Электронная библиотека » Александр Садохин » » онлайн чтение - страница 7


  • Текст добавлен: 1 декабря 2015, 05:00


Автор книги: Александр Садохин


Жанр: Педагогика, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 7 (всего у книги 34 страниц) [доступный отрывок для чтения: 10 страниц]

Шрифт:
- 100% +
4.4. Квантово-полевая картина мира

Согласно электромагнитной картине мира, окружающий человека мир представляет собой сплошную среду – поле, которое может иметь в разных точках различную температуру, концентрировать разный энергетический потенциал, по-разному перемещаться и т. д. Сплошная среда может занимать значительные области пространства, ее свойства изменяются непрерывно, у нее нет резких границ. Этими свойствами поле отличается от физических тел, имеющих определенные и четкие границы. Разделение мира на тела и частицы поля, на поле и пространство является свидетельством существования двух крайних свойств мира – дискретности и непрерывности. Дискретность (прерывность) мира означает конечную делимость всего пространственно-временного строения на отдельные ограниченные предметы, свойства и формы движения, тогда как непрерывность (континуальность) выражает единство, целостность и неделимость объекта. В рамках классической физики дискретные и непрерывные свойства мира первоначально выступали как противоположные, отдельные и независимые (хотя в целом и дополняющие друг друга). В современной физике это единство противоположностей – дискретного и непрерывного – нашло свое обоснование в концепции корпускулярно-волнового дуализма.

В основе современной квантово-полевой картины мира лежит новая физическая теория – квантовая механика, в которой соединились две крайние позиции во взгляде на природу материи: атомизм, утверждающий прерывность (дискретность) материи, и полевая физика, утверждающая непрерывность (континуальность) материи.

Квантовой механикой называют теорию, устанавливающую способ описания и законы движения микрочастиц (элементарных частиц, атомов, молекул, атомных ядер) и их систем, а также связь величин, характеризующих частицы и системы, с физическими величинами, непосредственно измеряемыми на опыте. Законы квантовой механики составляют фундамент изучения строения вещества, так как позволяют выяснить строение атомов, установить природу химической связи, объяснить периодическую систему элементов, изучать свойства элементарных частиц.

Поскольку свойства макроскопических тел определяются движением и взаимодействием частиц, из которых они состоят, законы квантовой механики лежат в основе понимания большинства макроскопических явлений. Например, квантовая механика позволила определить строение и понять многие свойства твердых тел, последовательно объяснить явления ферромагнетизма, сверхтекучести, сверхпроводимости, понять природу астрофизических объектов – «белых карликов», нейтронных звезд, выяснить механизм протекания термоядерных реакций на Солнце и звездах.

Разработка квантовой механики относится к началу ХХ в., когда были обнаружены физические явления, свидетельствующие о неприменимости механики И. Ньютона и классической электродинамики к процессам взаимодействия света с веществом и к процессам, происходящим в атоме. Установление связи между этими группами явлений и попытки объяснить их на основе теории и привели к открытию законов квантовой механики.

Впервые представления о кванте высказал в 1900 г. М. Планк, изучая тепловое излучение тел. Своими исследования он продемонстрировал, что излучение энергии происходит дискретно, определенными порциями – квантами, энергия которых зависит от частоты световой волны. Эксперименты Планка привели к признанию двойственного характера света, который обладает одновременно корпускулярными и волновыми свойствами, т. е. представляет собой диалектическое единство двух противоположностей. Оно выражается в том, что чем короче длина волны излучения, тем ярче проявляются квантовые свойства; чем больше длина волны, тем ярче проявляются волновые свойства света.

В 1924 году французский физик Л. де Бройль выдвинул гипотезу, согласно которой корпускулярно-волновой дуализм имеет универсальный характер, т. е. все частицы вещества обладают волновыми свойствами. Позднее эта идея де Бройля была подтверждена экспериментально, и принцип корпускулярно-волнового дуализма был распространен на все процессы движения и взаимодействия в микромире.

В соответствии с квантово-полевой картиной мира любой микро-объект, обладая волновыми и корпускулярными свойствами, не имеет определенной траектории и не может иметь определенных координат и скорости (импульса). Это можно сделать только через определение волновой функции в данный момент, а потом через обнаружение его волновой функции в любой другой момент. Квадрат модуля дает вероятность нахождения частицы в данной точке пространства. Кроме того, относительность пространства-времени в данной картине мире приводит к неопределенности координат и скорости в данный момент, к отсутствию траектории микрообъекта. И если в классической физике вероятностным законам подчинялось поведение большого числа частиц, то в квантовой механике поведение каждой микрочастицы подчиняется не динамическим, а статистическим законам.

Таким образом, материя двулика: она обладает и корпускулярными, и волновыми свойствами, которые проявляются в зависимости от условий. Отсюда общая картина реальности в квантово-полевой картине мира становится «двоякой»: с одной стороны, в нее входят характеристики исследуемого объекта, с другой – условия наблюдения, от которых зависит определенность этих характеристик. Это означает, что картина реальности в современной физике является не только картиной объекта, но и картиной процесса его познания.

Спецификой квантово-полевых представлений о закономерности и причинности является то, что они всегда выступают в вероятностной форме, в виде так называемых статистических законов, которые соответствуют более глубокому уровню познания природных закономерностей. Таким образом, в основе нашего мира лежит случайность, вероятность.

Также новая картина мира впервые включила в себя наблюдателя, от присутствия которого зависели получаемые результаты исследований. Более того, был сформулирован так называемый антропный принцип, который утверждает, что наш мир таков, каков он есть, только благодаря существованию человека. Отныне появление человека считается закономерным результатом эволюции Вселенной.

4.5. Динамические и статистические законы

Современные физические представления базируются на анализе всего предыдущего теоретического и экспериментального опыта физических исследований, единстве физических знаний, дифференциации и интеграции естественных наук и т. п., что позволяет подразделять законы физики на динамические и статистические. Соотношение этих законов дает возможность исследовать природу причинности и причинных отношений в физике.

Наука исходит из признания того, что все существующее в мире возникает и уничтожается закономерно, в результате действия определенных причин, что все природные, социальные и психические явления обладают причинно-следственными связями, беспричинных явлений не бывает. Такая позиция называется детерминизмом в противоположность индетерминизму, отрицающему объективную причинную обусловленность явлений природы, общества и человеческой психики.

В современной физике идея детерминизма выражается в признании существования объективных физических закономерностей. Открытие этих закономерностей – существенных, повторяющихся связей между предметами и явлениями – задача науки, так же как и формулирование их в виде законов науки. Но никакое научное знание, никакая научная теория не могут отразить окружающий мир, его отдельные фрагменты полностью, без упрощений и огрублений действительности. То же касается и законов науки. Они могут лишь в большей или меньшей степени приближаться к адекватному отображению объективных закономерностей, но искажения в ходе этого процесса неизбежны. Поэтому для науки очень важно, какую форму имеют ее законы, насколько они соответствуют природным закономерностям.

В этом отношении динамическая теория, представляющая собой совокупность динамических законов, отражает физические процессы без учета случайных взаимодействий. Динамический закон – это физический закон, отображающий объективную закономерность в форме однозначной связи физических величин, выражаемых количественно. Примерами динамических теорий являются классическая (ньютоновская) механика, релятивистская механика и классическая теория излучения.

Долгое время считалось, что никаких других законов, кроме динамических, не существует. Это было связано с установкой классической науки на механистичность и метафизичность, со стремлением построить любые научные теории по образцу механики И. Ньютона. Если какие-то объективные процессы и закономерности не вписывались в предусмотренные динамическими законами рамки, считалось, что мы просто не знаем их причин, но с течением времени это знание будет получено.

Такая позиция, связанная с отрицанием случайностей любого рода, с абсолютизацией динамических закономерностей и законов, называется механическим детерминизмом. Разработку этого требования обычно связывают с именем П. Лапласа. Он заявлял, что если бы нашелся достаточно обширный ум, которому были бы известны все силы, действующие на все тела Вселенной (от самых больших тел до мельчайших атомов), а также их местоположение, если бы он смог проанализировать эти данные в единой формуле движения, то не осталось бы ничего, что было бы недостоверным. Такому уму открылись бы как прошлое, так и будущее Вселенной.

В середине XIX в. в физике были сформулированы законы, предсказания которых являются не определенными, а только вероятными. Они получили название статистических законов. Так, в 1859 г. была доказана несостоятельность позиции механического детерминизма: Д. Максвелл при построении статистической механики использовал законы нового типа и ввел в физику понятие вероятности. Это понятие было выработано ранее математикой при анализе случайных явлений.

При броске игральной кости, как мы знаем, может выпасть любое число очков от 1 до 6. Предсказать, какое число очков выпадет при очередном броске, нельзя. Мы можем подсчитать лишь вероятность выпадения числа очков. В данном случае она будет равна 1/6. Эта вероятность имеет объективный характер, так как выражает объективные отношения реальности. Действительно, если мы бросим кость, какая-то сторона с определенным числом очков выпадет обязательно. Это такая же строгая причинно-следственная связь, как и та, что отражается динамическими законами, но она имеет другую форму, поскольку показывает вероятность, а не однозначность события.

Проблема в том, что для обнаружения такого рода закономерностей обычно требуется не единичное событие, а цикл таких событий; в таком случае мы можем получить статистические средние значения. Если бросить кость 300 раз, то среднее число выпадения любого значения будет равно 300 × 1/6 = 50 раз. При этом безразлично, бросать одну и ту же кость 300 раз или одновременно бросить 300 одинаковых костей.

Несомненно, что поведение газовых молекул в сосуде гораздо сложнее брошенной кости. Но и здесь можно обнаружить определенные количественные закономерности, позволяющие вычислить статистические средние значения. Д. Максвеллу удалось решить эту задачу и показать, что случайное поведение отдельных молекул подчинено определенному статистическому (вероятностному) закону. Статистический закон – закон, управляющий поведением большой совокупности объектов и их элементов, позволяющий давать вероятностные выводы об их поведении. Примерами статистических законов являются квантовая механика, квантовая электродинамика и релятивистская квантовая механика.

Статистические законы в отличие от динамических отражают однозначную связь не физических величин, а статистических распределений этих величин. Но это такой же однозначный результат, как и в динамических теориях. Ведь статистические теории, как и динамические, выражают необходимые связи в природе, а они не могут быть выражены иначе, чем через однозначную связь состояний. Различается только способ фиксации этих состояний.

На уровне статистических законов и закономерностей мы также сталкиваемся с причинностью. Но это иная, более глубокая форма детерминизма; в отличие от жесткого классического детерминизма он может быть назван вероятностным (современным) детерминизмом. «Вероятностные» законы меньше огрубляют действительность, способны учитывать и отражать те случайности, которые происходят в мире.

К началу XX в. стало очевидно, что нельзя отрицать роль статистических законов в описании физических явлений. Появлялось все больше статистических теорий, а все теоретические расчеты, проведенные в рамках этих теорий, полностью подтверждались экспериментальными данными. Результатом стало выдвижение теории равноправия динамических и статистических законов. Те и другие законы рассматривались как равноправные, но относящиеся к различным явлениям. Считалось, что каждый тип закона имеет свою сферу применения и они дополняют друг друга, что индивидуальные объекты, простейшие формы движения должны описываться с помощью динамических законов, а большая совокупность этих же объектов, высшие, более сложные формы движения – статистическими законами. Соотношение теорий термодинамики и статистической механики, электродинамика Д. Максвелла и электронная теория Х. Лоренца, казалось, подтверждали это.

Ситуация в науке кардинально изменилась после возникновения и развития квантовой теории. Она привела к пересмотру всех представлений о роли динамических и статистических законов в отображении закономерностей природы. Был обнаружен статистический характер поведения отдельных элементарных частиц, никаких динамических законов в квантовой механике открыть не удалось. Таким образом, сегодня большинство ученых рассматривают статистические законы как наиболее глубокую и общую форму описания всех физических закономерностей.

Создание квантовой механики дает полное основание утверждать, что динамические законы представляют собой первый, низший этап в познании окружающего нас мира. Статистические законы более полно отражают объективные связи в природе, являются более высокой ступенью познания. На протяжении всей истории развития науки мы видим, как первоначально возникшие динамические теории, охватывающие определенный круг явлений, сменяются по мере развития науки статистическими теориями, описывающими тот же круг вопросов, но с новой, более глубокой точки зрения. Только они способны отразить случайность, вероятность, играющую огромную роль в окружающем нас мире. Только они соответствуют современному (вероятностному) детерминизму.

4.6. Принципы современной физики

Важной частью современной физической картины мира являются принципы современной физики – наиболее общие законы, влияние которых распространяется на все физические процессы, все формы движения материи.

Принцип симметрии. Обычно под симметрией (от греч. symmetria – соразмерность) понимают однородность, пропорциональность, гармонию каких-либо материальных объектов. В современном естествознании симметрия – понятие, отображающее существующий в объективной действительности порядок, определенное равновесное состояние явлений, относительную устойчивость, пропорциональность и соразмерность между составными частями целого. Симметрии бывают геометрическими (выражают свойства пространства и времени) и динамическими (выражают свойства физических взаимодействий).

Наглядных примеров симметрий довольно много. Многим творениям человеческих рук в силу разных причин придается симметричная форма. Симметричны мячи, большинство зданий и сооружений, произведений искусства. Также симметричны многие человеческие действия. Симметрию можно обнаружить в живописи, музыке, поэзии, танце. В изобилии симметрии встречаются в природе – снежинка, дождевая капля, различные кристаллы и т. д.

Приведенные примеры симметрии связаны с представлениями о структуре предметов, которая не меняется при совершении некоторых преобразований. Долгое время это были единственные симметрии, известные в науке. Но постепенно пришло осознание того, что симметрии могут быть не только наглядными, геометрическими. Есть целый ряд симметрий, связанных с описанием каких-либо изменений сложных естественных процессов. Эти симметрии не фиксируются в наблюдениях, они становятся заметны лишь в уравнениях, описывающих природные процессы. Поэтому физики, исследуя математическое описание той или иной физической системы, время от времени открывают новые, часто неожиданные симметрии. Эти симметрии достаточно тонко «запрятаны» в математическом аппарате и совсем не видны тому, кто наблюдает саму физическую систему.

С точки зрения физики симметричным является объект, который в результате определенных преобразований остается неизменным, инвариантным. Инвариантность – это неизменность какой-либо величины при изменении физических условий, способность не изменяться при определенных преобразованиях.

Симметрия в физике – это свойство физических величин, детально описывающих поведение системы, оставаться неизменными (инвариантными) при определенных преобразованиях этих величин.

Симметрии в физике тесно связаны с законами сохранения физических величин – утверждениями, согласно которым численные значения некоторых физических величин не изменяются со временем в любых процессах или в определенных классах процессов.

Так, закон сохранения энергии вытекает из однородности времени. Время симметрично относительно начала отсчета, все моменты времени равноправны.

Закон сохранения импульса вытекает из однородности пространства. Все его точки равноправны, поэтому перенос системы никак не повлияет на ее свойства.

Закон сохранения момента импульса вытекает из изотропности пространства. Свойства пространства одинаковы по всем направлениям, поэтому поворот системы не влияет на ее свойства.

Также есть целый ряд симметрий, действующих в микромире. Они описывают разные аспекты взаимопревращений элементарных частиц и лежат в основе таких законов сохранения, как закон сохранения электрического заряда, барионного и лептонного зарядов и ряда других законов, открытых в последнее время. Таким образом, XX в. подтвердил огромную роль принципа симметрии в физике.

Принцип дополнительности и соотношения неопределенностей является основополагающим в современной физике. Он был сформулирован в 1927 г. Н. Бором для объяснения феномена корпускулярно-волнового дуализма.

В ходе своих исследований Н. Бор обратил внимание на то, что все предметы и явления, которые мы видим вокруг себя (и, конечно, измерительные приборы для регистрации элементарных частиц), состоят из огромного множества микрочастиц. Иными словами, они являются макроскопическими системами и ничем иным. Сам человек также существо макроскопическое. Поэтому наши органы чувств не воспринимают микропроцессов. Понятия, которыми мы пользуемся для описания предметов и явлений окружающего мира, – макроскопические понятия. С их помощью можно легко описать любые физические процессы, проходящие в макромире. Но применить эти понятия для описания микрообъектов полностью нельзя, так как они не адекватны процессам микромира.

В то же время других понятий у нас нет и быть не может. Чтобы компенсировать неадекватность нашего восприятия и представления об объектах микромира, нам приходится применять два дополняющих друг друга набора понятий, хотя с точки зрения классической науки они взаимно исключают друг друга. Эти понятия – частицы и волны. Только в совокупности они дают исчерпывающую информацию о квантовых явлениях.

Принцип суперпозиции (наложения) – допущение, согласно которому результирующий эффект представляет собой сумму эффектов, вызываемых каждым воздействующим явлением в отдельности. Одним из простых примеров принципа суперпозиции является правило параллелограмма, в соответствии с которым складываются две силы, воздействующие на тело. Этот принцип выполняется при условии, что воздействующие явления не влияют друг на друга. Поэтому в ньютоновской физике данный принцип не универсален и во многих случаях справедлив лишь приближенно.

В микромире, наоборот, принцип суперпозиции – фундаментальный принцип. Наряду с принципом неопределенности он составляет основу математического аппарата квантовой механики. Но, к сожалению, в квантовой теории этот принцип лишен той наглядности, которая характерна для механики И. Ньютона. Его интерпретируют так: пока не проведено измерение, бессмысленно спрашивать, в каком состоянии находится физическая система. Иными словами, до измерения система находится в суперпозиции двух возможных состояний, т. е. ее состояние неопределенно. Акт измерения переводит физическую систему скачком в одно из этих состояний.

Принцип соответствия был сформулирован Н. Бором в 1923 г. Физики столкнулись с ситуацией, когда рядом со старыми, давно оправдавшими себя теориями (например, механикой И. Ньютона) появились новые теории (теория относительности А. Эйнштейна), описывающие ту же область действительности. Принцип соответствия утверждает преемственность физических теорий: никакая новая теория не может быть справедливой, если она не содержит в качестве предельного случая старую теорию, относящуюся к тем же явлениям, поскольку старая теория уже оправдала себя в своей области.

Поэтому теории, справедливость которых была экспериментально установлена для определенной группы явлений, с построением новой теории не отбрасываются, а сохраняют свое значение для прежней области явлений как предельное выражение законов новых теорий. Выводы новых теорий в области, где справедлива старая теория, переходят в выводы старых теорий.

Каждая физическая теория – ступень познания – является относительной истиной. Смена физических теорий – процесс приближения к абсолютной истине, процесс, который не будет никогда полностью завершен из-за бесконечной сложности и разнообразия окружающего нас мира. Таким образом, принцип соответствия отражает объективную ценность физических теорий.


Таблица 4.1. Зарубежные неметрические единицы


Продолжение


Окончание


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации