Текст книги "Всё, что движется. Прогулки по беспокойной Вселенной от космических орбит до квантовых полей"
Автор книги: Алексей Семихатов
Жанр: Физика, Наука и Образование
сообщить о неприемлемом содержимом
Текущая страница: 3 (всего у книги 47 страниц) [доступный отрывок для чтения: 15 страниц]
Предсказание гиперболических орбит (возможность которых Кеплер, очевидно, не мог и подозревать) – это демонстрация силы математических методов и самого подхода к познанию, основанного на причинах явлений. В течение трех сотен лет можно было не наблюдать в Солнечной системе ни одного тела, летящего по гиперболе, и тем не менее ни у кого не было сомнений, что такое возможно – что в Солнечную систему может залететь гость извне, побыть здесь недолго и распрощаться навсегда, с необходимостью следуя по какой-то гиперболе. Такой гость издалека был замечен 19 октября 2017 г. и вскоре наречен Оумуамуа (рис. 1.6). Сейчас этот астероид, когда-то, видимо, выброшенный из какой-то иной планетной системы, уже вычерчивает «уходящую» от нас часть гиперболы. 30 августа 2019 г. была открыта и межзвездная комета 2I/Borisov. Кроме того, пять рукотворных объектов сейчас движутся «вокруг» Солнца по гиперболам, это значит, что они покидают Солнечную систему. Это «Пионер-10» (запущен в 1972-м), «Пионер-11» (1973), «Вояджер-1», «Вояджер-2» (1977) и «Новые горизонты» (2006).
Рис. 1.6. Оумуамуа в видении художника
Параболы. Наконец, «между» эллипсом и гиперболой есть траектория еще одного типа. Она называется парабола. У нее тоже есть специальная точка, называемая фокусом, и несколько условно можно считать, что парабола – это «разомкнутый эллипс» (один из фокусов эллипса отодвинут неопределенно далеко, но по мере отодвигания эллипсу не давали стать слишком тонким). На первый же взгляд парабола больше похожа на гиперболу: у нее тоже уходят вдаль два конца, правда, «выпрямляются» они по мере удаления по другому закону, чем в случае гиперболы, да и улетающее тело движется по ним иначе: скорость движения делается все меньше и меньше, постепенно приближаясь к нулю.
Едва ли хоть одно тело вблизи какой-нибудь звезды летит по параболе, но причина не в нарушении соответствия между тем, что предсказывает математика, и тем, что может иметь место в реальности. Причина в сложности «тонких настроек». Если вы имеете в своем распоряжении космическую пушку, чтобы запускать тела в сторону Солнца, то, пока вы будете выстреливать тела с большой скоростью, Солнце не сможет оставить их в своей сфере влияния и траектории этих тел станут гиперболами. Если же вы понизите скорость выстреливания, то притяжения Солнца хватит на то, чтобы удержать тело при себе, а это значит, что траектория окажется эллипсом. При заданном расстоянии от Солнца лишь единственное значение скорости приведет к тому, что тело полетит по параболе. Стоит выстрелить чуть или сколь угодно быстрее – получатся гиперболы, а чуть или сильно медленнее – эллипсы. В этом смысле гипербол и эллипсов «много», а парабол «мало». В реальности параболы в качестве орбит не запрещены, а просто не случаются.
Вот, собственно, и все, что может произойти: эллипсы, гиперболы или в крайнем случае параболы. Никаких более замысловатых траекторий, если речь идет о движении под действием притяжения к одному центру. Никаких, например, вариантов «по спирали падает на Солнце» – что не может не радовать обитателей одной из планет, обращающихся вокруг Солнца.
Кеплер абсолютно правильно прочитал многостраничные таблицы с числами, но нечеловеческие усилия и озарение, необходимые для такого прочтения, оказались больше никому не нужны: знание о том, какими могут быть орбиты, стало доступным и первокурснику. «Особенно замечательным, – писал Эйнштейн в статье, посвященной 200-летию кончины Ньютона, – должно было казаться выяснение того факта, что причина движения небесных тел тождественна столь привычной нам из повседневной жизни силе тяжести»[24]24
Пер. А. М. Френка.
[Закрыть]. И это не все. Принципы, один раз успешно выведенные из наблюдений (исторически – в ограниченной части Солнечной системы), наделили нас способностью делать выводы об устройстве мира и предсказывать поведение его частей далеко за пределами Солнечной системы. Мир Ньютона, полностью поглотивший мир Кеплера (и впитавший в себя относительность Галилея), постепенно распространялся на все шире приоткрывавшуюся Вселенную, не требуя для этого никаких изменений в своих фундаментальных положениях. Солнечная система отлично поддерживала единство теории и наблюдений: например, солнечные и лунные затмения известны на любой «мыслимый» момент времени в будущем или прошлом, и эти предсказания выполняются много точнее, чем расписание пригородных поездов. Простые принципы, заложенные в описание мира, работали, работали и работали; новые принципы не требовались. А если все, что происходит, случается в соответствии с законами движения, то все ли предсказуемо? Если знать положения и скорости всех тел в некоторый момент времени (упоминавшиеся уже начальные условия), то можно ли узнать будущее, просто решая уравнения движения? И вообще, в космосе все правда так просто? И есть ли границы, за которыми сформулированные законы теряют применимость?
Источник развития знания – несоответствия в имеющемся знании. Мощь ньютоновской картины мира, основанной на законах движения, определялась в том числе тем, что границы ее стали появляться в поле зрения не раньше чем через полтора столетия чрезвычайно плодотворного ее развития. Мы доберемся до этих границ гораздо быстрее, но еще до того нас ждут несколько шедевров ее использования, как в рукотворных ситуациях, когда требуется управлять движением ради достижения практических целей, так и для понимания устройства мира самого по себе.
*****
Движение как организация. Планеты, которые «бродят» по небу, а в действительности движутся по эллипсам, остаются в Солнечной системе, а не улетают прочь. Слово «система» подчеркивает привычку мыслить о нашем космическом окружении как о чем-то едином и заодно достаточно устойчивом. Причина такого положения дел в том, что существует вид движения под действием притяжения (да, эллипсы), участники которого не разбегаются в разные стороны. Открывая планеты у других звезд, мы тоже говорим о планетных системах и тоже, разумеется, рассуждаем в терминах эллипсов, по которым там летают планеты. На тех расстояниях, с которых мы их наблюдаем, ничего, кроме планет (и иногда значительных скоплений пыли), обнаружить не удается, но про свою Солнечную систему мы хорошо знаем, что в ней содержится множество разного, кроме планет; и все разнообразные ее обитатели летают вокруг Солнца тоже по эллипсам – в большей или меньшей мере искажаемым влиянием других обитателей. Я легко соглашусь с тем, что самое интересное из происходящего состоит как раз в этих взаимных влияниях, вызванных ими изменениях орбит и прочих драматических событиях, но тем не менее буду настаивать на том, что Солнечная система организована в нечто единое благодаря замкнутым траекториям. Ту же идею организации движущихся частей в нечто единое мы усматриваем в структурах большего масштаба: Солнечная система вместе с другими звездами, а также газом и пылью обращается вокруг центра галактики Млечный Путь, и все вместе они тоже составляют «систему»; другие галактики в дальнем космосе – основные структурные элементы, в терминах которых мы говорим об этом космосе. Движение в сочетании с законом притяжения – элемент организации и одновременно инструмент для проверки нашего понимания происходящего во Вселенной; ближе к дому это еще и возможность применить достигнутое понимание на практике. Движение как предмет для применения имеющихся знаний и способ получения новых – объект нашего внимания на следующих прогулках.
Добавления к прогулке 1Об уравнениях. Волей-неволей нам предстоят прогулки в компании уравнений: их приходится упоминать и о них рассуждать, даже если сами они не присутствуют здесь во всей своей математической полноте. Нелишне сказать несколько слов об уравнениях вообще.
Если говорить одним словом, то уравнение – это задача. Сформулирована эта задача в виде двух различных математических выражений, соединенных знаком равенства. Как правило, требуется определить, каким должно быть неизвестное, чтобы это равенство действительно выполнялось (например, каким должно быть x, чтобы выполнялось равенство x2 = 1). До конца этого абзаца будем считать, что неизвестное – это число или числа, «любые» или из какого-то класса (например, иногда бывают интересны целые числа или, скажем, положительные; к уравнению всегда прилагается или подразумевается информация о том, в каком классе следует искать неизвестное). Кроме неизвестного или неизвестных, уравнения содержат нечто известное или считающееся известным. В буквальном смысле известными (известнее не бывает) являются конкретные числа, но очень часто в качестве известных фигурируют и буквы. Смысл букв в том, что их можно заменять числами по нашему выбору, но желательно делать это, когда уравнение уже решено. Получить решение «в буквах» всегда здорово, потому что решение относится тогда не к одному-единственному уравнению с конкретными числами, а к семейству уравнений. Хрестоматийный пример – квадратное уравнение, в котором одна буква x обозначает неизвестное, а две или три другие буквы считаются известными. Такое уравнение можно действительно решить «в буквах», т. е. в общем виде, но это редкая ситуация – например, с уравнением пятой степени (содержащим x5 и более низкие степени) этого сделать нельзя, за исключением особых случаев, и приходится решать уравнение каждый раз заново с конкретными числами. Компьютер, как правило, неплохо справляется с уравнениями, в которых, кроме неизвестного, присутствуют только числа.
Но неизвестными могут быть не только числа, но и более сложные объекты – функции. Пример функции – поведение (зависимость от времени) какой-либо величины, скажем объема вашего вклада в банке. Данные о том, что каждый день вклад увеличивается на 0,001 своей величины, являются, по существу, уравнением, из которого можно найти это поведение – функцию времени – и, например, узнать размер вклада через 1000 дней. Часто (хотя и не всегда) в задачах про такое поведение нет «зернистости» в виде фиксированного отрезка времени («дня»): считается, что функция изменяется непрерывно, и формулировка уравнений к этому приспособлена (такие уравнения называются дифференциальными, что примерно означает «имеют дело с очень малыми изменениями»). Пример поведения – координаты тела, движущегося в пространстве; чтобы задать его траекторию, требуются три функции времени – по одной для каждой из координат. Когда тела движутся под действием каких-либо сил, эти функции не произвольны, а определяются уравнениями движения.
Рис. 1.7. Конические сечения
Уравнения, которые выражают законы природы, описывают точную (количественную) связь между какими-то величинами. Такие уравнения позволяют делать предсказания о поведении и свойствах изучаемых систем. Когда предполагается наличие в природе какой-либо связи, сопоставление предсказаний с наблюдениями служит для отбора тех уравнений, которые приводят к более точным предсказаниям. Несколько упрощая, можно сказать, что таким образом и формулируются работающие законы природы.
Конические сечения. Орбиты трех типов – эллипс (становящийся окружностью в частном случае), парабола и гипербола – объединены самим фактом того, что они и только они (кроме еще тривиального случая прямой линии) являются траекториями движения тел под действием притяжения одного центра. Они же объединены свойством совершенно иного типа: они и только они (и в специальном случае – прямая) возникают как пересечение плоскости и конуса. Конус – это поверхность, которая образуется, если свернуть в воронку лист бумаги, но с одним уточнением: математический конус продолжается по обе стороны от вершины, как видно уже на рис. 1.7a. Если теперь пересечь конус плоскостью, которая перпендикулярна оси симметрии, то в сечении получится окружность. Наклоняя плоскость, мы получаем в сечении разнообразные эллипсы – всё более вытянутые по мере того, как наклон плоскости увеличивается (рис. 1.7b), – до тех пор, пока наклон не станет таким же, как наклон образующей конуса. В этом случае (рис. 1.7c) в сечении получается парабола (в некотором роде, как мы говорили, эллипсов много, а парабола одна; здесь эта идея выражается в том, что парабола возникает при точно обозначенном угле). Наклоняя плоскость еще сильнее, получаем в сечении гиперболы – разные в зависимости от угла наклона (рис. 1.7d). Здесь требуется небольшое пояснение: каждая гипербола имеет две части, потому что плоскость задевает и верхнюю, и нижнюю половины конуса. Говоря о гиперболе как о траектории движения, имеют в виду одну ее половину (которую тогда тоже называют гиперболой).
Почему три вида кривых, и только они, оказались решением двух столь различных задач (задача Кеплера и конические сечения) – вопрос, который нельзя было не задать некоторое число раз за те триста с лишним лет, как этот факт выяснился (конические сечения как таковые были известны в Древней Греции). Эллипс, кроме того, геометрически полностью симметричен относительно двух фокусов, что видно уже из построения с ниткой, показанного на рис. 1.1; но в Солнечной системе нет никакой «нитки», которая указывала бы планете, как двигаться, а сила действует на планету всегда и только в сторону одного из фокусов. Как же геометрия возникает из закона тяготения? Самый простой ответ: она получается как решение уравнений. Этот ответ, однако, никак не проясняет механизм, а из-за того, что уравнения здесь дифференциальные, он не относится к числу «элементарных». Есть ли элементарное решение, т. е. такое, которое позволяет перевести одну задачу (нахождение орбиты) в другую (построение конического сечения), причем делает это «непосредственно» и без использования математических средств типа дифференциального исчисления? Такое элементарное решение известно; в частности, ему посвящена «забытая» лекция Фейнмана – забытая на фоне других, прочитанных им в Калтехе и вошедших в «Фейнмановские лекции по физике». Однако Фейнман предваряет рассуждения таким предупреждением:
Элементарное вовсе не означает легкое для понимания. Элементарное означает, что для понимания не требуется почти никаких предварительных знаний, кроме бесконечно развитых умственных способностей.
Две «разные» параболы. Параболы оказались ответами в двух задачах: «планета» (частный случай движения вокруг центра притяжения, скажем Солнца) и «стрела», или, выразительнее, «камень» (движение, начинающееся под углом к горизонту вблизи земной поверхности). Одна и та же математическая кривая вполне может оказаться решением уравнений, записанных для различных систем, при разных предположениях. В задаче «планета» предполагается, что сила притяжения убывает при увеличении расстояния – «обратные квадраты», как это записано в (1.1). Парабола может тогда получиться в качестве решения при тщательно подобранных начальных условиях. В задаче «камень» предполагается другое: вблизи земной поверхности сила притяжения практически постоянна; поэтому можно спокойно пренебречь тем, как она убывает по мере подъема над поверхностью. В такой постановке задачи траектория брошенного тела – всегда парабола (разумеется, если убрать весь воздух – например, перенести эксперимент на Луну и там от души пострелять из рогатки), за очевидным исключением случаев бросания строго вверх и строго вниз. Если все же проявить дотошность и решить задачу про камень, не забывая, что притяжение ослабевает с высотой (и меняет направление по мере смещения вдоль земной поверхности!), то траектория от старта до падения окажется частью очень вытянутого эллипса – очень коротким отрезком его дуги вблизи его верхней части. На рис. 1.8 изображена часть эллипса, вытянутого несравненно слабее, чем тот, на который можно запустить камень любыми подручными средствами, но рисунок передает идею: небольшая дуга эллипса практически совпадает с параболой. Траекторией является только та часть каждой кривой, которая находится над поверхностью Земли, и, пока максимальная высота подъема мала по сравнению с радиусом планеты, участок эллипса неотличим от параболы. Поэтому вблизи поверхности Земли можно считать, что брошенные под углом к горизонту тела летят по параболе. Это Галилей и установил.
Рис. 1.8. Часть эллипса (светло-серая линия) и часть параболы (темно-серая линия), которые неразличимо близки около вершины. Широкой линией показана поверхность Земли. Только участки кривых, которые лежат выше нее, могут быть траекториями брошенных тел, а в этой части эллипсы очень похожи на параболы, пока они достаточно близки к поверхности
Точная парабола возникает в задаче о стрельбе с поверхности Земли, когда притяжение Земли учитывается «по-настоящему», в соответствии с законом тяготения Ньютона, а скорость имеет строго определенное значение. Если вы стреляете из суперпушки, расположенной на поверхности, то при достаточной скорости снаряда, посланного под углом к горизонту, он отправится путешествовать вокруг Земли, описывая эллипс. Если скорость выстрела еще увеличить, то наступит момент, когда снаряд уйдет от Земли неопределенно далеко. Минимальную скорость, при которой это происходит, называют второй космической скоростью или параболической скоростью. Это минимальная скорость освобождения: та скорость, которую необходимо придать телу, чтобы оно преодолело гравитацию, например, Земли и улетело «совсем». Движение тогда происходит по параболе! (Разумеется, если запустить снаряд быстрее, то он тем более улетит от Земли – но уже не по параболе, а по гиперболе.)
Парабола – траектория самого неторопливого расставания
Гравитация и заряды. Царица Вселенной – гравитация – это самая слабая из четырех фундаментальных сил. И одна из двух дальнодействующих. Вторая дальнодействующая – электромагнетизм, и, чтобы оценить, во сколько раз одна сильнее или слабее другой, можно сравнить силу, с которой два расположенных на определенном расстоянии электрона отталкивают друг друга электрически, и силу, с которой они притягиваются гравитационно. Гравитационное притяжение слабее электрического отталкивания примерно в 4 100 000 000 000 000 000 000 000 000 000 000 000 000 000 раз. Это большое число раз, независимо от вашего определения слова «много». Намеки на эту огромную разницу повсюду вокруг нас: когда я держу в руках груз весом 10 кг, сила химических связей между молекулами в моем теле (которые в основе своей электромагнитные, но в заметно «ослабленном» варианте по сравнению с взаимодействием одиночных электрических зарядов) позволяет мне с успехом противодействовать притяжению целой планеты. И тем не менее на больших масштабах Вселенную структурирует гравитация, а вовсе не электромагнетизм, за которым остался весь мир сред, материалов и вещей вокруг нас. Причина в том, что электрические заряды встречаются в двух разных видах: положительные и отрицательные, и в зависимости от этого они могут и притягиваться, и отталкиваться. Положительные и отрицательные заряды распределены вокруг нас поровну, так что окружающие тела в целом электрически нейтральны, т. е. не имеют электрического заряда (хотя глубоко внутри с зарядами происходит много интересного). Ничего похожего не происходит с гравитационными зарядами – т. е. массами – окружающих тел: при всей слабости гравитации тела заведомо не являются гравитационно нейтральными.
Телескоп «Кеплер». «Кеплер» занимался поиском случаев периодического ослабления света от звезды из-за прохождения планеты по ее диску, наблюдаемому с Земли, – что-то вроде крошечной, микроскопической пылинки на фоне прожектора. Это наш основной источник знаний об экзопланетах на данный момент, хотя такой метод их поиска и имеет некоторый перекос: чаще открываются более близкие к своей звезде планеты, чем далекие, потому что при небольшом наклоне плоскости орбиты планеты к лучу зрения близкая к своей звезде планета скорее окажется на фоне диска этой звезды, чем далекая (а перекос хорошо осознается, и разрабатываются меры по его преодолению для оценки планетного «населения» в галактике Млечный Путь).
Телескоп «Кеплер» работал не на околоземной орбите, а летал (и сейчас летает, только срок службы уже закончился) вокруг Солнца, близко к земной орбите и собственно к Земле, но несколько отставая от нее. Его пришлось убрать подальше, чтобы избежать ненужных затмений части неба близкой Землей, влияния света, отражаемого от Земли, а также влияния лунной гравитации на его орбиту (из-за обращения Луны вокруг Земли – влияния переменного, что и составляет проблему). Оборот вокруг Солнца «Кеплер» совершает за 372,5 суток, что означает отставание от Земли на 26 млн километров за год. Через примерно 25 лет «Кеплер» окажется с противоположной стороны от Солнца по отношению к Земле, а лет через 50 снова приблизится к нам. Быть может, тогда будет не очень дорого снять его с орбиты и поставить в музей.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?