Автор книги: Адам Беккер
Жанр: Прочая образовательная литература, Наука и Образование
Возрастные ограничения: +16
сообщить о неприемлемом содержимом
Текущая страница: 4 (всего у книги 25 страниц) [доступный отрывок для чтения: 8 страниц]
Этот «дуализм волн и частиц» прослеживается во всех квантовых явлениях. Например, в старых телевизорах с электронно-лучевыми трубками электроны летят по трубке, установленной в задней части устройства, к люминесцентному экрану в его передней части. Когда электрон ударяет в экран, в этом месте возникает светящаяся точка. Когда электрон начинает свое движение в трубке, его волновая функция подчиняется уравнению Шрёдингера, и он распространяется внутри трубки как волна. Но когда электрон ударяет в люминесцентный экран, это происходит в одной конкретной точке, которая начинает светиться, то есть электрон ведет себя как частица. Итак, иногда электрон ведет себя как волна, а иногда как частица, но никогда как и то и другое сразу. Согласно идее Бора, не может существовать более полного описания электрона или вообще чего-либо – только неполные и несовместимые друг с другом, никогда не перекрывающиеся аналогии. В этом, по словам Бора, и заключается суть дополнительности, и эта ситуация принципиально неизбежна и непреодолима. Новая квантовая теория показала, что невозможно дать единое однозначное описание электрона, которое годилось бы «на все случаи жизни».
Бор указал на принцип неопределенности Гейзенберга как на неизбежность выполнения принципа дополнительности. На примере гейзенберговского гамма-лучевого фонарика он объяснил, что нет никакой возможности избежать изменения импульса электрона при наблюдении его положения, и наоборот. Затем Бор, как до него и Гейзенберг, повторил вслед за Махом[82]82
Он мог бы повторить то же самое и за Кантом. А мог бы сделать что-нибудь совсем другое; трудность понимания стиля Бора неизменно приводила к разным толкованиям предмета.
[Закрыть], что невозможность одновременно измерить обе характеристики электрона означает, что он и не имеет этих характеристик в одно и то же время. Положение и импульс, подобно частице и волне, дополнительны – их никогда нельзя использовать одновременно, но для полного описания ситуации необходимы оба эти параметра.
Но Бор ошибался. В дополнительности не было никакой неизбежности и необходимости. Возможны и другие интерпретации квантовой физики[83]83
Несколько других интерпретаций подробно описаны начиная с главы 5. Заметим также, что не имеет значения, верны ли какие-либо из этих интерпретаций, поскольку Бор заявляет, что невозможно описать квантовый мир, не прибегая к дополнительности, простая логическая возможность других интерпретаций квантовой механики выбивает у Бора почву из-под ног.
[Закрыть]. Конечно, заявить о неизбежности определенного подхода к сложной научной проблеме – значит сделать очень сильное и странное утверждение, ведь любую теорию всегда можно интерпретировать заново. Но Бор был убежден, что дополнительность – глубочайшее свойство природы, обнаруженное в рамках квантовой теории.
Еще более странно то, что Бор подкрепил свои рассуждения примером с гамма-лучевым фонариком. Конечно, этот мысленный эксперимент хорошо иллюстрирует ситуацию в мире, в котором нашему знанию поставлены пределы. Но в этом же мире у частиц в любой момент есть точно определенные положения и скорости. Столкновение электрона с гамма-фотоном не может изменить импульс электрона – при условии, что этим импульсом электрон обладает. Мы не знаем, чему он равен, но это, конечно, не одно и то же, что сказать, что его вообще не существует.
Что в действительности хотел сказать Бор, всегда трудно понять – настолько витиеватым и туманным языком написаны его тексты. Но именно так дополнительность обычно и понимают. Что же касается аудитории, слушавшей речь Бора на озере Комо, неясно, что они поняли вообще. Реакция на его выступление оказалась сдержанной. Многие из слушателей были учениками и сотрудниками Бора: Гейзенберг, Паули, Борн. Они провели много времени в Копенгагене и уже слышали, как Бор излагал эти идеи. На многих других речь Бора вообще не произвела впечатления. «[Дополнительность] не дает вам никаких новых уравнений»[84]84
Поль Дирак, интервью Томасу Куну, 14 мая 1963 г., Кембридж, Англия, любезно предоставлено Библиотекой и архивом Нильса Бора, Американский институт физики, Колледж Парк, MD, США, https://www.aip.org/history-programs/niels-bohr-library/oral-histories/4575-5, часть 5.
[Закрыть], сказал английский физик Поль Дирак. (Он не просто иронизировал – он-то как раз новые уравнения получил. Ему удалось искусно объединить квантовую физику со специальной теорией относительности, что привело к новой теории элементарных частиц – квантовой теории поля. Теория Дирака предсказала существование антивещества, что в 1933 году принесло ему Нобелевскую премию.) Юджин Вигнер, блестящий венгерский специалист по математической физике, с этим согласился, констатировав, что «принцип Бора не изменит нашего подхода к физике»[85]85
Discussion Sections at Symposium on the Foundations of Modern Physics: The Copenhagen Interpretation 60 Years after the Como Lecture, 1987, p. 7.
[Закрыть]. Шрёдингер, конечно, с Бором был категорически не согласен, но Шрёдингера на конгрессе не было. Накануне он получил выгодное назначение на должность профессора физики в Берлине и был занят переездом на новое место из Швейцарии. Для Эйнштейна в идеях Бора тоже не было ничего привлекательного – но Эйнштейн тоже не приехал. Пятью годами раньше фашист Бенито Муссолини захватил в Италии власть, промаршировав по Риму во главе 30 000 чернорубашечников, и Эйнштейн решил, пока он и его молодчики находятся у руля, бойкотировать все проходящие в Италии физические конференции. Через месяц, однако, Бор и многие бывшие на озере Комо физики собрались снова, на этот раз на престижную конференцию в Брюсселе, участие в которой было возможно только по приглашениям. Приехали Эйнштейн, Шрёдингер и многие другие. К решающему сражению все было готово.
3
Уличная потасовка
Эрнст Сольвей мечтал оставить в мире след при помощи своих денег. Как до него Альфред Нобель, он разбогател, занимаясь химической промышленностью – хоть и не такими разрушительными ее отраслями, как производивший динамит Нобель. И так же, как Нобель, он надеялся улучшить этот мир, способствуя научным исследованиям. В 1911 году на деньги Сольвея в его родной Бельгии была организована конференция, посвященная зарождающейся квантовой теории. Конференция прошла с оглушительным успехом, и это вдохновило Сольвея на организацию научных конгрессов высочайшего уровня «для избранных» по вопросам, лежащим на стыке физики и химии. В 1922 году Сольвей скончался, но его конференции продолжают устраиваться по сей день и принадлежат к числу самых авторитетных научных собраний в мире. Однако Пятая Сольвеевская конференция, состоявшаяся в Брюсселе в октябре 1927 года, даже на этом фоне стоит особняком. Семнадцать из двадцати девяти ее участников были уже состоявшимися или будущими лауреатами Нобелевской премии; одна из них, Мари Кюри, получила эту премию дважды. Кроме Кюри, на конференцию приехали Эйнштейн, Планк, Шрёдингер, Бор, Гейзенберг, Борн, Дирак, Паули. Общую фотографию участников можно увидеть во многих учебниках квантовой физики. И вместе с этим фото из поколения в поколение физики из уст в уста передают друг другу легенду, что-то вроде первозданного мифа о рождении квантовой физики[86]86
Отдельные фрагменты этой легенды записаны. Написанные крупными физиками популярные книги часто содержат ее варианты; например, она появляется в книгах Стивена Хокинга, Stephen Hawking 1988, A Brief History of Time (Bantam Dell), p. 56 (русский перевод: С. Хокинг. Краткая история времени. М.: АСТ, 2019 / пер. Н. Смородинской) и Stephen Hawking 1999, «Does God Play Dice?» http://www.hawking.org.uk/does-god-play-dice.html, просм. 18 марта 2016. Ее изложение в основном встречается в историях о развитии квантовой физики, в частности Jammer 1974 и Max Jammer 1989, The Conceptual Development of Quantum Mechanics, 2nd ed. (Tomash) (см., например, p. 374, в Jammer 1989). Она упоминается также в воспоминаниях об этом периоде, написанных спустя десятилетия Бором и Гейзенбергом (Niels Bohr 1949, «Discussion with Einstein on Epistemological Problems in Atomic Physics», in Schilpp 1949; Heisenberg 1971). Однако ей противоречат материалы, сохранившиеся от периода разработки квантовой физики (например, труды Пятой Сольвеевской конференции, содержащиеся в книге Guido Bacciagaluppi and Antony Valentini 2009, Quantum Theory at the Crossroads: Reconsidering the 1927 Solvay Conference, arXiv: quant-ph/0609184v2, а также письма Эйнштейна, Шрёдингера, Бора и других), и поэтому слепо доверять ей не стоит. Подробнее об этом см.: Don Howard 2004, «Who Invented the ‘Copenhagen Interpretation’? A Study in Mythology». Philosophy of Science 71 (5): 669–682; Don Howard 2007, «Revisiting the Einstein-Bohr Dialogue». Iyyun: The Jerusalem Philosophical Quarterly 56:57–90; Fine 1996; Beller 1999b; James Cushing 1994, Quantum Mechanics: Historical Contingency and the Copenhagen Hegemony (University of Chicago Press); Olival Freire Jr. 2015, The Quantum Dissidents: Rebuilding the Foundations of Quantum Mechanics (Springer-Verlag); Jean Bricmont 2016, Making Sense of Quantum Mechanics (Springer International).
[Закрыть]:
«Как-то раз группа великолепных физиков открыла квантовую механику. Новая теория оказалась очень успешной. Но Эйнштейн не мог согласиться с радикально новой картиной мира, которую рисовала квантовая физика, несмотря на то что он сам сыграл в ее зарождении огромную роль (и еще несмотря на то что когда-то физики старших поколений так же не могли согласиться с его собственной теорией относительности). Провозглашая свой знаменитый девиз “бог не играет в кости”, Эйнштейн много раз спорил за чашкой кофе с Бором. Начались эти споры на Сольвеевском конгрессе в 1927 году – там Эйнштейн то так, то этак пытался обойти придуманный Гейзенбергом принцип неопределенности. В конце концов Бор победил. Все остальные физики согласились, что квантовая физика верна, а копенгагенская интерпретация дает верный ключ к ее пониманию. Но Эйнштейн так и не принял новую теорию и до самой смерти настаивал на том, что случайность не может лежать в основе всей природы. Вот так-то, – заключает легенда, – даже величайшие и славнейшие физики иногда ошибаются».
Рис. 3.1. Пятый Сольвеевский конгресс, Брюссель, 1927. Первый ряд: Эйнштейн (в центре); Кюри (третья слева); Планк (второй слева). Второй ряд: Бор (крайний справа); Борн (второй справа); де Бройль (третий справа). Третий ряд: Гейзенберг (третий справа); Паули (четвертый справа); Шрёдингер (в центре)
Кое-что в этой истории правда. Правда, что Эйнштейн и Бор расходились во взглядах на квантовую физику. Правда, что они спорили о ней на Сольвеевской конференции в 1927 году и после нее. И правда, что Эйнштейн сказал «бог не играет в кости»[87]87
Письмо Альберта Эйнштейна к Максу Борну от 4 декабря 1926 г.; репринт в Born 2005.
[Закрыть], хоть сказал он это не в Брюсселе в 1927 году, а в письме к Максу Борну в 1926-м. Но почти во всех остальных важных вещах – в том, что касается затруднений, которые Эйнштейн находил в квантовой физике, и защиты ее Бором, в пересказе содержания копенгагенской интерпретации и в том, что все остальные физики после 1927 года ее в целом приняли, – ни грамма правды нет. Правда совершенно другая, и она гораздо интереснее, чем эта общепринятая легенда.
Луи де Бройль, физик и французский аристократ, выступал на Пятой Сольвеевской конференции одним из первых. Всего за три года до этого он защитил докторскую диссертацию. Де Бройль первым предположил, что все фундаментальные составляющие вещества могут проявлять себя и как частицы, и как волны. Многие из своих аргументов он позаимствовал у Эйнштейна: его научный руководитель, Поль Ланжевен, не зная, как отнестись к идее де Бройля, написал Эйнштейну, прося совета. Эйнштейн горячо откликнулся на это письмо: он сказал, что де Бройль «приоткрыл уголок великой завесы»[88]88
Kumar 2008, p. 150.
[Закрыть]. Защита де Бройля прошла успешно.
На конференции в Брюсселе де Бройль представил новую идею. Умело манипулируя уравнением Шрёдингера, используя все тот же математический аппарат, он развернул совершенно новую картину квантовой физики. Вместо неполной и противоречивой схемы «дополнительных» частиц и волн де Бройль описал квантовый мир, в котором частицы и волны мирно сосуществовали. Частица распространялась вслед за «волной-пилотом», которая и управляла ее движением. В этом де Бройль предвосхитил интерпретацию квантовой физики, развитую спустя четверть века Бомом. Частицы у де Бройля двигались вполне детерминированным, однозначным образом, несмотря на статистическое правило Борна, согласно которому волновая функция служит инструментом вычисления вероятности. Однако частицы удовлетворяли и гейзенберговскому принципу неопределенности, так как их пути были скрыты от глаз наблюдателя – ни один эксперимент не мог выявить полной траектории частицы, в точном соответствии с тем, что утверждал Гейзенберг. Де Бройль нашел способ вернуть квантовому миру обусловленность и причинность, не принося при этом в жертву достигнутое в квантовой физике великолепное соответствие между теорией и наблюдениями.
Идеи де Бройля были встречены с интересом и вызвали бурные споры. Вольфганг Паули быстро нашел возражение: он заявил, что теория де Бройля противоречит известным теоретическим исследованиям столкновений частиц. Де Бройль, путаясь и сбиваясь под огнем методичных аргументов Паули, все же сумел доказать, что тот ошибается. Возражение Паули основывалось на глубоко ошибочной аналогии, которая поначалу и сбила французского герцога с толку. И хотя ответ де Бройля был исчерпывающим, Паули он не удовлетворил[89]89
Bacciagaluppi and Valentini 2009, pp. 242–244.
[Закрыть].
Другое, более серьезное возражение высказал по поводу интерпретации де Бройля Ганс Крамерс, голландский физик, в прошлом ученик Бора. Он указал, что, когда фотон отскакивает от зеркала, зеркало в свою очередь должно испытывать отдачу. Но, как заметил Крамерс, теория де Бройля этой отдачи не описывает. Де Бройль признал, что не может ответить на этот вопрос. Однако ни де Бройль, ни Крамерс не заметили, что на самом деле отдачу зеркала описать в рамках теории де Бройля вполне возможно. Для этого требовалось всего лишь рассматривать и фотон, и зеркало – а не один только фотон – как квантовые объекты. Но, как и большинство физиков этого времени, де Бройль считал, что квантовая физика применима только к микроскопическим объектам, – потому-то он и не смог возразить Крамерсу. Вскоре после конференции де Бройль и сам отказался от своих идей по причинам, связанным с аргументами Крамерса[90]90
Ibid., pp. 254–255.
[Закрыть].
Затем выступили Борн и Гейзенберг. Они представили свою формулировку законов квантовой физики, основанную на матричном подходе. В этой теории главную роль играли принципиально случайные квантовые скачки. Подходя к концу своей презентации, докладчики дерзко заявили, что квантовая физика – это «замкнутая теория, фундаментальные физические и математические положения которой больше не подлежат никаким исправлениям»[91]91
Ibid., p. 435.
[Закрыть]. Другими словами, построение квантовой физики полностью завершено: нет более никакой необходимости копаться в ее внутренностях и пытаться найти что-либо новое, ни в смысле математики, ни в смысле интерпретации. Следующим говорил Бор. Он в основном перефразировал свою лекцию, прочитанную на озере Комо, подчеркнув, что описания квантового явления в терминах волн и частиц дополнительные, а не противоречивые: оба они необходимы для полного описания, но никогда не могут быть использованы, чтобы описать один и тот же объект в одно и то же время[92]92
См. конец главы 2. Мы не знаем, что в действительности сказал Бор, – он не представил в сборник трудов конференции своих комментариев, попросив, чтобы их заменили текстом его лекции на оз. Комо. Однако стенограммы заседаний конференции показывают, что их содержание в основном совпадает. См. больше об этом: Bacciagaluppi and Valentini 2009.
[Закрыть].
Эйнштейн несколько дней сидел и слушал, он почти не подавал голоса, только обменивался замечаниями со своим близким другом Полем Эренфестом и мягко подшучивал над «копенгагенским лагерем». Он выжидал, тщательно оттачивая формулировки своих мыслей, прежде чем выступить. И вот во время общей дискуссии он поднялся для выступления. Все в зале знали, что у Эйнштейна есть серьезные сомнения по поводу идей Бора и Гейзенберга. И все взгляды устремились на него, когда он подошел к доске, чтобы набросать на ней схему простого мысленного эксперимента, содержавшего сокрушительную критику копенгагенской интерпретации.
* * *
Почему Бор, Гейзенберг и другие были так твердо убеждены, что квантовый мир недоступен визуализации? Почему они считали, что вещи не могут быть реальными, пока они не наблюдаются? Почему настаивали на том, что классический мир и мир квантов подчиняются принципиально разным законам? Короче, почему они верили в странную совокупность утверждений, получивших название копенгагенской интерпретации?
Самый очевидный ответ на этот вопрос кроется в харизме Нильса Бора, в силе воздействия его могучей личности. Но неясно, откуда у Бора появились эти идеи и, более того, появились ли они вообще. Стиль Бора столь сложен для понимания и запутан, что трудно сказать, какова была его истинная позиция; еще труднее понять, какие именно идеи оказали на него влияние. (Поистине замечательно, что, по мнению учеников и коллег Бора, в основе пресловутой невразумительности его высказываний лежит именно дополнительность. Если верить его студентам, Бор сам говорил, что «правда дополнительна к ясности»; поэтому, по их словам, «Бор был очень плохим докладчиком, так как слишком заботился о правде». Его предложения были «длинными, незаконченными и невразумительными», потому что он «стремился к точности»[93]93
Beller 1999a, p. 268.
[Закрыть].) Но нарочито невразумительный стиль Бора не останавливает тех, кто пытается проследить источники его идей: напротив, теоретизирование по поводу того, что происходило в голове Нильса Хенрика Дэвида Бора, у физиков превратилось в какой-то народный промысел. Одни считают, что в первую очередь он находился под влиянием Канта; другие указывают на его соотечественника Серена Кьеркегора (на кладбище Ассистенс в Копенгагене его могила находится всего в нескольких десятках ярдов от надгробия Бора); третьи видят в противоречиях дополнительности влияние гностицизма. Леон Розенфельд, наиболее верный и преданный защитник Бора, видит в его работах и мыслях логическое продолжение марксизма; и уж конечно, это мнение не имеет совершенно никакого отношения к тому, что сам Розенфельд – ярый марксист. Короче говоря, о Боре написано очень много, но никакого определенного заключения из этого вывести нельзя (впрочем, некоторое влияние Канта большинство авторов все же признают).
Но сложность стиля Бора и его чудесный дар возбуждать беззаветную преданность в учениках и сотрудниках не дают нам полного объяснения. Другая часть ответа связана с интеллектуальной атмосферой того времени. Вероятно, например, сыграла свою роль антиматериалистическая культура Веймарской Германии[94]94
Paul Forman 1971, «Weimar Culture, Causality, and Quantum Theory: Adaptation by German Physicists and Mathematicians to a Hostile Environment», HistoricalStudies in the Physical Sciences 3:1–115.
[Закрыть], находившейся между двумя войнами. Гейзенберг и другие определенно оказались под влиянием Эрнста Маха и его последователей, философов «венского кружка», разработавших учение логического позитивизма. Это воззрение продолжало развиваться с той точки, на которой остановился Мах, – согласно ему, любое утверждение, относившееся к чему-либо ненаблюдаемому, было не просто плохой наукой, оно было буквально бессмысленно. И следовательно, говорить о чем-то, что происходит в квантовых системах, когда никто этого не видит, просто абсурдно[95]95
Мы увидим другие примеры высказываний последователей логического позитивизма в главе 8.
[Закрыть].
Влияние логических позитивистов на воззрения основателей квантовой физики особенно заметно на личном примере Вольфганга Паули. Паули родился и вырос в Вене, его крестным отцом был сам Эрнст Мах. Прямой, остроумный, глубоко одаренный, Паули пользовался огромным авторитетом среди физиков своего времени. Гейзенберг и Бор добивались его одобрения. Но получить это одобрение было нелегко – ядовитые реплики Паули стали легендарными, его прозвали «бичом божьим»[96]96
Kumar 2008, p. 157.
[Закрыть]. «Дело не в том, что вы медленно соображаете, главное, чтобы вы не публиковали ваши работы быстрее, чем успеваете думать»[97]97
Ibid., p. 160.
[Закрыть], сказал он как-то коллеге-физику. О статье другого физика он пренебрежительно высказался так: «О ней даже нельзя сказать, что она ошибочна»[98]98
Ibid.
[Закрыть]. Даже его похвалы были обычно «с двойным дном»: как-то после лекции, прочитанной Эйнштейном в Мюнхенском университете в переполненной слушателями аудитории, Паули воскликнул: «А знаете, то, что сказал господин Эйнштейн, совсем не так уж глупо!»[99]99
Ibid.
[Закрыть] В обсуждениях вопросов квантовой интерпретации Паули часто занимал позитивистскую позицию. По его мнению, беспокоиться о положении объекта прежде, чем оно измерено, бесполезно. «Ломать голову над вопросом о том, существует ли нечто, о чем мы не можем ничего узнать, – говорил он, – это все равно что решать древнюю задачу о том, сколько ангелов может уместиться на кончике иглы»[100]100
Born 2005, p. 218.
[Закрыть].
Позитивизм повлиял и на остальных представителей «копенгагенского лагеря», но в разной степени. И применяли они его различными способами, что вызывало между ними разногласия. Бор вообще отказался от идеи квантового мира. «Никакого квантового мира не существует, – заявлял он. – Изолированные материальные частицы – это абстракции, свойства частиц в квантовой теории определяемы и наблюдаемы только через их взаимодействия с другими системами»[101]101
Первая половина: Jammer 1974, p. 204; вторая половина: Bohr 1934, pp. 56–57.
[Закрыть]. А вот Гейзенберг считал, что квантовый мир существует – и он устроен иначе, чем наш обычный мир. «Атомы или элементарные частицы не так реальны, как явления повседневной жизни; они образуют мир потенциальных возможностей[102]102
Heisenberg 1958, p. 186.
[Закрыть], а не мир вещей и фактов». Йордан думал, что «наблюдения не только возмущают объект измерения – они создают его». Он заявлял, что именно измерение параметров электрона «заставляет его занять определенное положение». Но если квантового мира не существует, как полагал Бор, то измерения не могут заставить что бы то ни было в нем произойти! Паули тоже противоречил Бору: он считал, что наблюдение вносит «неопределимые эффекты», которые возмущают наблюдаемые системы неконтролируемым образом[103]103
Wolfgang Pauli 1994, Writings on Physics and Philosophy, edited by Charles P. Enz and Karl von Meyenn, translated by Robert Schlapp (Springer-Verlag), p. 33.
[Закрыть]. Но ведь наблюдения никак не могут внести возмущение в квантовый мир, если никакого квантового мира, согласно Бору, не существует! Паули, возможно, вошел в противоречие даже с самим собой: он ведь отрицал саму возможность говорить о чем-то, что происходит в отсутствие наблюдателя. Но если бессмысленно говорить о вещах прежде их наблюдения, как тогда мог Паули сказать, что наблюдения внесли во что-то возмущения? В свою очередь, Гейзенберг и Йордан явно противоречили Паули: у них возможность высказывать сильные утверждения о ненаблюдаемых системах никаких сомнений не вызывала. В общем, миф о том, что все эти физики создали единую копенгагенскую интерпретацию, не более чем миф[104]104
К их чести, надо сказать, что никто из них – ни Гейзенберг, ни Иордан, ни кто-нибудь еще – не говорил, что какая-либо согласованная интерпретация существует – по крайней мере, в то время. Иордан в 1927 году говорил о «гёттингенско-копенгагенском духе», а тремя годами позднее Гейзенберг упоминал в сходном контексте «копенгагенский дух квантовой теории», но выражение «копенгагенская интерпретация» впервые было употреблено в 1955 году Гейзенбергом. См. об этом еще главу 4 и Howard 2004.
[Закрыть].
И все же, невзирая на все различия и расхождения, у Бора, Гейзенберга и остальных членов гёттингенско-копенгагенской группы кое-что общее было. Все они соглашались: бессмысленно говорить о том, что в квантовом мире происходит «в действительности». Им было достаточно возможности делать точные предсказания о результатах измерений. Как выразился Бор через много лет после Сольвеевского конгресса, «неправильно думать, что задача физики – выяснять, что собой представляет природа. Физика устанавливает, что мы можем сказать о природе»[105]105
Jammer 1974, p. 204; но см. также N. David Mermin 1985, «Is the Moon There When Nobody Looks? Reality and the Quantum Theory», Physics Today 38 (4): 38–47.
[Закрыть]. Стало быть, квантовая физика не обязана представлять последовательную и самосогласованную картину того, что происходит в мире, ведь согласно боровскому принципу дополнительности такая картина принципиально невозможна. Достаточно всего лишь точно описать доступные измерению свойства мира, не вдаваясь в вопрос о том, что именно в нем происходит. Короче говоря, квантовую физику не следует серьезно рассматривать как теорию, объясняющую свойства реального мира, – это всего лишь инструмент точного предсказания результатов измерений. Несерьезность эту, однако, следует рассматривать очень серьезно: выдвигая свою версию квантовой физики как «замкнутой теории», Гейзенберг и Борн исключали тем самым саму возможность объяснения квантового мира, независимо от наблюдений, даже в принципе.
Именно здесь и расходились пути Эйнштейна, Бора, Гейзенберга и их идейных соратников. Согласно Эйнштейну, «основная цель всей физики» заключается в «полном описании любой (индивидуальной) реальной ситуации (поскольку она предположительно существует безотносительно какого-либо акта наблюдения или обоснования)». Эйнштейн знал, что, принимая эту точку зрения, он идет против интеллектуального тренда своего времени: «Когда позитивистски настроенный современный физик слышит такие формулировки, его реакцией может быть лишь улыбка сожаления»[106]106
Albert Einstein 1949b, «Reply to Criticisms», in Schilpp 1949, p. 667.
[Закрыть]. Но Эйнштейн считал позитивизм совершенно безосновательным. Он видел в этой концепции полное отторжение идеи физического мира, практически означающее, что реальность существует только в наших головах: «Что мне не нравится в этой аргументации, так это ее в основе своей позитивистский характер, с моей точки зрения несостоятельный; мне кажется, он сводится к тому же принципу, которого придерживался [ирландский философ Джордж] Беркли: esse est percipi [“быть” – значит быть воспринимаемым]»[107]107
Ibid., p. 669.
[Закрыть]. Хотя Эйнштейн не сомневался в важности новой квантовой теории, он был убежден, что Борн и Гейзенберг ошибаются, говоря о завершенности квантовой физики, и что боровская философия дополнительности неадекватна истинной природе квантового мира. Придуманный им мысленный эксперимент был прост, элегантен и направлен в самое сердце этой неадекватности.
* * *
Рассмотрим, сказал Эйнштейн участникам Сольвеевской конференции, поток электронов, проходящий через очень маленькую дырочку в экране (рис. 3.2). По другую сторону экрана расположена покрытая фосфоресцирующей пленкой полусфера, которая может регистрировать отдельные электроны. В соответствии с законами квантовой физики волновая функция потока электронов должна быть однородна – вероятность того, что электрон попадет в пленку, одинакова в любой точке полусферы. И это хорошо – если правила квантовой физики говорят вам, что в ходе вашего эксперимента на квадратный сантиметр пленки попадет десять электронов, значит, в среднем так оно и будет. Квантовая физика прекрасно умеет описывать коллективное поведение больших групп частиц, но при этом она может определять только вероятности; точно вычислить, сколько электронов попадет в каждую часть экрана, она не умеет, мы можем надеяться получить лишь средние значения.
Рис. 3.2. Мысленный эксперимент Эйнштейна на Сольвеевском конгрессе. Когда электрон попадает в пластинку, откуда остальная часть волновой функции «знает», что надо немедленно коллапсировать? (По диаграмме, приведенной в Bacciagaluppi, Valentini 2009, стр. 486)
Эйнштейн попросил присутствующих рассмотреть случай, в котором через отверстие пролетает одиночный электрон. Квантовая физика по-прежнему предсказывает, что электрон с одинаковой вероятностью сможет попасть в любую точку экрана – никаких более точных предсказаний мы не получим. Что ж, хорошо – может быть, это просто значит, что теория неполна или в каком-то отношении ограничена. Однако, напомнил аудитории Эйнштейн, Гейзенберг и Борн объявили квантовую физику законченной, полной и замкнутой в том объеме, в котором она нам известна. В этом случае не существует никакого средства определить конкретную точку, в которой электрон столкнется с пленкой. Но это создает проблему – и она вовсе не в том, что в природе вещей заключена случайность.
Проблема, с которой мы здесь сталкиваемся, это проблема нарушения принципа локальности (близкодействия)[108]108
Эйнштейн до этого уже несколько лет раздумывал над проблемой локальности в квантовой физике; еще до матричной механики Гейзенберга Эйнштейн понял, что статистика фотонов подразумевает некоторый вид нелокальности. См. Howard 2007. Еще в 1909 году Эйнштейн также знал, что идея фотонов, объединенная с принципом локальности, означает серьезный пересмотр максвелловских законов электромагнетизма. См. Bacciagaluppi and Valentini 2009.
[Закрыть]. Он заключается в том, что нечто, происходящее в одной точке, не может мгновенно повлиять на событие, происходящее где-либо еще. Волновая функция нашего одиночного электрона равномерно распределена по всей покрытой пленкой полусфере, и согласно Гейзенбергу, Борну и Бору собственно электрон не находится нигде. Тот факт, что волновая функция электрона распределена равномерно, попросту означает, что пленка с одинаковой вероятностью зарегистрирует столкновение с электроном в любой ее точке. Но, спросил Эйнштейн, что происходит с волновой функцией, когда пленка действительно регистрирует это столкновение в некоторой конкретной точке? Борн показал, что волновая функция частицы пропорциональна вероятности нахождения этой частицы в конкретном месте. Но как только электрон сталкивается с пленкой в конкретной точке, вероятность того, что он попадет в какую-либо другую точку, немедленно обращается в нуль. Значит, каким-то образом волновая функция должна мгновенно обнолиться на всей полусфере в тот момент, когда точка на пленке отметит место удара электрона. Если мы хоть чуть-чуть уклонимся от требования мгновенно обнулить волновую функцию, у нас появится риск увидеть, как пленка регистрирует несуществующий второй электрон в той точке, в которой волновая функция не успела обратиться в ноль. «Этот полностью нереальный механизм действия на расстоянии, – сказал Эйнштейн, – для меня означает противоречие с принципом относительности [то есть со специальной теорией относительности]»[109]109
Bacciagaluppi and Valentini 2009, p. 487.
[Закрыть]. В ней утверждается совершенно ясно, что ни объекты, ни сигналы не могут двигаться быстрее света. Таким образом, если квантовая физика действительно является полным описанием природы, то в ней нарушается принцип относительности. Отсюда Эйнштейн делал очевидный вывод: электрон должен был находиться в некоторой конкретной точке еще до того, как он столкнулся с пленкой, несмотря на то что квантовая физика не могла ничего сказать о его точном местонахождении. По мнению Эйнштейна, этот вывод был единственным способом избежать требования мгновенного коллапса волновой функции и нарушения принципа локальности. А следовательно, квантовая физика давала неполное описание природы, и, чтобы понять истинные законы квантового мира, требовалось ее, физики, развитие. В частности, чтобы снять противоречия с принципом относительности, частицы должны в любой момент обладать определенными положениями, а не только волновой функцией. «Мне кажется, мсье де Бройль прав[110]110
Ibid., p. 487.
[Закрыть], занимаясь поисками в этом направлении», – заключил Эйнштейн.
Рис. 3.3. Эйнштейн и Бор, около 1930 года
Реакцию участников конференции на мысленный эксперимент Эйнштейна можно было назвать скрытым непониманием. Бор, к его чести, это непонимание признал откровенно. «Я чувствую себя в очень трудном положении, так как не понимаю, что именно Эйнштейн хочет доказать, – сказал он. – Но это, без сомнения, моя вина»[111]111
Ibid., pp. 487–488. Баччагалуппи и Валентини (Bacciagaluppi and Valentini) сами отмечают это: «Аргументация Эйнштейна столь компактна, что ее смысл легко ускользает; ее нетрудно счесть ошибочной и основанной на элементарной путанице в определении вероятности» (p. 195).
[Закрыть]. Простой мысленный эксперимент Эйнштейна содержал сокрушительную критику копенгагенской позиции, но, возможно, сама его простота, как ни парадоксально, стала помехой для его осознания: объяснения Эйнштейна были довольно краткими и могли создать впечатление, что он просто запутался в понимании природы вероятности[112]112
В конце концов, если волновая функция представляет собой просто утверждение о вероятности того, что единичный электрон будет зарегистрирован в некоторой точке пленки, то логически невозможно, чтобы волновая функция одного электрона привела к тому, чтобы пленка зарегистрировала два электрона в двух разных точках. Но эта аргументация создает порочный круг, так как в ней уже предполагается, что волновая функция – это всего лишь распределение вероятности. Другими словами, в этой аргументации уже предполагается наличным тот самый вывод, который Бор и его компания хотят получить. См. далее об этом: Ibid., p. 195.
[Закрыть]. В частности, Бор, как видно, уловил мысль Эйнштейна довольно плохо: позже он вспоминал, что у Эйнштейна были сомнения в отношении принципа неопределенности Гейзенберга и он придумал мысленный эксперимент, чтобы как-то этот принцип обойти. Таким образом, для участников Сольвеевской конференции эйнштейновское замечание по поводу нарушения локальности прошло незамеченным. Но Эйнштейн вскоре построил новые мысленные эксперименты, упорно выявляя трудности, которые, как он видел, стояли перед квантовой физикой.
* * *
На следующей Сольвеевской конференции, в 1930 году, Эйнштейн представил Бору другой мысленный эксперимент. В нем участвовало воображаемое устройство, которое содержало пружинный динамометр и подвешенный к нему заполненный светом ящик с точными часами. Бор опять подумал, что Эйнштейн пытается обойти квантовый принцип неопределенности. После недолгого раздумья Бор объявил, что эйнштейновский мысленный эксперимент «провалился» – Эйнштейн не учел некоторых следствий собственной общей теории относительности.
Этот легендарный эпизод вошел в историю квантовой физики – Эйнштейн подорвался на собственной мине[113]113
См., например, традиционную трактовку этого столкновения, в котором Эйнштейна кладет на лопатки его собственная теория, умело использованная победоносным Бором, в Kumar 2008.
[Закрыть]. Но на деле неправым оказался Бор. Придумывая мысленный эксперимент, Эйнштейн вовсе не собирался обходить принцип неопределенности – в центре его внимания, как и на Сольвеевском конгрессе тремя годами раньше, снова была локальность. По словам Поля Эренфеста, друга Эйнштейна, тот «более не имел никаких сомнений по поводу соотношений неопределенности» и разработал этот мысленный эксперимент «с совершенно иной целью»[114]114
Don Howard 1990, «‘Nicht sein kann was nicht sein darf,’ or the Prehistory of EPR, 1909–1935: Einstein’s Early Worries About the Quantum Mechanics of Composite Systems», in Sixty-Two Years of Uncertainty: Historical, Philosophical, and Physical Inquiries into the Foundations of Quantum Mechanics, edited by Arthur I. Miller, 61–111 (Plenum Press). Цит. на с. 98.
[Закрыть]. Бор снова попал пальцем в небо[115]115
Даже если бы Эйнштейна в действительности беспокоил принцип неопределенности, обращение Бора к общей относительности должно вызывать не иронию, а настороженность. Логическая состоятельность квантовой физики не должна основываться на существовании общей относительности, так как эти две теории не только независимы, но, что общеизвестно, несовместимы. Существует решение приписываемого Бором Эйнштейну парадокса, в котором не используется ничего, кроме квантовой физики, но это решение не только не было предложено Бором, но и вообще никем в течение еще многих десятилетий. См. более подробно об этом: Howard 1990; Howard 2007; Bricmont 2016, pp. 238–241.
[Закрыть].
Прошло еще несколько лет, и Эйнштейн предложил еще один мысленный эксперимент, демонстрирующий проблемы с локальностью. На этот раз эхо эйнштейновского выступления отдавалось в течение нескольких десятилетий. Эйнштейн и двое его сотрудников, Борис Подольский и Натан Розен, в 1935 году опубликовали статью с провокационным названием «Можно ли считать полным квантово-механическое описание физической реальности?»[116]116
Воспроизведена в Wheeler and Zurek 1983, p. 138.
[Закрыть]. Эту статью, часто обозначаемую инициалами ее авторов (ЭПР), иногда представляют как последнюю отчаянную попытку Эйнштейна выиграть схватку с Бором. Но на деле вся эта история оказалась гораздо более запутанной – и гораздо более интересной.
На первый взгляд, в работе ЭПР речь идет не о локальности, а, по иронии судьбы, именно о том, как обойти гейзенберговский принцип неопределенности. Но вместо того, чтобы придумывать способ прямо измерить импульс и положение одиночной частицы в одно и то же время, что Эйнштейн будто бы делал в своих предыдущих мысленных экспериментах, авторы ЭПР это делают косвенным путем. В предлагаемом ими эксперименте воображаемая пара частиц, A и B, испытывает лобовое столкновение, взаимодействует друг с другом некоторым весьма специальным и чувствительным образом, а затем разлетается в противоположных направлениях. Суммарный импульс всегда сохраняется – это основной закон природы, – и потому общий импульс этих частиц на любой момент времени известен. А способ взаимодействия частиц таков, что расстояние между ними в любой заданный момент легко вычислить.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?