Электронная библиотека » Александр Марков » » онлайн чтение - страница 25


  • Текст добавлен: 10 декабря 2021, 08:43


Автор книги: Александр Марков


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 25 (всего у книги 36 страниц) [доступный отрывок для чтения: 12 страниц]

Шрифт:
- 100% +

Разумеется, первое, что хочется сделать, глядя на эти цифры, – это сравнить вычисленную ожидаемую величину летальной агрессии у H. sapiens (2 %) с реальными данными по палеолиту или по современным племенам охотников-собирателей. Ученые попытались решить эту задачу, собрав из литературных источников внушительный массив данных по летальной агрессии у человека, охватывающий почти 600 человеческих популяций от палеолита (древнейшие из учтенных археологических находок имеют возраст 50 тыс. лет) до современности.

Информации в итоге набралось много, однако она крайне разнородна по своему характеру, полноте и достоверности. К тому же при сборе подобных данных и их систематизации невозможно полностью избежать субъективности. Например, в данных по неандертальцам, использованных авторами в качестве вспомогательных при оценке эволюционно ожидаемого уровня агрессивности нашего вида, материал из пещеры Эль-Сидрон (книга 1, глава 5, раздел “Людоеды”) учтен как 12 ненасильственных смертей, потому что, дескать, данные по каннибализму у неандертальцев спорны и могут быть интерпретированы по-разному. Так же авторы поступили и с другими находками неандертальцев, съеденных соплеменниками, – и в итоге неандертальцы получились у них исключительно миролюбивым видом приматов. Поэтому делать слишком детальные выводы на основе приводимых авторами данных рискованно. Общая же картина получилась (со всеми этими оговорками) следующая.

Для палеолитических (начиная с 50 тыс. лет назад) и более поздних человеческих популяций вплоть до конца бронзового века (3200 лет назад по хронологии, используемой авторами) уровень летальной агрессии у людей не демонстрирует статистически значимых отличий от эволюционно ожидаемого уровня в 2 %. То есть наши предки были кровожадны ровно настолько, насколько эту кровожадность предопределяло их эволюционное наследие. В железном веке и в Средние века летальная агрессия резко превысила ожидаемый уровень – вплоть до 15–30 %, с очень большим межпопуляционным разбросом. В Новое время (500–100 лет назад) она снизилась до значений, достоверно меньших эволюционно обусловленного уровня, – до 0,14 % по данным письменных источников. Правда, по археологическим данным за тот же период значение получилось другое – 2,4 %. Для последних 100 лет, опираясь только на письменные источники, авторы приводят значение 1,3 %.

У авторов также получилось, что современные группы охотников-собирателей, судя по имеющимся этнографическим данным, характеризуются очень высоким уровнем летальной агрессии: 10,3 % для мелких групп, 3,9 % для более крупных племен. Однако для доисторических сообществ того же типа авторы приводят, на основании археологических данных, совсем другие значения: 3,3 и 3,6 % соответственно. То ли дожившие до наших дней охотники-собиратели действительно стали кровожаднее своих палеолитических коллег (что может быть, например, следствием контактов с более продвинутыми социумами, знакомства с их оружием и так далее), то ли в исходных данных что-то не так[45]45
  Насколько такие оценки ненадежны и приблизительны, читатель может судить, сравнив их с результатами другого исследования, приведенными во второй книге (глава 5, раздел “Достаточно ли крови лилось в палеолите, чтобы обеспечить преимущество «генам альтруизма»?”).


[Закрыть]
.

Но все же исследование довольно убедительно показало, что склонность людей к убийству себе подобных отчасти унаследована от далеких предков. Мы принадлежим к одной из самых агрессивных ветвей класса млекопитающих, а это что-нибудь да значит. Вероятно, дело тут не только или даже не столько в эволюционно обусловленной психологической склонности к убийству, сколько в эволюционно обусловленных особенностях образа жизни, способствующих агрессивному поведению, таких как чрезвычайно сильно развитая социальность.

Кроме того, исследование показало, что эволюционное наследие – это вовсе не приговор. Во-первых, последний общий предок шимпанзе и бонобо, живший 2 млн лет назад, имел такую же “эволюционно обусловленную” агрессивность, что и первые H. sapiens, однако один из потомков этого предка стал агрессивным шимпанзе, а другой – мирным бонобо. Во-вторых, степень летальной агрессии у людей резко менялась в разные эпохи и в разных типах общества, то превышая в несколько раз ожидаемый уровень, то опускаясь, как в современную эпоху, до обнадеживающе низких значений. Культурные и социальные факторы, несомненно, могут самым радикальным образом модифицировать и направлять наше поведение, либо стимулируя, либо подавляя эволюционно обусловленные предрасположенности.

Глава 10
Социальность и интеллект

Согласно гипотезе социального интеллекта, увеличение мозга в эволюции приматов вообще и гоминид в частности было неразрывно связано с общественным образом жизни. У приматов между особями в группе формируются сложные взаимоотношения и личные связи, которые у других животных, как правило, бывают только между матерью и детенышами, реже (у моногамных видов) – между брачными партнерами. Для поддержания этих отношений общественному примату необходимо понимать поступки и мотивы соплеменников, а это крайне сложная и ресурсоемкая вычислительная задача. Ведь соплеменники, чье поведение нужно научиться моделировать у себя в голове, сами являются высокоорганизованными приматами со сложным поведением, которые тоже пытаются вас смоделировать. Это еще больше усложняет дело: не просто “я понимаю, что ты думаешь”, а “я понимаю, что ты думаешь, что я думаю”. Если статус и репродуктивный успех особи начинают зависеть от ее социального интеллекта, в сообществах может запуститься эволюционная гонка вооружений, которая будет вести к увеличению мозга в череде поколений. Теория социального интеллекта подтверждается положительными корреляциями между размером мозга (или его наиболее эволюционно молодой части – неокортекса) у приматов, а иногда также у хищных, копытных и китообразных с различными показателями сложности общественных отношений. К таким показателям относят размер группы, наличие устойчивых семейных связей, частоту образования коалиций, частоту случаев тактического обмана и социального обучения. Мы подробно рассказали о теории социального интеллекта во второй книге (глава 4). К этому необходимо добавить несколько важных фактов и идей, получивших экспериментальную поддержку в последние годы.

“Социальный мозг” – древний комплекс нейронных сетей

Одна из важных идей, укрепившихся в последние годы, – это представление о большой древности и эволюционной консервативности тех участков мозга позвоночных, которые отвечают за социальное поведение. Эти данные помогают осознать, что взаимоотношения с сородичами, социальная жизнь – вовсе не позднейшая надстройка над неким более древним и более важным базисом, таким как поиск пищи или убегание от хищников. Социальное поведение – ничуть не менее фундаментальная и древняя функция нервной системы. Задним числом это кажется, пожалуй, даже очевидным. Никогда не бывало животного-одиночки, будь то муха, червяк или синий кит, которому вовсе не приходилось бы хоть как-то взаимодействовать с сородичами: брачными партнерами, родителями, детенышами, соседями и конкурентами.

Исследования последних лет показали, что у костистых рыб, амфибий, рептилий, птиц и млекопитающих социальное поведение (включая агрессию, брачное поведение и заботу о потомстве) контролируется фактически одним и тем же комплексом отделов мозга. Этот комплекс называют “нейронной сетью социального поведения”. В ее работе важную роль играют стероидные половые гормоны (андрогены, эстрогены) и нейропептиды, в том числе окситоцин, вазопрессин и их гомологи (книга 2, глава 3, раздел “Нейрохимия личных отношений”). Сеть социального поведения тесно связана с системой внутреннего подкрепления, задача которой – отличать, образно говоря, что для меня сейчас хорошо, а что плохо, и сообщать о результатах другим отделам мозга при помощи нейромедиатора дофамина. Вместе эти два нейронных контура (социального поведения и внутреннего подкрепления) образуют систему принятия социальных решений (СПСР).

Самое удивительное свойство СПСР – ее эволюционный консерватизм, то есть крайне медленный темп эволюционных изменений. На первый взгляд, это противоречит тому громадному многообразию форм социального поведения, которое наблюдается у позвоночных. Хотя, с другой стороны, базовые социально ориентированные задачи у всех позвоночных схожи: привлечь хороших половых партнеров, одолеть конкурентов, повысить свой социальный статус, вырастить побольше здоровых потомков… Это фундаментальное сходство жизненных устремлений, вероятно, и создает предпосылки для развития более или менее универсальных социально ориентированных нейронных структур в ходе эволюции. Та нейронная сеть, которая сформировалась еще у доисторических рыб – общих предков современных лучеперых рыб и наземных позвоночных, – очевидно, оказалась достаточно универсальной, чтобы в ходе дальнейшей эволюции ее не пришлось в корне перестраивать (впрочем, радикальные перестройки вообще даются эволюции нелегко, ее главный конек – бесконечные мелкие доделки и модификации того, что есть).

Постепенно исследователям стало ясно, что даже очень небольших модификаций отдельных компонентов сети СПСР часто оказывается достаточно для значительного изменения социального поведения (Goodson, 2005). Иногда, конечно, может развиться и нечто принципиально новое. Скажем, у млекопитающих значительную часть социальных функций взяла на себя префронтальная кора, которой нет у других позвоночных. Именно поэтому, кстати, префронтальная кора не рассматривалась в исследовании, о котором сейчас пойдет речь.

В 2012 году Лорен О’Коннелл и Ханс Хофманн из Техасского университета в Остине решили выяснить, была ли СПСР так же консервативна на уровне генной экспрессии, как и на уровне структуры. Для этого они проанализировали опубликованные результаты 152 исследований, в которых изучалась активность генов в разных участках сети СПСР у разных позвоночных (O’Connell, Hofmann, 2012). Ученые сконцентрировались на десяти генных продуктах, особенно важных для принятия социальных решений. Первые шесть – это рецепторы, а оставшиеся четыре – ферменты, необходимые для синтеза сигнальных веществ, воспринимаемых этими рецепторами, или сами сигнальные вещества. Итак, изучались дофаминовый рецептор первого типа; эстрогеновый рецептор; андрогеновый рецептор; прогестероновый рецептор; вазопрессиновый рецептор; окситоциновый рецептор; тирозингидроксилаза (фермент, необходимый для синтеза дофамина); аргинин-вазопрессин, чаще для краткости называемый просто вазопрессином; окситоцин; ароматаза (фермент, отвечающий за синтез эстрогенов).

Имеющихся данных пока недостаточно, чтобы сравнивать активность соответствующих генов количественно, поэтому анализ проводился на качественном уровне. Для каждой группы позвоночных и для каждого отдела сети СПСР ученые пытались выяснить, в каком состоянии находится каждый из десяти генов: включенном или выключенном (“экспрессия есть” или “экспрессия отсутствует”).

Распределение генной экспрессии по отделам сети СПСР оказалось сходным у всех изученных групп. Наиболее консервативен рисунок экспрессии рецепторов. Почти у всех исследованных видов позвоночных все шесть рецепторов экспрессируются во всех или почти всех отделах сети СПСР.

Экспрессия генов, связанных с производством сигнальных веществ, более изменчива. Самые значительные изменения произошли при отделении предков лучеперых рыб от предков лопастеперых и тетрапод (наземных позвоночных), а также при расхождении линий птиц и чешуйчатых рептилий (последние были представлены змеями и ящерицами).

Рыбы отличаются от других позвоночных тем, что синтез тирозингидроксилазы происходит у них в большем числе отделов. В центральном сером веществе, латеральной перегородке, прилежащем ядре и стриатуме экспрессия тирозингидроксилазы зарегистрирована только у рыб[46]46
  Внимательный читатель заметит здесь противоречие с данными, приведенными в главе 9 (раздел “Размер, пропорции частей… что-нибудь еще?”), где говорилось об экспрессии гена тирозингидроксилазы (TH) в стриатуме у обезьян и особенно у человека. Дело в том, что в данном исследовании для каждого класса позвоночных брали “консенсусное”, то есть наиболее типичное и, скорее всего, исходное для этого класса, состояние признака. В частности, использовались сведения по наличию дофаминовых (экспрессирующих TH) нейронов в стриатуме у девяти видов млекопитающих. Только у трех из них (двух грызунов и одного примата – макаки-крабоеда) в стриатуме есть дофаминовые нейроны. У шести остальных (одного примата – мармозетки, трех грызунов, летучей мыши и прыгунчика) дофаминовые нейроны в стриатуме не обнаружены. Поэтому “консенсусным” состоянием для млекопитающих считалось отсутствие дофаминовых нейронов в стриатуме.


[Закрыть]
.

У ящериц и змей окситоцин производится в вентральном паллидуме и вентромедиальном гипоталамусе, где у других позвоночных ген окситоцина выключен. Отличительной особенностью млекопитающих является отсутствие экспрессии вазопрессинового и андрогенового рецепторов в полосатом теле. Кроме того, андрогеновый рецептор у млекопитающих обычно не экспрессируется в центральном сером веществе и прилежащем ядре.

Крайне консервативный профиль экспрессии характерен для преоптической области гипоталамуса – там у всех групп работают все десять генов. Единообразно работают гены также и в вентральной области покрышки – в ней у всех позвоночных выключены гены окситоцина и вазопрессина, остальные восемь включены. Наибольшая эволюционная пластичность характерна для полосатого тела – в этом отделе мозга нейрохимический профиль менялся в ходе эволюции сильнее всего. Как рассказано выше (см. раздел “Нейрохимическая гипотеза происхождения человека” в главе 9), уровень дофамина и ацетилхолина в полосатом теле у разных приматов сильно различается, причем эти различия, скорее всего, напрямую связаны с особенностями социального поведения.

Можно заключить, что “сеть принятия социальных решений” у позвоночных оказалась консервативной не только на структурном, но и на нейрохимическом уровне. Все эволюционные изменения социального поведения у позвоночных осуществлялись, по-видимому, за счет относительно небольших изменений соответствующих нейронных сетей. При этом распределение сигнальных веществ – нейромедиаторов – менялось быстрее, чем распределение рецепторов, реагирующих на эти нейромедиаторы.

Коррелирует ли размер мозга с социальным интеллектом?

Если мозг у наших предков рос в первую очередь для решения когнитивных задач, связанных с социальной жизнью, то логично предположить, что у современных людей размер мозга тоже коррелирует с социально ориентированными умственными способностями. Впрочем, это не обязательно должно быть так – хотя бы потому, что рост среднего объема мозга у Homo sapiens давно прекратился, и даже, по некоторым данным, в последние 10–40 тыс. лет наметилась тенденция к его уменьшению. Это значит, что если на наших предков раньше и действовал ведущий к увеличению мозга отбор на социальный интеллект, то сейчас его действие то ли прекратилось, то ли уравновесилось другими факторами, направленными в обратную сторону, то ли по каким-то причинам перестало стимулировать рост мозга. Тем не менее обнаружение подобной корреляции стало бы весомым аргументом в пользу гипотезы социального мозга.

Иногда какие-нибудь отважные ученые, не боящиеся браться за неполиткорректную тему (не секрет, что в последние годы изучать биологические основы различий между людьми по когнитивным способностям становится все рискованнее), пытаются найти такую корреляцию. Порой эти попытки вроде бы оказываются удачными, порой нет. Например, в 2011 году венгерские психологи и нейробиологи сопоставили размеры разных отделов мозга с развитостью такой психологической черты, как социабельность, или общительность (Horváth et al., 2011). Для этой характеристики существуют стандартные, многократно испытанные тесты, а ее осмысленность и информативность подтверждена факторным анализом и другими сложными математическими методами. Здесь необходимо пояснить, что дискуссия о выборе универсальной системы координат для анализа индивидуальных психических различий (личностных характеристик) давно уже ведется психологами не на уровне общих рассуждений, а на основе изощренной математики. По итогам многолетних исследований наибольшую поддержку получила пятифакторная модель – так называемая большая пятерка. В нее входят следующие пять базовых психологических характеристик (или измерений): экстраверсия, доброжелательность, добросовестность, невротизм и открытость новому опыту. Важно помнить, что это не более чем условные названия пяти комплексных характеристик, вычисляемых по сложным формулам на основе результатов анкетирования. Общеупотребительные значения этих понятий лишь приблизительно отражают смысл пяти измерений этой модели. Параллельно с “большой пятеркой” существует ряд других моделей, тоже достаточно хорошо обоснованных, но, по-видимому, приложимых к менее широкому кругу исследовательских задач.

Ранее уже были предприняты безуспешные попытки найти корреляцию между размером мозга и экстраверсией – характеристикой, которая, с одной стороны, входит в состав “большой пятерки”, а с другой стороны, отчасти отражает социальный интеллект. Однако параметр “экстраверсия” учитывает и показатели, не имеющие к социальному интеллекту прямого отношения.

Поэтому ученые решили использовать другую комплексную психологическую характеристику – социабельность. Она не входит в “большую пятерку”, но зато входит в другую, тоже вполне респектабельную модель – альтернативную пятерку Цукермана (Zuckerman, 2002). Считается, что модель Цукермана более биологична и в большей степени ориентирована на задачи психогенетики и эволюционной психологии. Забегая вперед, заметим, что результаты обсуждаемой работы подтверждают это мнение. Параметр “социабельность” учитывает такие показатели, как количество друзей, проводимое с ними время, частота выходов в свет, участие в коллективных затеях, непереносимость социальной изоляции.

В исследовании приняли участие 25 добровольцев (7 женщин, 18 мужчин). Социабельность оценивали при помощи стандартного опросника, размеры отделов мозга – при помощи магнитно-резонансной томографии и стандартного программного обеспечения, разработанного для этой задачи. По отдельности оценивался объем конечного мозга, неокортекса, левой и правой лобной и височной долей (потому что именно в них находятся основные центры, связанные с социальным интеллектом). При обработке данных использовались поправки на рост и возраст, а также другие процедуры, предназначенные для оценки достоверности результатов.

Оказалось, что социабельность положительно коррелирует с объемом всех перечисленных отделов мозга. Корреляция с объемом лобных долей оказалась менее четкой, чем с объемом височных долей, неокортекса и всего конечного мозга. При раздельном рассмотрении мужчин и женщин положительные корреляции сохраняются, но перестают быть статистически значимыми – скорее всего, из-за маленького размера выборки.

Полученные результаты можно рассматривать как дополнительное подтверждение гипотезы социального интеллекта, согласно которой сложные социальные отношения были важным стимулом для увеличения мозга в эволюции наших предков. Главная слабость этого и других подобных исследований – в малом числе участников. Кроме того, исследование не дает ответа на вопрос о причинах и следствиях. Теоретически здесь возможны три варианта: 1) большой мозг, наряду с другими факторами, способствует повышенной общительности; 2) общительные люди активнее тренируют социально ориентированные мозговые центры, что ведет к их увеличению; 3) какой-то третий фактор схожим образом влияет и на социабельность, и на объем мозга. Эти варианты не являются взаимоисключающими: возможны любые переходы и комбинации.

Подобные исследования проводятся не только на людях, но и на других социальных животных. Ниже мы рассмотрим несколько примеров таких работ.

Птицам нужен большой мозг, чтобы выживать в городе и общаться с многочисленными сородичами

В 2011 году шведские ученые собрали и проанализировали данные о птицах, гнездящихся в городах Центральной Европы (Maklakov et al., 2011). Исследователи хотели понять, как влияет размер мозга на способность птиц селиться в городах. Этот вопрос имеет и практическое, и теоретическое значение. Практика в данном случае увязывается с проблемами охраны биоразнообразия на фоне быстро растущих городских площадей. Теоретический смысл поставленной задачи примыкает к вопросу об эволюционном значении большого мозга. Кому-то кажется более важным первый аспект, ну а нам, конечно, второй. Итак, есть ли связь между размером мозга у птиц и их способностью адаптироваться к городской среде?

Шведские специалисты показали, что такая связь есть. В качестве базовой выборки ученые взяли воробьиных, населяющих Центральную Европу. Воробьиные – наиболее массовый отряд птиц, хорошо изученный с точки зрения и биологии, и экологии, с разработанной филогенией. Из биологических характеристик понадобились данные об относительном размере мозга, а из экологических – о месте гнездовий в городах и дикой природе. Филогенетические построения нужны для рассмотрения гипотез о связи эволюционного происхождения с размером мозга и способностью жить в городах.

Были учтены данные по 82 видам воробьиных из 22 семейств. Каждый вид был отнесен к одной из двух категорий – городской или сельский. Городскими считались виды, которые могут успешно выводить птенцов в центре города. Если же птицы гнездятся только за городом или на окраинах, то их относили к условным сельским жителям, предпочитающим свои исконные местообитания.

Оказалось, что относительный размер мозга у городских жителей в среднем выше, чем у сельских. Сопоставление с филогенией на уровне семейств показало, что увеличение мозга связано не с родством, а именно с местом жительства. Если в семействе много городских видов, то и средний размер мозга в нем будет больше (по сравнению с семействами с низкой долей городских видов). Однако жизнь в городе является более хорошим предиктором размера мозга, чем принадлежность к тому или иному семейству. Иными словами, для успешной адаптации к городу важно иметь собственный крупный мозг, а не принадлежать к более мозговитому (в среднем) семейству.

Ясно, что увеличение мозга у городских птиц не может быть результатом отбора на адаптацию к городу. Ведь городская среда появилась недавно, и к тому же у большинства “городских” видов воробьиных реально проживает в городах лишь небольшая часть особей. Поэтому морфологическая эволюция, связанная с адаптацией к городу, вряд ли имеет отношение к выявленной закономерности. Нет, перед нами результат определенной предрасположенности более мозговитых пернатых к городским условиям. Чем крупнее мозг, тем проще птице освоить новую среду обитания. Птицы с маленьким мозгом не смогли столь же успешно внедриться в новую, порой враждебную, среду и воспользоваться ее преимуществами – прежде всего богатой кормовой базой.

Здесь на примере птиц мы видим подтверждение того, что большой мозг нужен позвоночным животным, чтобы успешно вписываться в новые места, справляться с новыми обстоятельствами и использовать себе на пользу нестандартные условия, а еще что города стали именно таким эволюционным предложением – привлекательным, но сложным (предъявляющим высокие требования к когнитивным способностям).

Птицы – удобный объект для подобных исследований. Для млекопитающих, пожалуй, не наберется хорошей статистики (не так уж много видов млекопитающих освоилось в городах), а у “низших” позвоночных и беспозвоночных стратегии адаптации к городской среде могут оказаться совсем другими, не имеющими отношения к сообразительности.

Гипотезу о связи интеллекта с социальностью тоже пытались проверить на птицах, оценивая уровень социальности по размеру групп. Хотя надо признать, что способность жить в большом коллективе – не единственный возможный показатель развитости социального интеллекта. Например, в ряде работ было показано, что размер мозга у птиц коррелирует не столько с размером групп, сколько с формированием устойчивых брачных пар. Что ж, поддержание стабильных отношений в семье – тоже важная социальная задача (и весьма ресурсоемкая, по-видимому).

Чтобы лучше разобраться в сложных взаимосвязях социальности и интеллекта, необходимы данные по внутривидовой изменчивости этих показателей. Такие данные удалось получить австралийским и британским орнитологам, работавшим с вороной-свистуном, или черноспинной певчей вороной, – Gymnorhina tibicen dorsalis (Ashton et al., 2018).

Эти птицы формируют устойчивые группы, различающиеся по размеру, имеют иерархию доминирования и практикуют коллективную оборону территории и кооперативное родительство (помогают друг другу выращивать птенцов).

В течение четырех лет (с 2013 по 2016 год) ученые наблюдали за 14 группами ворон в парковой зоне Гилдфорда – пригорода Перта (Западная Австралия). Птицы привыкли к людям и были индивидуально помечены (окольцованы). Группы различались по размеру: в самой маленькой было всего три вороны, в самой большой – 12 взрослых особей. За время наблюдений не было замечено переходов ворон из одной группы в другую, что подтверждает мнение о стабильности вороньих коллективов.

Чтобы оценить умственные способности ворон, им предлагали четыре типа задач:


1) Тест на тормозной контроль, то есть на способность подавлять первый “естественный” позыв, если он не рационален. Для этого приманку накрывали прозрачной пластиковой крышкой, открытой с боков, но непроницаемой со стороны птицы. Правильное решение заключалось в том, чтобы зайти сбоку и достать приманку, неправильное – долбить клювом по пластику. Считалось, что птица справилась с заданием, если она принимала правильное решение три раза подряд. И чем меньше ей для этого понадобилось обучающих попыток, тем лучше результат.

2) Тест на ассоциативное обучение. Птица должна была понять, что еда всегда находится под крышкой определенного цвета.

3) Тест на переучивание. После того как птица усваивала, что еду нужно искать под крышкой одного цвета, экспериментаторы начинали накрывать приманку крышкой другого цвета и смотрели, как быстро птица переучится.

4) Тест на пространственную память. Птица должна была запомнить, в какой из восьми закрытых лунок находится еда.


Удалось протестировать в общей сложности 56 птиц. Тесты проводили в естественной для птиц обстановке, улучая момент, когда интересующая исследователей особь находилась как минимум в десяти метрах от сородичей, чтобы те ее не отвлекали и не вмешивались в процесс. Во всех четырех тестах наилучшие результаты показали вороны из больших групп (рис. 10.1).

На всякий случай ученые повторили тестирование, предложив птицам такие же по смыслу, но иначе оформленные задачки. Результаты получились те же, причем птицы, хорошо выступившие в первой серии тестов, успешно справились и со второй, и наоборот.

Статистический анализ показал, что успешность решения разных задач строго скоррелирована: птицы, хорошо справляющиеся с задачами одного типа, быстрее решают также и задачи других типов. Эта корреляция позволяет говорить уже не просто о способностях к решению каких-то конкретных задач, а о некой общей сообразительности, или общем интеллекте (его еще называют фактором G)[47]47
  Для людей это тоже справедливо: успешность решения одних типов задач, как правило, положительно коррелирует с успешностью решения других. Например, если протестировать большую выборку людей на арифметические способности или пространственное мышление, а потом этим же людям дать другие задания – скажем, на память или классификацию объектов, – то участники, показавшие лучшие результаты в первом испытании, скорее всего, лучше справятся и со вторым. Сильная положительная корреляция между разными когнитивными функциями позволяет говорить о “факторе G”, или “общем интеллекте”, у людей. Хотя, конечно, эта корреляция не абсолютна и никто не спорит с тем, что сплошь и рядом встречается непропорциональное развитие когнитивных способностей – одни развиваются сильно, тогда как другие слабо.


[Закрыть]
. Для его количественной оценки ученые использовали метод главных компонент. Оказалось, что результаты всех четырех тестов вносят вклад в первую главную компоненту (PC1), которая отражает 64,6 % общей вариабельности по успешности прохождения тестов (это очень много по сравнению с аналогичными результатами у других видов животных), и поэтому PC1 можно рассматривать как количественную меру интеллекта ворон. Лучшим предиктором этой меры опять-таки оказался размер группы.

Затем ученые решили выяснить, как меняются когнитивные показатели с возрастом. Для этого были протестированы молодые птицы, научившиеся летать 100, 200 и 300 дней назад. Как и следовало ожидать, с возрастом птицы умнеют, но этот процесс идет быстрее в больших группах. У самых молодых, “100-дневных”, птиц еще не прослеживается связи между размером группы и успешностью решения задач. Более того, в этом возрасте нет и корреляции между успешностью выполнения разных заданий, то есть нет оснований говорить об “общем интеллекте”. Но уже через 200 дней после начала взрослой жизни обе корреляции (между успешностью решения разных задач и между сообразительностью и размером группы) четко прослеживаются.

Таким образом, жизнь в большом коллективе коррелирует с умственным развитием. Чтобы доказать, что речь идет о причинно-следственной связи, а не просто о корреляции, опосредованной каким-то третьим фактором, нужно ставить дополнительные эксперименты – например, искусственно менять численность групп и смотреть, как это скажется на умственном развитии птенцов. Этого исследователи не сделали. Зато они проверили несколько альтернативных возможностей. Например, предположили, что в больших группах птицы вырастают более умными, потому что их лучше кормят. Эта гипотеза не подтвердилась: птенцы в больших и маленьких группах получают примерно одинаковое количество пищи. Сообразительность не коррелирует ни с размером птицы, ни с тем, как ее кормили, когда она была птенцом. Еще одна интересная возможность: вороны объединяются в группы по сходству умственных способностей, то есть умные пристраиваются к умным, а глупые – к глупым. Также можно предположить, что в больших группах оказывается больше умных индивидов чисто случайно, просто потому, что группы большие. Но эти гипотезы плохо согласуются с количественным распределением умных и глупых особей, которое оказалось разным в больших и малых группах. В малых группах присутствуют особи с самыми разными способностями, а в больших – почти исключительно умные.


Рис. 10.1. Зависимость когнитивных способностей ворон от размера группы. Проводились тесты на тормозной контроль (а), на ассоциативное обучение (б), на переучивание (в) и на пространственную память (г). Каждая точка соответствует результату, показанному одной птицей в одном тесте. По горизонтальной оси – размер группы, к которой принадлежит исследуемая ворона. По вертикальной – число обучающих попыток, сделанных птицей до того, как она наконец справилась с задачей (а—в), или число обследованных лунок (г). Таким образом, во всех четырех случаях результат тем лучше, чем меньше значение по вертикальной оси. Видно, что успешность птиц во всех тестах положительно коррелирует с размером группы. По рисунку из Ashton et al., 2018.


Самое правдоподобное объяснение полученных результатов состоит в том, что жизнь в большой группе ставит перед воронами сложные когнитивные задачи, связанные в том числе и с социальными отношениями. А это способствует интеллектуальному развитию. Наверняка важную роль здесь играет и социальное обучение (см. главы 11 и 12): в больших коллективах есть чему и у кого поучиться. Большее количество выученных навыков, в свою очередь, повышает шансы на успешное решение новых задач.

Практически все признаки зависят отчасти от среды, отчасти от генов, и интеллект – не исключение. В больших группах вороны в среднем быстрее набираются ума, чем в малых, но при этом во всех группах, особенно в маленьких, сохраняется изменчивость по интеллекту. Это значит, что в одной и той же среде кто-то развивает свой интеллект быстрее, кто-то медленнее. Это наверняка в какой-то степени зависит от генов, что делает возможной эволюцию умственных способностей под действием отбора (книга 2, глава 3).


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации