Из такого простого предположения Эйнштейн вывел всю теорию движения – специальную теорию относительности. Она объяснила отрицательный результат опыта Майкельсона – Морли и позволила вывести из своих основных принципов казавшиеся странными эффекты – сокращение длины и замедление хода времени, которые другие теории принимали только как предположение.

Из специальной теории относительности вытекали необычные следствия. Одним из них было то, что скорость света оказывалась абсолютным пределом скорости: никакой объект или сигнал не мог двигаться быстрее, чем свет движется в вакууме. Из математики специальной теории относительности получалось, что для того, чтобы достичь скорости света, любому объекту требуется бесконечное количество энергии. А если объект каким-то образом сумеет двигаться быстрее света, то он теоретически отправится в прошлое и в принципе сможет не дать себе начать движение – парадоксальный результат. Скорость света и так довольно велика – около 300 000 км/c, но Эйнштейн к тому же показал, что никакое тело не может двигаться, никакой сигнал распространяться и никакое взаимодействие передаваться со скоростью, превышающей скорость света.

В том же году Эйнштейн напечатал продолжение своей работы: он развил теорию относительности, модифицировав ньютоновские законы движения. Попутно он вывел свое знаменитое уравнение, демонстрирующее, что масса есть форма энергии: E = mc2. И это были лишь две из статей, опубликованных Эйнштейном на протяжении 1905 года, «года чудес». Он напечатал еще две выдающиеся работы: о поведении атомов и о взаимодействии света и вещества – за вторую из них он впоследствии получил Нобелевскую премию.

В своих работах по теории относительности Эйнштейн отчасти следовал идеям австрийского физика и философа Эрнста Маха. Мах считал, что наука должна основываться на описательных законах, которые не содержат никаких утверждений об истинной природе мира, – такие утверждения он отвергал как бесполезные для науки и практики. Для Маха одним из наиболее злостных нарушителей этого принципа был величайший физик Исаак Ньютон. Основополагающий труд Ньютона, «Начала», открывался предположением, что пространство и время – абсолютные самостоятельные сущности, реально существующие в мире. Это «чудовищное понятие абсолютного пространства» было, по мнению Маха, «чистым мыслеобразом[34]34
  Isaacson 2007, p. 84.


[Закрыть]
, который нельзя уловить опытным путем». Мах полагал, что правильно построенная наука о механике будет обходиться без онтологических утверждений о том, какие именно вещи реально существуют, а вместо этого станет просто формулировать описательные математические законы, точно предсказывающие наблюдаемые движения всех тел. Хорошими теориями, по Маху, являются те, что устанавливают связи между наблюдениями, а не те, в которых постулируется существование принципиально ненаблюдаемых объектов.

С точки зрения Маха, образцовой моделью современной физической теории была термодинамика. Ее законы выведены в начале 1800-х Карно, Джоулем и другими. Термодинамика ограничивалась количественным описанием тепловых процессов, наблюдаемых в паровых машинах в любой точке мира. Она позволяла предсказывать ход тепловых процессов, не постулируя никаких сторонних ненаблюдаемых идей о природе теплоты. Термодинамика не основывалась на каких-либо неясных, непроверяемых утверждениях о том, что существует или не существует в мире, – она просто описывала этот мир.

Эйнштейн прочел книгу Маха «История механики» еще студентом, и на него произвела глубокое впечатление критика ньютоновских идей абсолютного пространства и времени. «Эта книга повлияла на меня очень сильно»[35]35
  Albert Einstein 1949a, «Autobiographical Notes», in Albert Einstein: Philosopher-Scientist, edited by Paul Arthur Schilpp (MJF Books, 1949), p. 21.


[Закрыть]
, – писал он спустя несколько десятилетий. То, как в специальной теории относительности Эйнштейн решил проблему эфира, найдя его ненужной гипотезой, показывает, что идеи Маха об исключении сторонних ненаблюдаемых сущностей пришлись ему по сердцу. Более того, специальная теория относительности обрекла на забвение и ненавистные Маху абсолютные пространство и время.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации