Текст книги "Концепции современного естествознания"
Автор книги: Александр Садохин
Жанр: Педагогика, Наука и Образование
сообщить о неприемлемом содержимом
Текущая страница: 5 (всего у книги 34 страниц) [доступный отрывок для чтения: 11 страниц]
3.3. Глобальная научная революция XVI–XVII вв.
В XVI–XVII веках натурфилософское и схоластическое познание природы превратилось в современное естествознание – систематическое научное познание на базе экспериментов и математического изложения. В этот период в Европе сформировалось новое мировоззрение и начался новый этап в развитии науки, связанный с первой глобальной естественно-научной революцией. Ее отправной точкой стал выход в 1543 г. знаменитой книги Н. Коперника «О вращении небесных сфер», ознаменовавший переход от геоцентрических представлений о мире к гелиоцентрической модели Вселенной. В коперниковской схеме Вселенная по-прежнему оставалась сферой, хотя ее размеры резко возрастали (только так можно было объяснить видимую неподвижность звезд). В центре Космоса находилось Солнце, вокруг которого вращались все известные к тому времени планеты, в том числе и Земля со своим спутником Луной. Новая модель мира сделала понятными многие ранее загадочные эффекты, прежде всего – петлеобразные движения планет, которые объяснялись теперь движением Земли вокруг своей оси и вокруг Солнца. Впервые была обоснована смена времен года.
Следующий шаг в становлении гелиоцентрической картины мира был сделан Д. Бруно. Он отверг представление о Космосе как о замкнутой сфере, ограниченной неподвижными звездами, и впервые заявил о том, что звезды не светильники, созданные Богом для освещения ночного неба, а такие же солнца, вокруг которых могут вращаться планеты и на которых, возможно, живут люди. Таким образом, Д. Бруно предложил набросок новой полицентрической картины мироздания, окончательно утвердившейся век спустя: Вселенная вечна во времени, бесконечна в пространстве, вокруг бесконечного числа звезд вращается множество планет, населенных разумными существами.
Но, несмотря на грандиозность этой картины, Вселенная продолжала оставаться эскизом, наброском, нуждавшимся в фундаментальном обосновании. Надо было открыть законы, действующие в мире и доказывающие правильность предположений Н. Коперника и Д. Бруно; это стало важнейшей задачей первой глобальной научной революции, которая началась с открытий Г. Галилея. Его труды в области методологии научного познания предопределили весь облик классической, а во многом и современной науки. Он придал естествознанию экспериментальный и математический характер, сформулировал гипотетико-дедуктивную модель научного познания. Но особое значение для развития естествознания имеют работы Г. Галилея в области астрономии и физики.
Со времен Аристотеля ученые считали, что между земными и небесными явлениями и телами существует принципиальная разница, так как небеса – место нахождения идеальных тел, состоящих из эфира. В силу этого считалось, что, находясь на Земле, невозможно изучать небесные тела, это задерживало развитие науки. После того как в 1608 г. была изобретена зрительная труба, Г. Галилей усовершенствовал ее и превратил в телескоп с 30-кратным увеличением. С его помощью он совершил целый ряд выдающихся астрономических открытий. Среди них – горы на Луне, пятна на Солнце, фазы Венеры, четыре крупнейших спутника Юпитера. Г. Галилей первый увидел, что Млечный Путь представляет собой скопление огромного множества звезд. Все эти факты доказывали, что небесные тела не эфирные создания, а вполне материальные предметы и явления. Ведь не может быть на «идеальном» теле гор, как на Луне, или пятен, как на Солнце.
С помощью своих открытий в механике Г. Галилей разрушил догматические построения господствовавшей почти две тысячи лет аристотелевской физики. Он впервые проверил многие утверждения Аристотеля опытным путем, заложив тем самым основы нового раздела физики – динамики, науки о движении тел под действием приложенных сил. Именно Г. Галилей сформулировал понятия физического закона, скорости, ускорения. Но величайшими открытиями ученого стали идея инерции и классический принцип относительности.
Согласно классическому принципу относительности никакими механическими опытами, проведенными внутри системы, невозможно установить, покоится система или движется равномерно и прямолинейно. Также классический принцип относительности утверждает, что между покоем и равномерным прямолинейным движением нет никакой разницы, они описываются одними и теми же законами. Равноправие движения и покоя, т. е. равноправие инерциальных систем (покоящихся или движущихся относительно друг друга равномерно и прямолинейно), Г. Галилей подтверждал рассуждениями с многочисленными примерами. Например, путешественник в каюте корабля с полным основанием считает, что книга, лежащая на его столе, покоится. Но человек на берегу видит, что корабль плывет, и имеет все основания утверждать, что книга движется с той же скоростью, что и корабль. Так движется на самом деле книга или покоится? На этот вопрос, очевидно, нельзя ответить «да» или «нет». Спор между путешественником и человеком на берегу был бы пустой тратой времени, если бы каждый из них отстаивал свою точку зрения и отрицал точку зрения партнера. Чтобы согласовать позиции, им нужно только признать, что в одно и то же время книга покоится относительно корабля и движется относительно берега вместе с кораблем.
Таким образом, слово «относительность» в названии принципа Г. Галилея не имеет иного смысла, кроме того, который мы вкладываем в утверждение: движение или покой – всегда движение или покой относительно того, что служит нам системой отсчета.
Огромную роль в развитии науки сыграли исследования Р. Декарта по физике, космологии, биологии, математике. Учение Р. Декарта представляет собой единую естественно-научную и философскую систему, основывающуюся на постулатах о существовании непрерывной материи, заполняющей все пространство, и ее механическом движении. Ученый поставил задачу объяснить все известные и неизвестные явления природы, исходя из установленных им принципов устройства мира и представлений о материи, пользуясь лишь «вечными истинами» математики. Он возродил идеи античного атомизма и построил грандиозную картину Вселенной, охватив в ней все элементы природного мира: от небесных светил до физиологии животных и человека. При этом свою модель природы Р. Декарт строил только на основе механики, которая в то время достигла наибольших успехов. Представление о природе как о сложном механизме, которое Р. Декарт развил в своем учении, сформировалось позднее в самостоятельное направление развития физики, получившее название картезианства. Декартовское (картезианское) естествознание закладывало основы механического понимания природы, процессы которой рассматривались как движение тел по геометрически описываемым траекториям. Однако картезианское учение не было исчерпывающим. В частности, движение планет должно было подчиняться закону инерции, т. е. быть прямолинейным и равномерным. Но поскольку орбиты планет остаются сплошными замкнутыми кривыми и подобного движения не происходит, то становится очевидным, что какая-то сила отклоняет движение планет от прямолинейной траектории и заставляет их постоянно «падать» по направлению к Солнцу. Отныне важнейшей проблемой новой космологии становилось выяснение природы и характера этой силы.
Природа этой силы была открыта И. Ньютоном, работы которого завершили первую глобальную естественно-научную революцию. Он доказал существование тяготения как универсальной силы, сформулировал закон всемирного тяготения.
Ньютоновская физика стала вершиной развития взглядов в понимании мира природы в классической науке. Исаак Ньютон обосновал физико-математическое понимание природы, ставшее основой для всего последующего развития естествознания и формирования классического естествознания. В ходе своих исследований ученый создал методы дифференциального и интегрального исчисления для решения проблем механики. Благодаря этому ему удалось сформулировать основные законы динамики и закон всемирного тяготения. Механика И. Ньютона основана на понятиях количества материи (массы тела), количества движения, силы и трех законов движения: закона инерции, закона пропорциональности силы и ускорения, закона равенства действия и противодействия.
Хотя И. Ньютон провозгласил: «Гипотез не измышляю!», все же некоторое количество гипотез было им предложено, и они сыграли важную роль в дальнейшем развитии естествознания. Эти гипотезы были связаны с дальнейшей разработкой идеи всемирного тяготения, которое оставалось достаточно загадочным и непонятным. В частности, необходимо было ответить на вопросы, каков механизм действия этой силы, с какой скоростью она распространяется и есть ли у нее материальный носитель.
Отвечая на эти вопросы, И. Ньютон предложил (подтверждавшийся, как тогда казалось, бесчисленным количеством фактов) принцип дальнодействия – мгновенное действие тел друг на друга на любом расстоянии без каких-либо посредствующих звеньев, через пустоту. Принцип дальнодействия невозможен без привлечения понятий абсолютного пространства и абсолютного времени, также предложенных И. Ньютоном.
Абсолютное пространство понималось как вместилище мировой материи. Оно сравнимо с большим черным ящиком, в который можно поместить материальное тело, но можно и убрать – тогда материи не будет, а пространство останется. Также должно существовать и абсолютное время как универсальная длительность, постоянная космическая шкала для измерения всех бесчисленных конкретных движений, которая может течь самостоятельно без участия материальных тел. Именно в таком абсолютном пространстве и времени мгновенно распространялась сила тяготения. Воспринимать абсолютное пространство и время в чувственном опыте невозможно. Пространство, время и материя в этой концепции – три независимые друг от друга сущности.
Работы И. Ньютона завершили первую глобальную научную революцию, сформировав классическую полицентрическую научную картину мира и заложив фундамент классической науки Нового времени.
3.4. Классическое естествознание Нового времени
Закономерно, что на основе отмеченных достижений дальнейшее развитие естествознания приобретало все большие масштаб и глубину. Происходили процессы дифференциации научного знания, сопряженные с существенным прогрессом уже сформировавшихся и с появлением новых самостоятельных наук. Тем не менее естествознание этого времени развивалось в рамках классической науки, имевшей свои специфические черты, которые наложили отпечаток на работу ученых и ее результаты.
Важнейшей характеристикой классической науки является механистичность – представление мира в качестве машины, гигантского механизма, четко функционирующего на основе вечных и неизменных законов механики. Не случайно наиболее распространенной моделью Вселенной был огромный часовой механизм. Поэтому механика была эталоном любой науки, которую пытались построить по ее образцу. Также она рассматривалась как универсальный метод изучения окружающих явлений. Это выражалось в стремлении свести любые процессы в мире (не только физические и химические, но и биологические, социальные) к простым механическим перемещениям. Такое сведение высшего к низшему, объяснение сложного через более простое называется редукционизмом.
Следствиями механистичности стало преобладание количественных методов анализа природы, стремление разложить изучаемый процесс или явление до его мельчайших составляющих, доходя до конечного предела делимости материи. Из картины мира полностью исключалась случайность, ученые стремились к полному завершенному знанию о мире – абсолютной истине.
Еще одной чертой классической науки была метафизичность – рассмотрение природы как неразвивающегося целого, из века в век неизменного, всегда тождественного самому себе. Каждый предмет или явление изучались отдельно от других, игнорировались их связи с другими объектами, а изменения, которые происходили с этими предметами и явлениями, были лишь количественными. Так возникла сильная антиэволюционистская установка классической науки.
Механистичность и метафизичность классической науки отчетливо проявились не только в физике, но и в химии, биологии. Это привело к отказу от признания качественной специфики жизни и живого. Они стали такими же элементами в мире-«механизме», как предметы и явления неживой природы.
Эти черты классической науки наиболее отчетливо проявились в естествознании XVIII в., создав множество теорий, почти забытых современной наукой. Отчетливо проявлялась редукционистская тенденция, стремление свести все разделы физики, химии и биологии к методам и подходам механики. Стремясь добраться до конечного предела делимости материи, ученые XVIII в. создавали «учения о невесомых» – электрической и магнитной жидкостях, теплороде, флогистоне как особых веществах, обеспечивающих у тел электрические, магнитные, тепловые свойства, а также способность к горению. Среди наиболее значимых достижений естествознания XVIII в. следует отметить развитие атомно-молекулярных представлений о строении вещества, формирование основ экспериментальной науки об электричестве.
Революционными открытиями естествознания стали принципы неевклидовой геометрии К. Гаусса, концепция энтропии и второй закон термодинамики Р. Клаузиуса, периодический закон химических элементов Д.И. Менделеева, теория естественного отбора Ч. Дарвина и А.Р. Уоллеса, теория генетической наследственности Г. Менделя, электромагнитная теория Д. Максвелла.
Эти и многие другие открытия ХIХ в. подняли естествознание на качественно новую ступень, превратили его в дисциплинарно организованную науку. Из науки, собиравшей факты и изучавшей законченные, завершенные, отдельные предметы, она превратилась в систематизирующую науку о предметах и процессах, их происхождении и развитии. Это произошло в ходе комплексной научной революции середины ХIХ в. Но все эти открытия оставались в рамках методологических установок классической науки. Не ушла в прошлое, а была лишь скорректирована идея мира-«машины», остались неизменными все положения о познаваемости мира и возможности получения абсолютной истины. Механистические и метафизические черты классической науки были лишь поколеблены, но не отброшены. В силу этого наука ХIХ в. несла в себе зерна будущего кризиса, разрешить который должна была вторая глобальная научная революция конца ХIХ – начала XX в.
3.5. Глобальная научная революция конца XIX – начала XX в.
Целый ряд замечательных открытий разрушил всю классическую научную картину мира. В 1888 году немецкий ученый Г. Герц открыл электромагнитные волны, блестяще подтвердив предсказание Д. Максвелла. В 1895 году В. Рентген обнаружил лучи, получившие впоследствии название рентгеновских лучей, которые представляли собой коротковолновое электромагнитное излучение. Изучение природы этих загадочных лучей, способных проникать через светонепроницаемые тела, привело Д. Томпсона к открытию первой элементарной частицы – электрона.
К великим открытиям конца XIX в. также следует отнести работы А.Г. Столетова по изучению фотоэффекта, П.Н. Лебедева о давлении света. В 1901 г. М. Планк, пытаясь решить проблемы классической теории излучения нагретых тел, предположил, что энергия излучается малы ми порциями – квантами, причем энергия каждого кванта пропорциональна частоте испускаемого излучения. Связывающий эти величины коэффициент пропорциональности ныне называется постоянной Планка (h). Она является одной из немногих универсальных физических констант нашего мира и входит во все уравнения физики микромира. Также было обнаружено, что масса электрона зависит от его скорости.
Все эти открытия буквально за несколько лет опрокинули стройное здание классической науки, которое еще в начале 1880-х гг. казалось практически законченным. Все прежние представления о материи и ее строении, движении и его свойствах и типах, о форме физических законов, о пространстве и времени были опровергнуты. Это привело к кризису физики и всего естествознания и стало симптомом более глубокого кризиса всей классической науки.
В лучшую сторону ситуация начала меняться только в 1920-е гг. с наступлением второго этапа научной революции. Он связан с созданием квантовой механики и сочетанием ее с теорией относительности, созданной в 1906–1916 гг. Тогда начала складываться новая квантово-релятивистская картина мира, в которой открытия, приведшие к кризису в физике, были объяснены.
Началом третьего этапа научной революции было овладение атомной энергией в 1940-е гг. и последующие исследования, с которыми связано зарождение электронно-вычислительных машин и кибернетики. Также в этот период физика передает эстафету химии, биологии и циклу наук о Земле, начинающих создавать свои собственные научные картины мира. С середины XX века наука окончательно слилась с техникой, приведя к современной научно-технической революции.
Главным концептуальным изменением естествознания ХХ в. был отказ от ньютоновской модели получения научного знания через эксперимент к объяснению. Эйнштейн предложил иную модель объяснения явлений природы, в которой гипотеза и отказ от здравого смысла как способа проверки высказывания становились первичными, а эксперимент – вторичным.
Развитие эйнштейновского подхода привело к отрицанию ньютоновской космологии и формировало новую картину мира, в которой логика и здравый смысл переставали действовать. Оказывается, что твердые атомы И. Ньютона почти целиком заполнены пустотой, что материя и энергия переходят друг в друга. Трехмерное пространство и одномерное время превратились в четырехмерный пространственно-временной континуум. Согласно этой картине мира, планеты движутся по своим орбитам не потому, что их притягивает к Солнцу некая сила, а потому, что само пространство, в котором они движутся, искривлено. Субатомные явления одновременно проявляют себя и как частицы, и как волны. Нельзя одновременно вычислить местоположение частицы и измерить ее ускорение. Принцип неопределенности в корне подорвал ньютоновский детерминизм. Нарушились понятия причинности; субстанции, твердые дискретные тела уступили место формальным отношениям и динамическим процессам.
Это основные положения современной квантово-релятивистской научной картины мира, которая становится главным итогом второй глобальной научной революции. С ней связано создание современной (неклассической) науки, которая по всем своим параметрам отличается от классической науки.
3.6. Основные черты современного естествознания и науки
Механистичность и метафизичность классической науки сменились новыми диалектическими установками всеобщей связи и развития. Механика больше не является ведущей наукой и универсальным методом изучения окружающих явлений. Классическая модель мира – «часового» механизма сменилась моделью мира-«мысли», для изучения которого лучше всего подходят системный подход и метод глобального эволюционизма. Метафизические основания классической науки, рассматривавшие каждый предмет в изоляции, как нечто особенное и завершенное, ушли в прошлое.
Теперь мир признается совокупностью разноуровневых систем, находящихся в состоянии иерархической соподчиненности. При этом на каждом уровне организации материи действуют свои закономерности. Аналитическая деятельность, являвшаяся основной в классической науке, уступает место синтетическим тенденциям, системно-целостному рассмотрению предметов и явлений объективного мира. Уверенность в существовании конечного предела делимости материи, стремление найти конечную материальную первооснову мира сменились убеждением в принципиальной невозможности сделать это (неисчерпаемость материи вглубь). Получение абсолютной истины считается невозможным; истина считается относительной, существующей во множестве теорий, каждая из которых изучает свой срез реальности.
Названные черты современной науки нашли свое воплощение в новых теориях и концепциях, появившихся во всех областях естествознания. Среди важных научных завоеваний XX в. – теория относительности, квантовая механика, ядерная физика, теория физического взаимодействия; новая космология, основанная на теории Большого взрыва; эволюционная химия, стремящаяся к овладению опытом живой природы; открытие многих тайн жизни в биологии и др. Но подлинным триумфом неклассической науки, бесспорно, стала кибернетика, воплотившая идеи системного подхода, а также синергетика и неравновесная термодинамика, основанные на методе глобального эволюционизма.
Начиная со второй половины ХХ в. исследователи фиксируют вступление естествознания в новый этап развития – постнеклассический, который характеризуется рядом фундаментальных принципов и форм организации. В качестве таких принципов выделяют чаще всего эволюционизм, космизм, экологизм, антропный принцип, холизм и гуманизм. Эти принципы ориентируют современное естествознание не столько на поиски абстрактной истины, сколько на его полезность для общества и каждого человека. Главным показателем при этом становится не экономическая целесообразность, а улучшение среды обитания людей, рост их материального и духовного благосостояния. Естествознание таким образом реально поворачивается лицом к человеку, преодолевая извечный нигилизм по отношению к злободневным потребностям людей.
Современное естествознание имеет преимущественно проблемную, междисциплинарную направленность вместо доминировавшей ранее узкодисциплинарной ориентированности естественно-научных исследований. Сегодня принципиально важно при решении сложных комплексных проблем использовать сочетание разных естественных наук применительно к каждому конкретному случаю исследования. Отсюда становится понятной и такая особенность постнеклассической науки, как нарастающая интеграция естественных, технических и гуманитарных наук. Исторически они дифференцировались, отпочковывались от некой единой основы, развиваясь длительное время автономно. Характерно, что ведущим элементом такой нарастающей интеграции становятся гуманитарные науки.
В анализе особенностей современного естествознания следует отметить такую его принципиальную особенность, как невозможность свободного экспериментирования с объектами (фундаментальных исследований). Реальный естественно-научный эксперимент оказывается опасным для жизни и здоровья людей. Пробуждаемые современной наукой и техникой мощные природные силы способны при неумелом обращении с ними привести к тяжелейшим локальным, региональным и даже глобальным кризисам и катастрофам.
Исследователи науки отмечают, что современное естествознание органически все более срастается с производством, техникой и бытом людей, превращаясь в важнейший фактор прогресса цивилизации. Оно уже не ограничивается исследованиями отдельных «кабинетных» ученых, а включает в свою орбиту комплексные коллективы исследователей разных научных направлений. В процессе исследовательской деятельности представители различных естественных дисциплин все более отчетливо начинают осознавать тот факт, что Вселенная представляет собой системную целостность с пока недостаточно понятными законами развития, с глобальными парадоксами, в которой жизнь каждого человека связана с космическими закономерностями и ритмами. Универсальная связь процессов и явлений во Вселенной требует комплексного, адекватного их природе изучения, и в частности глобального моделирования на основе метода системного анализа. В соответствии с этими задачами в современном естествознании все более широкое применение получают методы системной динамики, синергетики, теории игр, программно-целевого управления, на основе которых составляются прогнозы развития сложных природных процессов.
Современные представления о глобальном эволюционизме и синергетике позволяют описать развитие природы как последовательную смену рождающихся из хаоса структур, временно обретающих стабильность, но затем вновь стремящихся к хаотическим состояниям. Кроме того, многие природные системы предстают как сложноорганизованные, многофункциональные, открытые, неравновесные, развитие которых носит малопредсказуемый характер. В этих условиях анализ возможностей дальнейшей эволюции сложных природных объектов предстает как принципиально непредсказуемый, сопряженный со многими случайными факторами, могущими стать основаниями для новых форм эволюции.
Все эти изменения идут в рамках продолжающейся в настоящее время очередной глобальной научной революции, которая завершится скорее всего к середине XXI в. Конечно, сейчас сложно представить облик будущей науки. Очевидно, что она будет отличаться как от классической, так и от современной (неклассической) науки. Но вышеперечисленные некоторые ее черты просматриваются уже сейчас.
Таблица 3.1. Наиболее значимые ученые естествознания: с VI в. до н. э по XX в.
Продолжение
Продолжение
Продолжение
Продолжение
Окончание
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?