Электронная библиотека » Алексей Левин » » онлайн чтение - страница 4


  • Текст добавлен: 27 декабря 2020, 09:11


Автор книги: Алексей Левин


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 4 (всего у книги 18 страниц) [доступный отрывок для чтения: 6 страниц]

Шрифт:
- 100% +
7
Вся сила в спектрах

Пока еще ничего не было сказано об особой природе вещества белых карликов, лишь о его чрезвычайно высокой плотности по сравнению с веществом звезд главной последовательности. Разумеется, в дальнейшем мы поговорим о ней во всех деталях. Однако я отмечал, что каждый карлик окружен тонкой газовой оболочкой, нагретой до тысяч или десятков тысяч кельвинов. В этих оболочках, то есть в атмосферах белых карликов, нет ничего экзотического, это просто очень горячий и потому ионизированный газ, который ничем принципиально не отличается от газа солнечной атмосферы.

Астрономы получают информацию об атмосферах белых карликов теми же методами, что и о звездных атмосферах, – с помощью спектрального анализа. Его общие принципы были установлены еще во второй половине XIX в., а позднее многократно уточнялись, особенно после появления квантовой механики атомов и квантовой теории излучения.

Очень кратко дело обстоит так. Наблюдаемые спектры звезд возникают благодаря процессам, протекающим в их атмосферах. Излучение звездной поверхности практически не отличается от излучения абсолютно черного тела с его гладким спектром, который описывается знаменитой формулой Планка. Согласно формуле Планка, интенсивность излучения на данной частоте зависит только от температуры. Это означает, что сравнение спектра поверхности звезды с планковским спектром позволяет определить температуру этой поверхности. В астрономии такую температуру называют эффективной, чтобы подчеркнуть: спектр звезды похож на планковский, но все-таки не совпадает с ним. Проходя через атмосферу звезды, излучение значительно ослабляется на некоторых выделенных частотах, соответствующих переходам между энергетическими уровнями электронных оболочек атомов или молекул, присутствующих в атмосфере. Так на спектрограмме появляются участки со сниженной интенсивностью излучения, называемые линиями поглощения. Зная расположение и характер этих линий, можно определить химический состав звездной атмосферы.

Чтобы этот механизм был полностью ясен, копнем поглубже. Предположим, что светящуюся поверхность звезды, фотосферу, покинул фотон чернотельного спектра, летящий, для простоты, вертикально вверх. Если его энергия (равная частоте, помноженной на постоянную Планка) не совпадает ни с одной из энергий возбуждения электронных оболочек находящихся в атмосфере атомов или ионов, этот фотон без помех вылетит в окружающее пространство. В противном случае какой-нибудь атом может захватить этот фотон, и один из его электронов перейдет с нижележащего энергетического уровня на вышележащий. Однако надолго он там не задержится. Почти мгновенно (по порядку величины, через одну стомиллионную долю секунды) этот электрон вернется в прежнее состояние, испустивши квант той же частоты. Однако новорожденный фотон уйдет в произвольном направлении и вполне может вернуться в фотосферу и там поглотиться. В результате некоторые фотоны с частотами, соответствующими энергиям переходов, не смогут выйти за пределы звездной атмосферы. Из-за этого внешний наблюдатель увидит на спектрограмме участки с падениями интенсивности излучения на определенных длинах волн. Идеально гладкий спектр чернотельного излучения становится ломаным и испещряется многочисленными провалами.

Исследования спектров белых карликов в полную силу развернулись в середине прошлого века. К 1950 г. стало известно, что газовые оболочки белых карликов чаще всего состоят из чистого водорода и значительно реже – из гелия. Вскоре были найдены очень незначительные примеси элементов тяжелее гелия, которые по традиции астрономы называют металлами. Прежде всего это углерод и кислород, а также ряд более тяжелых элементов. Как сказано в главе 3, углерод и кислород присутствуют в ядрах большинства белых карликов и попадают в их атмосферы путем диффузии из нижележащих слоев. Этим же механизмом можно объяснить и присутствие магния и неона. Более тяжелые элементы должны оседать в ядра белых карликов, а в их атмосферы они приходят из окружающего пространства как космическое загрязнение. Согласно самой распространенной гипотезе, их главным источником служат мигрирующие в космосе планетезимали, твердые тела небольших размеров, падающие на белый карлик и испаряющиеся в его атмосфере. Их несгоревшие пылевые остатки под действием тяготения могут оказаться на поверхности карлика и даже, что не исключено, диффундировать несколько глубже.

Для упорядочивания информации о спектрах белых карликов было разработано несколько классификационных систем. Схема, которая применяется сегодня, была вчерне предложена в 1979 г. и опубликована в 1983 г.[11]11
  Edward M. Scion et al. A Proposed New White Dwarf Classification System // Astrophysical Journal (1913), 269: 253–257.


[Закрыть]
Она включает шесть классов, которые приведены ниже в соответствии с их современными определениями:

● DA. Доминируют линии поглощения бальмеровской серии водорода.

● DB. Видны линии неионизированных атомов гелия; нет линий водорода.

● DO. В спектре доминируют линии однократно ионизированных атомов гелия; кроме того, возможны признаки атомарного или молекулярного гелия, кислорода и углерода.

● DQ. Линии атомарного или молекулярного углерода в разных участках спектра.

● DZ. В спектре представлены металлы, но нет ни водорода, ни гелия.

● DC. Сплошной спектр с возможным наложением редких и неглубоких линий поглощения различных элементов.

Некоторые белые карлики имеют более сложные спектры, требующие использования дополнительных подклассов – но это уже детали.

Эта классификационная система, если так можно выразиться, легко читаема. Класс DA объединяет белые карлики, чьи спектры демонстрируют только линии второй (бальмеровской) серии водорода. Это самое многочисленное семейство – его доля в популяции этих звезд в нашей Галактике составляет порядка 80 %. Их температуры варьируют в очень широком диапазоне – от 5000 до 80 000 K. Белые карлики класса DB, в чьих спектрах доминирует атомарный гелий, в среднем похолоднее, верхний предел их температур не превышает 25 000–30 000 K. Класс DO объединяет самые горячие белые карлики с температурами в диапазоне от 45 000 до 100 000 K. В класс DZ, напротив, включены белые карлики, чьи спектры не содержат ни признаков водорода, ни признаков гелия, однако демонстрируют присутствие углерода и более тяжелых элементов – магния, кальция и даже железа. Например, Сириус В и 40 Эридана B являются типичными представителями класса DA. Напротив, излучение белого карлика, открытого ван Мааненом, свидетельствует о наличии кальция в его внешней оболочке – это спектральный класс DZ. Следует отметить, что белые карлики классов DA, DB и DO, чьи атмосферы содержат линии поглощения водорода или гелия, абсолютно превалируют в количественном отношении.

Посмотрим теперь на белые карлики класса DZ, чьи спектры не содержат линий поглощения водорода и гелия. Это вовсе не означает, что этих элементов там вообще нет – дело совершенно в другом. Карлики класса DZ просто успели довольно сильно остыть после рождения. Поэтому их фотосферы излучают сравнительно низкоэнергетичные фотоны, которые не возбуждают нейтральные атомы водорода и гелия и потому беспрепятственно проходят сквозь атмосферу белого карлика. Однако энергии этих фотонов хватает для возбуждения атомов элементов тяжелее гелия, чьи линии и присутствуют в спектрах. К классу DC относятся столь же слабо нагретые (иными словами, успевшие сильно остыть) белые карлики, чьи атмосферы содержат водород и/или гелий, но лишены даже следовых количеств металлов. Излучение фотосферы такого белого карлика проходит сквозь газовую оболочку, не рассеиваясь на ее атомах, и потому обладает непрерывным или почти непрерывным спектром.

Однако даже в астрономии нет правил без исключений. В начале 2010-х гг. в созвездии Малой Медведицы был идентифицирован необычный белый карлик H 1504+65 с эффективной температурой поверхности выше 200 000 K. Несколько лет его считали абсолютным рекордсменом по степени нагрева, и лишь в 2015 г. он уступил место белому карлику, нагретому до четверти миллиона кельвинов. Его спектры свидетельствуют о наличии в атмосфере углерода, кислорода и неона, однако там нет линий поглощения водорода и гелия.

Как это объяснить, учитывая сверхвысокую температуру H 1504+65? Присутствие неона означает, что это светило представляет собой конечный этап эволюции звезды, чья начальная масса была близка к верхнему пределу масс звезд, способных дать начало белым карликам. Можно предположить, что его возникновение сопровождалось столь сильными пульсациями звезды-предшественницы, что привело к полному разрушению газовой оболочки из легких элементов. Однако она может вновь появиться, причем довольно скоро. Если водород и гелий все еще сохранились в недрах карлика, то по мере его остывания они, скорее всего, будут диффундировать к поверхности и накапливаться в атмосфере.

Спектрограммы белых карликов (как и любых звезд) обретают смысл в контексте теоретических моделей звездной эволюции и динамики звездных атмосфер. Они содержат информацию, позволяющую вычислить эффективную температуру белого карлика, его радиус, массу, химический состав атмосферы и силу тяготения на поверхности. Вряд ли стоит уточнять, что вот уже более полувека такие вычисления производятся с помощью компьютерных программ, которые постоянно усложняются и совершенствуются.

Информационный потенциал спектрального анализа нетрудно объяснить. Форма спектра звезды прежде всего определяется эффективной температурой ее поверхности. Чем горячее звезда, тем сильнее ее излучение сдвинуто в область коротких длин волн (или, что то же самое, высоких частот). Спектр содержит темные линии, которые свидетельствуют о том, что на определенных частотах излучение поглощается атомами, присутствующими в звездной атмосфере. Форма профилей этих линий у белых карликов зависит (среди прочего) от тяготения на поверхности звезды, которое замедляет течение времени и тем самым уменьшает частоту испускаемых фотонов – это так называемый эффект гравитационного красного смещения. Поскольку тяготение определяется массой карлика, промеры ширины этих линий дают возможность ее вычислить. И наконец, поскольку электронные оболочки атомов поглощают электромагнитные волны лишь на определенных частотах, надежно установленных лабораторными измерениями, анализ спектрограмм позволяет судить и о химическом составе звездной атмосферы.

Конечно, эту информацию нужно получить и обработать. Сегодня в распоряжении астрономов имеются высокочувствительные детекторы излучения, оснащенные мегапиксельными матрицами с зарядовой связью. Уже пару десятилетий назад астрономические приборы позволяли определять эффективные температуры большинства белых карликов с точностью порядка 1 %. Такова же по порядку величины и средняя точность измерения остальных физических характеристик белых карликов.

Спектры белых карликов сильно отличаются от спектров звезд главной последовательности как общей формой, так и наборами и шириной линий поглощения. Отличий много, и перечислять их все, наверное, не имеет смысла. Ограничусь единственным примером. Вспомним, что у белых карликов класса DA в спектрах присутствуют лишь линии водорода. У самых горячих звезд главной последовательности класса О с эффективной температурой поверхности 25 000–100 000 K, напротив, линий водорода нет или очень мало, но есть линии гелия, углерода, азота, кислорода и кремния. В спектре фотосферы Солнца наблюдаются десятки тысяч линий поглощения великого множества элементов (а в некоторых местах, где температура ниже, например в солнечных пятнах, регистрируется даже наличие термоустойчивых многоатомных молекул).

8
Пульсации и магнетизм

Без малого 400 лет (точнее, с 1638 г.) известно, что некоторые нормальные звезды периодически меняют блеск. Для этого есть разные причины; в частности, звезда может периодически раздуваться и сжиматься – иначе говоря, пульсировать. Известно несколько типов таких звезд, объединенных общим названием «пульсаторы». Около полувека назад были обнаружены и пульсирующие белые карлики.

Как нередко бывает, произошло это почти случайно. В середине 1960-х гг. астроном из Луизианского университета Арло Ландолт проводил в Национальной обсерватории Китт-Пик в штате Аризона фотометрические наблюдения блеска нескольких тусклых звезд с переменной светимостью. Для пущей надежности (чтобы меньше мешали колебания оптической плотности атмосферы) он сравнивал свет наблюдаемой звезды со светом ее соседки на небесной сфере, чью светимость считали постоянной. Полученные результаты почти всегда соответствовали ожиданиям, однако для одной звезды они оказались совершенно нелепыми. Ландолт принялся доискиваться до причин аномалии и вскоре обнаружил, что выбранная для контроля звезда-соседка периодически меняет блеск.

Эта незадача не имела бы никакого значения, не окажись эта звездочка белым карликом. Конечно, таким выгоревшим звездам положено было тускнеть из-за постепенного охлаждения. Однако никто не сомневался, что они, как показал еще Местел, остывают чрезвычайно медленно и потому сохраняют практически неизменный блеск на протяжении миллионов лет. Поэтому никак не ожидалось, что их видимая яркость может столь заметно варьировать. Эти вариации разумно объяснялись лишь пульсациями белого карлика.

Но главная проблема заключалась в другом. Некоторые теоретические модели белых карликов допускали слабые пульсации, но с очень малыми периодами порядка нескольких секунд (или, самое большее, десяти-двадцати секунд). Период колебаний яркости белого карлика Haro-Luyten Taurus 76, который наблюдал Ландолт, составлял целых 750 секунд, то есть 12,5 минут. Поэтому статья Ландолта «Новая короткопериодическая голубая переменная звезда»[12]12
  Arlo U. Landolt. A New Short-Period Blue Variable // Astrophysical Journal (July 1968), 153 (1): 151–164.


[Закрыть]
с описанием результатов его наблюдений стала настоящей сенсацией.

Но интрига на этом не закончилась. Замеченные Ландолтом изменения блеска приблизительно соответствовали синусоиде. В 1971 г. Барри Ласкер и Джеймс Хессер обнаружили белый карлик R548, чья световая кривая демонстрировала не синусоидальные колебания, а биения между двумя модами с периодами 213 и 274 с. Кстати, ранее этот карлик был внесен в каталог переменных звезд, но в качестве обычной звезды. Через несколько лет более точные наблюдения показали, что его излучение имеет и дополнительные иррегулярности. В общем, к середине 1970-х гг. стало ясно, что белые карлики могут пульсировать, да еще весьма экзотическим образом. В дальнейшем число открытых пульсаторов этого типа стало быстро расти и к началу XXI в. достигло примерно сотни.

Тайна пульсирующих белых карликов была настолько интересной, что не могла не привлечь внимания множества астрономов. Сейчас она в общих чертах раскрыта, хотя многие детали еще предстоит прояснить. Изменения блеска белых карликов возникают благодаря колебательным процессам, которые изменяют и плотность, и температуру, и степень ионизации вещества белого карлика вблизи или не слишком далеко от его поверхности. Они не похожи на звуковые колебания и, скорее, напоминают волны на поверхности воды. Своим возникновением они обязаны не вариациям давления звездного вещества, а изменениям его плавучести в поле тяготения внутренних слоев звезды. Они не обладают радиальной симметрией и поэтому неодинаково распространяются по разным направлениям. Как легко предположить, известно несколько групп белых карликов (в настоящее время – шесть), для каждой из которых характерен свой тип таких волновых процессов. Эти волны всегда вызывают смещения атмосферы карлика и осцилляции ее температуры, которые и влекут за собой изменения блеска.

В нашем веке астрономы уделяют огромное внимание пульсирующим белым карликам, которые уже перестали выглядеть чем-то экстравагантным – напротив, оказались вполне типичными. Сейчас известно, что большинство этих звезд, за исключением лишь сильно намагниченных, в течение своего долгого жизненного пути хотя бы однажды проходят через стадию пульсаций. Например, карлики класса DA начинают пульсировать, когда температура их поверхности опускается до 13 000 K. При этой температуре протоны, присутствующие в зоне частичной ионизации водорода, могут присоединять электроны и превращаться в нейтральные атомы. Этот процесс изменяет тепловой баланс внутри белого карлика и запускает механизм пульсаций. Они продолжаются несколько сотен миллионов лет, пока поверхность не охладится еще на пару тысяч градусов – до 11 000 K. Сириус В, который относится как раз к этому классу, войдет в пульсационную стадию приблизительно через 1 млрд лет.

Это самый распространенный, но не единственный механизм запуска пульсаций белых карликов. В начале 1980-х гг. американский астроном Дон Вингет и его коллеги показали, что зародыши пульсаций могут появиться и в зоне частичной ионизации гелия. Ионы этого элемента начинают присоединять электроны при более высоких температурах, поэтому пульсации такого рода возникают в белых карликах задолго до остывания до 13 000 K. Уже через год эти же астрономы подтвердили свое предсказание, обнаружив белый карлик с гелиевой атмосферой (то есть карлик класса DB), пребывающий в стадии пульсаций[13]13
  Winget D. E. et al. Photometric Observations of GD 358: DB White Dwarfs Do Pulsate // Astrophysical Journal Letters (1982), 262, L11.


[Закрыть]
. При эффективной температуре 27 000 K он оказался вдвое горячее типичных водородных белых карликов-пульсаторов. Так что знаменитое изречение о том, что нет ничего практичнее хорошей теории, в данном случае быстро подтвердилось.

Наблюдения пульсаций белых карликов и сравнение результатов с модельными симуляциями позволяет получить уникальную информацию об их строении и скорости вращения. Например, полученная информация дает возможность вычислить процентное содержание кислорода и углерода в ядрах белых карликов. Этот раздел звездной астрономии, получивший название астросейсмологии, в наши дни развивается очень активно. Разумеется, таким методом изучают и другие звезды, в том числе и Солнце (и тогда он называется гелиосейсмологией). Полноты ради стоит отметить, что вертикальные колебания солнечной поверхности, типичные периоды которых составляют несколько минут, а типичные скорости – примерно 1 км/с, были открыты еще в начале 1960-х гг.

Осталось сказать несколько слов о магнитных свойствах белых карликов. Выявить и оценить магнитное поле любой звезды в принципе нетрудно, поскольку оно поляризует ее излучение и ведет к расщеплению спектральных линий. Конечно, здесь много технических сложностей, но они преодолимы. Сейчас установлено, что магнитные поля белых карликов далеко не одинаковы по силе. Их типичный диапазон простирается от десятков килогауссов до пятисот – а возможно, даже тысячи мегагауссов (для сравнения, среднее магнитное поле Солнца составляет один гаусс, хотя в активных зонах солнечных пятен доходит до нескольких тысяч). Температуры замагниченных белых карликов и карликов с очень малыми магнитными полями лежат в одном и том же диапазоне. Напротив, средняя масса магнитных белых карликов в полтора раза больше, чем немагнитных, – 93 % солнечной массы против 60 %. Скорее всего, причина в том, что магнитные белые карлики являются потомками более массивных звезд.

Гигантские масштабы магнитных полей белых карликов вполне понятны. Их предшественники – звезды с достаточно сильными (конечно, для этих звезд) магнитными полями. При сжатии силовые линии магнитного поля звезды оказываются вморожены (вполне профессиональный термин) во внутризвездную плазму. Это ведет к сохранению магнитного потока, который пропорционален произведению силы магнитного поля на квадрат звездного радиуса. Следовательно, если радиус карлика в сто раз меньше радиуса материнской звезды, напряженность магнитного поля для сохранения магнитного потока должна возрасти в 10 000 раз. Поэтому, если поле звезды-родительницы составляло, скажем, 200 гауссов (в сотню раз больше, чем в фотосфере Солнца), магнитное поле на поверхности белого карлика будет равно двум мегагауссам. Нередкая намагниченность звезды-предшественницы в 25 килогауссов у карлика обернется полем в 250 мегагауссов. Как говорится, не слабо! Впрочем, это самый типичный сценарий, есть и более экстравагантные. Стоит отметить, что полями в сотни мегагауссов располагают приблизительно 10 % белых карликов.

Белые карлики с сильными магнитными полями весьма заметно поляризуют собственное излучение. В общем случае такая поляризация оказывается эллиптической и при астрономических наблюдениях без проблем поддается измерению. Полученные данные служат хорошим средством оценки напряженности магнитного поля в окрестности белого карлика.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации