Электронная библиотека » Александр Акилов » » онлайн чтение - страница 2


  • Текст добавлен: 7 августа 2017, 20:58


Автор книги: Александр Акилов


Жанр: Физика, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 2 (всего у книги 10 страниц) [доступный отрывок для чтения: 3 страниц]

Шрифт:
- 100% +

Глава 2. Изобретения в фотографии

Краски пылали в трех измерениях. Будто окна распахнуты в зримый и осязаемый мир, ошеломляющий своей подлинностью.

Рэй Бредбери. Человек в картинках

С помощью линзы и зеркала ловкие художники проецировали изображения на лист тонкой бумаги и с высокой точностью воспроизводили карандашом рисунки реальных объектов


Пока одни ученые исследовали волновую природу света, другие, используя законы геометрической оптики, строили приспособления для регистрации пейзажей, портретов и натюрмортов. В середине XIX века благодаря усилиям нескольких талантливых инженеров был изобретен фотохимический процесс фиксации изображений.

Дагеротип

Луи – Жак – Манде Дагер явил миру первый достаточно технологичный способ регистрации изображений – дагеротип. В технике фотографии еще многое предстояло усовершенствовать и изобрести, но именно с этого момента принято отсчитывать возраст фотографии. Дагер не изобрел фотографию, но он сделал ее действующей и популярной.


Луи – Жак – Манде Дагер (18.11.1787 – 10.07.1851)


В течение 1839 года, когда он сделал свое сообщение, его имя и его процесс стали известны во всех частях света. К нему пришли слава, богатство и уверенность. Имя настоящего изобретателя фотографии Жозефа Нисефора Ньепса было практически забыто. Однако Дагер был тем человеком, который сделал все, чтобы изобретение Ньепса воплотить в жизнь, но с использованием таких химических элементов, которые были неизвестны Ньепсу. Идея Дагера заключалась в том, чтобы получать изображение с помощью фотокамеры на специально приготовленных фоточувствительных пластинках. Проявление изображения осуществлялось парами ртути. Сначала Дагер проводил опыты с бихлоридом ртути, но изображения получались очень слабые. Затем он усовершенствовал процесс, используя сахар или закись хлора и, наконец, в 1837 году, после одиннадцати лет опытов, он стал подогревать ртуть, пары которой проявляли изображение. Он превосходно фиксировал изображение, пользуясь сильным раствором обычной соли и горячей водой для смывки частиц серебряного йодида, не подвергшихся воздействию света. Принцип Дагера проявлять с помощью ртутных паров был оригинален и надежен, и основан, без сомнения, на знаниях, полученных Дагером от Ньепса. К сожалению, Ньепс ничего не сделал, чтобы развить дальше свое изобретение после 1829 года, равно как и его сын, Исидор, который стал партнером Дагера после смерти отца. Сын, очень нуждаясь в средствах, спустя несколько лет заключил контракт с Дагером, в котором указывалось, что Дагер был изобретателем дагеротипа.

Этапы фотопроцесса Дагера были следующими:

1. Тонкий лист серебра припаивался к толстому листу меди.

2. Серебряная поверхность полировалась до блеска.

3. Серебряная пластина пропитывалась парами йодида и становилась чувствительной к свету.

4. Подготовленная пластина помещалась в темноте в камеру.

5. Камера устанавливалась на треногу, выносилась на улицу и направлялась на любой предмет, освещенный солнцем.

6. Объектив открывался на время от 15 до 30 минут.

7. Скрытое изображение проявлялось и закреплялось в следующем порядке:

a. Пластина помещалась в небольшую кабину под углом 45 градусов над контейнером с ртутью, которую спиртовая лампа нагревала до 150 градусов (по Фаренгейту).

b. За пластиной велось внимательное наблюдение до тех пор, пока изображение не становилось видимым благодаря проникновению частиц ртути на экспонированную часть серебра.

c. Пластина помещалась в холодную воду, чтобы поверхность стала твердой.

d. Пластина помещалась в раствор обыкновенной соли (после 1839 года заменена гипосульфитом натрия – фиксирующим элементом, открытым Джоном Гершелем и немедленно взятым для использования Дагером).

e. Затем пластина тщательно промывалась, чтобы прекратилось действие фиксажа.

В результате получалась единственная фотография, позитив. Видеть ее можно было только при определенном освещении – под прямыми лучами солнца она становилась просто блестящей пластинкой металла. Изображение получалось зеркальным. Невозможно было сделать несколько таких пластинок или напечатать неограниченное количество экземпляров, как можно напечатать позитивы с одного негатива. Фотографический принцип негатив – позитив был изобретен Фоксом Тальботом. Оба изобретения стали известны в одном и том же году.

Художники, ученые и простые фотолюбители вскоре улучшили и модифицировали процесс Дагера, сократив время экспозиции до нескольких минут. Применение призмы позволило перевернуть изображение, и теперь портреты смотрелись нормально, а не зеркально. Решительным шагом вперед было создание к 1841 году аппарата меньшего размера, что привело к уменьшению его веса. Были улучшены средства, предохранявшие поверхность дагеротипа от повреждений и царапин. В 1840 году Ипполит Физо стал тонировать изображение хлоридом золота. Это не только сделало изображение более контрастным – создавался превосходный глубокий серебряно-серый тон, который, окисляясь, превращался в богатый пурпурно-коричневый.

Признание и слава Дагера росли по мере того, как его изобретение повсюду покоряло воображение людей. Сам он, однако, ничего не внес в фотографию после опубликования данных о своем процессе. До самой смерти в 1851 году он жил в уединении в шести милях от Парижа. В 1843 году он заявил, что усовершенствовал мгновенную фотографию и может снимать птицу в полете, но не привел никаких доказательств в правдивость этого заявления.


Всего 12 лет прошло с момента появления дагеротипа, а в 1851 году на Всемирной выставке в Лондоне были продемонстрированы первые стереоскопические снимки!


В то время возникли жаркие споры о месте фотографии в искусстве. Художники упрекали фотографию в бесстрастной натуралистичности, а ее сторонники предрекали скорый конец живописи. К счастью, ни те, ни другие не оказались правы. Тем не менее, настойчивое желание отобразить мир в естественном для нашего восприятия объеме заставляло людей искать новые пути в третье измерение. XIX век вместе с появлением стереофотографии готовил еще один фантастический прорыв!

Метод цветной фотографии Габриэля Липпмана

В истории науки есть события, которые на многие десятки, а иногда сотни лет опережают время. Голография, как наука, могла бы появиться на шестьдесят лет раньше. Но этого не случилось, несмотря на то, что учеными XIX века был возведен основательный фундамент, как в области теории, так и практики.


Габриэль Липпман (16.08.1845 – 12.07.1921)


В 1892 году Габриэль Липпман опубликовал результаты собственных опытов, связанных с регистрацией цветного изображения на черно—белых фотоматериалах. Как выяснилось 70 лет спустя, талантливым ученым—изобретателем был сделан огромный вклад в развитие голографии.

Принцип записи цветных изображений Липпмана заключался в том, что картина интерференции стоячих световых волн ограниченной когерентности записывалась на фоточувствительной эмульсии в виде сфокусированного изображения. За эту работу Габриэль Липпман был удостоен Нобелевской премии. Постараемся разобраться, как он это делал.


Стоячие волны в бассейне с водой


Представьте себе бассейн наполненный водой. В бассейне с помощью широкой доски мы создаем когерентные волны с постоянным периодом и фазой. Волны достигают противоположной стенки бассейна, отражаются и бегут обратно. В результате наложения друг на друга бегущих по поверхности бассейна волн мы получим удивительную картину. Гребни будут подниматься и опускаться, но бега их мы не увидим. И самое интересное, между гребнями окажутся точки, которые не будут ни подниматься, ни опускаться относительно уровня воды в спокойном бассейне. Это явление называют стоячими волнами, а эффект, вызывающий это явление, – интерференцией.

Свет – это тоже волна, только электромагнитная. И в случае со светом будет наблюдаться аналогичная картина.


Картина стоячих световых волн


Допустим, что световая волна прошла сквозь прозрачную фотоэмульсию, затем отразилась от некоторой поверхности и направилась обратно. Должна возникнуть та же картина, что и в бассейне. Там, где расположены неподвижные узлы стоячей волны, будет всегда темнота, а там, где «эфир» колеблется – будет свет. И самое главное, если электромагнитная «зебра» останется неподвижной, картину стоячих световых волн можно зафиксировать в фоточувствительной эмульсии.

После химической обработки фотопластинка, по мнению Липпмана, должна была восстанавливать отраженную волну той же частоты, какая использовалась при записи интерферограммы. Так, если в некоторую область фотоэмульсии попадает зеленый свет, то «зеркальце», записанное в этой точке, должно отражать только зеленую длину волны. Получается, что каждая точка сфокусированного изображения отражала световую волну той длины, посредством которой была записана картина стоячих волн. Липпман успешно получил прогнозируемый результат.


Невзрачные в пасмурную погоду, но вспыхивающие радугой на открытом солнце крылья тропических бабочек, хитиновые пластинки насекомых и яркие перья некоторых птиц не содержат красителей. Здесь цвет создается за счет дифракции Брэгга на многослойных биологически воспроизведенных структурах


На фотографии изображены чешуйки крыльев бабочек под электронным микроскопом


Свет солнца или электрической лампочки, отраженный от объектов, имеет очень малую когерентность, а точнее, длину когерентности. Область интерференции для такого излучения ограничится разностью хода лучей порядка нескольких микрометров. Другими словами, стоячие световые волны, отраженные от какой—либо поверхности, будут наблюдаться в области, сравнимой с толщиной фотоэмульсии. Липпман, понимая это, придумал в 1892 году оригинальную схему записи интерференционной картины световых волн с ограниченной когерентностью.


Устройство кассеты с ртутным зеркалом в методе цветной фотографии Липпмана


Для создания цветного изображения гениальным изобретателем использовалась фотографическая камера со светосильным объективом (3). Липпман сконструировал оригинальную кассету для стеклянных фотопластинок (1) с эмульсией очень высокого разрешения. Фотопластинка прижималась к задней стенке кассеты через тонкую резиновую прокладку (2), образуя герметичную полость, в которую из небольшого резервуара (4) перед съемкой заливалась ртуть. Фотоэмульсия во время регистрации соприкасается с жидкой ртутью, которая является идеально прилегающим зеркалом. После экспозиции, которая длилась 3 – 5 минут, ртуть снова выливалась в резервуар, а фотопластинка заменялась на новую. Ртутное зеркало отражало падающие лучи разной длины волны, создавая в объеме фотографической эмульсии картину стоячих волн соответствующей частоты.


Ртутное зеркало отражало падающие лучи разной длины волны, создавая в объеме фотографической эмульсии картину стоячих волн соответствующей частоты


После фотохимической обработки, которая сводилась к физическому проявлению и отбеливанию раствором двухлористой ртути, цветное изображение можно было увидеть со стороны эмульсии в белом рассеянном свете. Каждая точка сфокусированного изображения интерференционной фотографии отражала свет той длины волны, который попадал в эту точку при записи.


Каждая точка сфокусированного изображения интерференционной фотографии отражала свет той длины волны, который попадал в эту точку при записи


Надо заметить, что использование ртути и ее солей в методе Липпмана создавало серьезную угрозу здоровью экспериментаторов в силу губительного воздействия паров ртути на человеческий организм.

При рассматривании фотографий Липпмана в свете точечного источника «белого» света наблюдатель мог видеть действительное изображение объектива в виде яркого пятна, скользящего по темной эмульсионной поверхности. В рассеянном же свете, действительное изображение диафрагмы «расплывалось» до размеров всего фотоснимка, что позволяло зрителю рассматривать цветную интерференционную фотографию достаточно комфортно. Для удобства демонстрации своих фотоснимков, Липпман наклеивал со стороны эмульсии тонкую стеклянную призму, которая убирала блик от источника света, восстанавливавшего цветное изображение, и предохраняла фотографию от механических повреждений. На заводе Цейса по чертежам изобретателя изготовили несколько оригинальных приборов для рассматривания его фотографий. Тем не менее, метод был вскоре забыт.


Этот липпмановский снимок, хранящийся в Московском Политехническом музее, сделал не автор изобретения, а его коллега немец Нейгауз в 1901 году. Качество передачи цветов раритета не хуже, чем на современных цветных фотографиях, которые через сто лет уже наверняка поблекли бы и выцвели


Современники часто критиковали Липпмана за несусветную сложность предложенного метода. Его фотоснимки было невозможно рассматривать нескольким зрителям одновременно, а также производить копирование, как в обычной фотографии. Тем не менее, технология изготовления высокоразрешающих эмульсий, рецепты физических проявителей и тонкости фотохимической обработки голограмм мало изменились с 1892 года.

Габриэль Липпман, сам того не подозревая, создал первую в мире цветную отражательную голограмму сфокусированного изображения задолго до изобретения голографического метода. До сих пор технологии, предложенные Габриэлем Липпманом, используются в производстве и обработке голографических высокоразрешающих фотоматериалов.

Глава 3. Открытие голографии

Деннис Габор (05.06.1900 – 09.02.1979)

Алиса встала на колени и заглянула в нору  в глубине её виднелся сад удивительной красоты. Ах, как ей захотелось выбраться из темного зала и побродить между яркими цветочными клумбами и прохладными фонтанами! Но она не могла просунуть в нору даже голову.

Льюис Кэрролл. Приключения Алисы в стране чудес

XIX век подготовил все, что было необходимо для совершения нового открытия, но только в середине двадцатого века (1947 год) Деннис Габор, английский физик (венгр, родившийся в Будапеште), занимаясь поисками способа повышения резкости изображений электронно-лучевой трубки, открыл поистине новый способ записи изображений – голографию. Если фотография означает буквально светопись, то голография – полная запись.

Новый метод получения изображений Денниса Габора

В 1927 году Габор окончил Высшее техническое училище в Берлине и поступил на службу в лабораторию фирмы «Сименс», производящей электронную технику. В числе выполненных там работ было изобретение кварцевой ртутной лампы. Вскоре после прихода Гитлера к власти в 1933 г., по истечении срока контракта с «Сименс и Хальске» Габор вернулся в Венгрию. Работая внештатным сотрудником лаборатории Научно-исследовательского института электронных ламп Тунгсрама, он создал новый тип флуоресцентной лампы, названной им плазменной. Не имея возможности продавать патент на свое изобретение в Венгрии, Габор решил эмигрировать в Англию. Там ему удалось найти место в компании «Бритиш Томсон-Хьюстон» (БТХ), в которой он проработал с 1934 по 1948 г. В 1946 году Деннис Габор получил британское подданство. Работая над катодной системой электронно—лучевой трубки, он изобретает магнитную линзу. При этом ученый почти вплотную подходит к изобретению электронного микроскопа. Хотя электронный микроскоп появился позже, после работ физиков Буша и Вольфа, но именно эта работа стимулировала Габора к созданию принципиально нового метода записи изображений.


Иллюстрация к патенту Д. Габора по восстановлению волнового фронта


В 1947 году им было сделано научное открытие, которое первоначально восприняли просто как очередное доказательство волновых свойств света, но впоследствии оказалось, что оно более фундаментально. Именно тогда была открыта голография. Габор сообщил о разработанном методе только узкому кругу специалистов. Им было введено понятие и разъяснена сущность нового процесса, состоящего из двух этапов – формирования изображения и его восстановления. Процесс получения и восстановления трехмерных изображений стали называть по предложению Денниса Габора и Джорджа Строука, с которым он работал, голографическим процессом, а возникший впоследствии раздел физики, занимающийся изучением этих процессов, голографией. Однако идеи Габора надолго остались нереализованными. Открытия никто не замечал, о нем не знали, не было и практических результатов.


Схема записи Деннисом Габором первой глограммы.

1 – ртутная лампа; 2 – светофильтр; 3 – конденсорная линза; 4 – диафрагма; 5 – прозрачный объект; 6 – фотопластинка


Габор на стадии исследований изготовил несколько примитивных голограмм фазовых (светопреломляющих и прозрачных) объектов. При записи голограммы он фиксировал структуру интерференции волн монохроматического источника света и света, рассеянного фазовым объектом, помещенным перед фотопластинкой. Для получения высокого контраста интерференционной картины Габор использовал одну из самых ярких линий спектра излучения ртутной лампы.

После проявления и отбеливания фотопластинка восстанавливала трехмерное изображение объекта. Результат был впечатляющий, но мог взволновать только ученых.


К сожалению, на голограмме можно было видеть и мнимое, и действительное изображения, и восстанавливающий источник света одновременно


Для того чтобы понять, как происходит запись и восстановление голограммы, рассмотрим самый простой пример – голограмму точки.


Запись голограммы точечного объекта


Восстановление голографического изображения


Рассеянная точечным объектом сферическая (см. рис. «Запись») и плоская референтная волна попадают на фоточувствительный слой, в котором записывается картина интерференции сходящихся лучей.


Интерференционная картина на голограмме точки


Расстояние между соседними интерференционными кольцами (d) равно:

d = λ /2*sin (Θ/2)

где λ – длина записывающей волны;

Θ – угол между интерферирующими лучами.

Интерференционную картину, записанную на фотопластинке, можно назвать голограммой. Если рассматривать маленькие участки этой голограммы, например в точках (1) или (2), то можно с уверенностью назвать их элементарными дифракционными решетками. При освещении миниатюрных элементов голограммы монохромной световой волной, подобной референтной, возникает множество новых волновых фронтов – порядков дифракции. Углы дифракции при этом, окажутся такими же, какими были углы схождения лучей во время записи голограммы.

Θ = ψ; где (ψ1) и (ψ2) – углы дифракции в точках (1) и (2).

Два симметричных дифракционных порядка в точках (1) и (2) формируют действительное и мнимое изображения точки (Об). Если продолжить направления дифракционных порядков, возникших в точках (1) и (2) нашей голограммы до их пересечения, то получим координаты мнимого и действительного изображений точки (Об). Возникшая в результате дифракции на голограммной структуре сферическая волна (см. рисунок «Восстановление»), создает мнимое изображение точки (Аi) и наблюдатель видит это изображение за голограммой. Вторая сходящаяся сферическая волна создает действительное изображение точки (Аd), которое расположено перед голограммой.

Восстановление изображения голограммой происходит благодаря тому, что интерференция и дифракция инвариантны. Эти два явления описываются практически одинаковыми уравнениями. Вспомним уравнение дифракционной решетки:

sin (ψ) = nλ/2d;

где n = +1; 0; -1 (см. рис. «Восстановление»)

Обратите внимание на зависимость углов дифракции от длины волны (λ) в приведенной формуле. Восстановление голографического изображения волной, отличающейся частотой от использованной при записи, приведет к изменению формы и положения объекта в пространстве.

Результат сложения интерференционных картин от множества точек материального тела будет обладать всеми вышеперечисленными свойствами. Голограмму протяженного объекта можно рассматривать как суперпозицию (сумму) элементарных голограмм множества геометрических точек, составляющих объект. Это и является принципом голографии, который предложил в 1947 году Деннис Габор.


Джордж Строук демонстрирует голограмму


В 1964 г. Профессором Мичиганского университета Джорджем Строуком, соавтором самого термина голография, а также автором многих принципиальных работ, выполненных совместно с Габором, был прочитан первый курс лекций по голографии. В 1966 г. Он также выпустил первую монографию, в которой были изложены основы теории голографии. Книга была переведена на русский язык уже в следующем году и вышла в свет под названием «Введение в когерентную оптику и голографию».


Определения

Изображение оптическое – картина, получаемая в результате прохождения через оптическую систему лучей, распространяющихся от объекта, и воспроизводящая его контуры и детали. Основой зрительного восприятия предмета является его оптическое изображение, спроецированное на сетчатку глаза.

Действительное изображение (оптическое) – создается сходящимися пучками лучей в точках их пересечения. Если в плоскости пересечения лучей поместить экран (фотопленку, регистрирующую среду любого типа), то можно на нем наблюдать оптическое действительное изображение.

Мнимое изображение (оптическое), формируется лучами, которые при выходе из оптической системы расходятся, но их можно мысленно продолжить в противоположную сторону и они соберутся в точках пересечения. Совокупность таких точек называют мнимым изображением, так как оно способно играть роль объекта по отношению к другой оптической системе (например, глазу), преобразующей его в действительное изображение. Особенностью изображений объекта, формируемых с помощью голограммы, является то, что действительное изображение объекта является псевдоскопическим, а мнимое – ортоскопическим.

Ортоскопическое изображение объекта – изображение, соответствующее реальному объекту. В голографическом эксперименте мнимое изображение представляет собой обычное ортоскопическое изображение.

Псевдоскопическое изображение объекта – изображение, в котором наблюдатель видит вместо выпуклостей – вогнутости, и наоборот. Действительное изображение объекта, сформированное голограммой, является псевдоскопическим.

Объектная (предметная) волна – одна из волн, образующих интерференционную картину при получении голограммы, в которой содержится информация, предназначенная для воспроизведения или преобразования. Обычно объектная волна формируется излучением, прошедшим через объект, либо отраженным от него.

Опорная (референтная) волна – одна из волн, образующих интерференционную картину при получении голограммы, которая обычно используется для восстановления объектной волны. Как правило, опорная волна имеет простую и легко воспроизводимую форму, например, плоскую или сферическую.


Страницы книги >> Предыдущая | 1 2 3 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации