Электронная библиотека » Алексей Семихатов » » онлайн чтение - страница 2


  • Текст добавлен: 22 ноября 2023, 13:10


Автор книги: Алексей Семихатов


Жанр: Физика, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 2 (всего у книги 47 страниц) [доступный отрывок для чтения: 15 страниц]

Шрифт:
- 100% +

Галилею же принадлежит мысль, что книга природы написана языком математики:

Я распознал у Сарси твердое убеждение в том, будто при философствовании необычайно важно опираться на мнение какого-нибудь знаменитого автора ‹…› В действительности же, синьор Сарси, все обстоит не так. Философия написана в величественной книге (я имею в виду Вселенную), которая постоянно открыта нашему взору, но понять ее может лишь тот, кто сначала научится постигать ее язык и толковать знаки, которыми она написана. Написана же она на языке математики, и знаки ее – треугольники, круги и другие геометрические фигуры, без которых человек не смог бы понять в ней ни единого слова; без них он был бы обречен блуждать в потемках по лабиринту[9]9
  Пер. Ю. А. Данилова.


[Закрыть]
.

Вопрос о том, почему математика настолько эффективна в естественных науках, обсуждался многократно, и простого ответа на него нет, но рассуждения и примеры, приводимые различными авторами, читать интересно. Как бы то ни было, математика снабжает нас «движком» для того, чтобы делать выводы. Она особенно ценна в этом качестве, когда мы выходим за пределы области, где помощником может служить «здравый смысл». Это набор представлений, выработанных в рамках нашего ограниченного опыта, и они вполне могут отказывать (и отказывают!), когда этот опыт расширяется. Как следствие такого положения вещей математика скрыто присутствует почти везде на этих прогулках.

*****

Законы движения. Но почему три закона Кеплера таковы? Почему Солнце в фокусе? Почему планеты движутся именно так?

Ответ на каждое «почему» должен опираться на нечто, что принимается без объяснения, иначе никакое объяснение не останавливается и поэтому перестает быть объяснением. Ответы, которые удается дать довольно близко к тому уровню, где уже приходится разводить руками, называются фундаментальными. В момент формулировки законов Кеплера они сами, вероятно, считались бы фундаментальными, реши тогда кто-нибудь классифицировать подобные утверждения таким образом. Как-никак эти законы были приложимы ко всем известным планетам. Но 80 лет спустя уже нельзя было так думать, потому что фундаментальными оказались другие законы – Ньютона[10]10
  Ньютоновы «Начала» (Philosophiæ Naturalis Principia Mathematica) вышли в 1687 г.


[Закрыть]
. И это были законы совсем другого сорта. Из них следовало множество утверждений, включая и эллипс для планеты, и параболу для стрелы, не испытывающей сопротивления воздуха (и заодно – направление мысли, позволяющее как-то учесть это сопротивление). События начали разворачиваться стремительно, потому что фокус внимания сместился на причины.

Причины наблюдаемых движений Ньютон сформулировал в виде законов движения – утверждений совсем иного свойства, чем законы Кеплера. Законы Ньютона напрямую ничего не говорили о том, по какой траектории полетит стрела или планета! Вместо этого они предлагали всем заинтересованным лицам действовать более прогрессивным образом: определить траектории самостоятельно (!) на основе буквально нескольких принципов. Ключевой аспект всей схемы – универсальность этих принципов. Их меньше, чем пальцев на руке, но их можно применять снова и снова – и к явлениям уже известным, и к тем, которые могут нам встретиться когда-нибудь в будущем. Это довольно удивительно: ничем не похожие явления подчиняются одним и тем же общим принципам. Слово «принципы» здесь надо понимать в первую очередь как уравнения. Это не уравнения типа x3 + 3x2 + 3x – 1 = 0, решением которых могут являться числа (например, как в данном случае, число, примерно равное 0,259921); вместо чисел неизвестным тут является поведение, или, чуть более технически, траектории. Всякое движущееся тело с течением времени описывает траекторию, и предложенная Ньютоном схема сводилась к поиску того, какова эта траектория, т. е. как именно координаты чего-то движущегося зависят от времени. Входные данные для этого состоят в воздействиях, которым подвергается то, что движется, – планета, или стрела, или что угодно. Выражаясь еще чуть более технически, требовалось решить уравнения, где неизвестными вместо чисел были зависимости от времени – функции. Слово «функция» в таком контексте означает не набор обязанностей, а именно характер зависимости: если ваш вклад в банке – возрастающая функция времени, это значит, что сегодня у вас больше денег, чем вчера; иногда становятся интересны и другие подробности, например, сколь быстро эта функция времени растет, меняется ли сама скорость роста и т. д.[11]11
  Тема, привлекающая к себе неослабевающее внимание: а каким уравнениям подчиняются функции, определяющие доходность финансовых инструментов? Сама постановка этой задачи навеяна успехом стратегии «выразим наши представления о причинах в виде уравнений, а потом будем их решать».


[Закрыть]
Все то же самое можно спрашивать и про разные другие функции. Скорость самолета, разгоняющегося на взлетно-посадочной полосе, – тоже функция времени, и важная часть истории состоит в том, через какое время скорость достигнет значения, обеспечивающего отрыв от земли. Чтобы узнать это, необходимо понять причины.

Прежде всего, говорит нам Ньютон, движение «сохраняется», если то, что движется, предоставить самому себе, т. е. никак не воздействовать на него со стороны. Это факт, понятый уже Галилеем; Ньютон определенно действовал не на пустом месте[12]12
  «Если я видел дальше других, то потому, что стоял на плечах гигантов». Ньютон родился в год смерти Галилея. Я бы оценил разницу между ними в три поколения.


[Закрыть]
. В воздушном хоккее шайба продолжает двигаться туда, куда вы ее направили, пока не испытает воздействия еще какого-то предмета (бортика или биты). Умение забивать голы в этой игре состоит в том, чтобы привести шайбу в движение устраивающим вас образом – направить ее в ворота, и после этого ничего больше делать не надо, потому что от вас уже ничего не зависит, пока шайба не испытает какое-то следующее воздействие, из-за которого изменит свое движение; в промежутке же она движется «сама», причем по прямой и с заданной скоростью[13]13
  Конечно, если бы поле для воздушного хоккея имело размер хоккейного-с-шайбой, то по мере движения шайбы было бы заметно ее замедление из-за сопротивления воздуха, но в общепринятых вариантах воздушного хоккея это сопротивление никак не успевает себя проявить.


[Закрыть]
. В этом и состоит «сохранение движения» в отсутствие сил, оно же – закон инерции Галилея, и оно же – первый закон Ньютона. У инертности есть количественная мера: это масса.

Итак, если не воздействовать, то движение сохраняется. Как только этот факт полностью осознан, естественно предположить, что если как-то воздействовать, то движение изменится. Осталось только сказать как, и Ньютон примерно это и говорит, но только не вполне прямо, потому что природа отвечает на этот вопрос не прямо, а косвенно. Чтобы высказываться точнее, нам понадобятся средства. Одно из них – количество движения. Оно тем больше, чем быстрее нечто движется и чем больше его масса. Грузовик, весящий 10 тонн и движущийся со скоростью 30 км/ч, имеет то же количество движения, что и автомобиль весом 2 тонны на скорости 150 км/ч. Количество движения – это просто произведение массы на скорость, с тем только уточнением, что, кроме величины, оно имеет еще и направление – такое же, как у скорости; в общем, как и скорость, это стрелка (вектор). Когда говорят о сохранении (неизменности) таких стрелок, это означает, что не меняется ни их длина, ни направление (шайба в воздушном хоккее летит по прямой, пока на что-нибудь не натолкнется), а изменить стрелку означает изменить ее длину или направление (или и то и другое).

Высказывание, что движение сохраняется, в точной формулировке звучит как «количество движения сохраняется» в отсутствие внешних воздействий (сил). Если же какие-то силы действуют, то количество движения меняется, и, главное, меняется быстро или медленно в зависимости от того, велика ли сила. У каждого изменения есть свой темп (если это не приводит к недоразумениям, можно говорить «скорость изменения»). И вот темп изменения количества движения как раз равен полной действующей силе, сообщает нам Ньютон. Просто равен. Нет никакой возможности сосчитать, сколько раз это высказывание применялось для описания мира. В нем содержится указание на причину: это сила. Сила тяги двигателей самолета, разгоняющегося для взлета, определяет, как быстро меняется количество движения самолета – что в салоне ощущается как эффект прижимания к спинке кресла; в горизонтальном направлении на самолет действуют еще и силы сопротивления (рис. 1.4), и полный баланс этих сил определяет изменение – нет, не скорости, а количества движения; именно поэтому столь важна взлетная масса («взлетный вес») самолета: одна и та же прибавка к количеству движения для самолета, в полтора раза более тяжелого, означает в полтора раза меньшее увеличение скорости. Сила, действующая здесь и сейчас, «не отвечает» за итог – за то, что получится, скажем, в конце взлетно-посадочной полосы. Она отвечает только за то, быстро или нет меняется количество движения здесь и сейчас.


Рис. 1.4. Силы, действующие на самолет во время разгона


Сила говорит количеству движения, как ему изменяться

Ньютон не мог думать о решении задачи про взлетающий самолет, как не мог думать и о решении своих уравнений на компьютере. Я затрудняюсь даже сказать, о какой из этих двух тем он «не мог думать в большей степени». Но современные компьютеры определяют, как будут развиваться события при взлете самолета или ракеты, действуя в точности так, как это наверняка представлял себе Ньютон: если в первую миллисекунду после старта действует определенная сила, то приобретенное количество движения – это и есть та самая сила, умноженная на прошедший малый интервал времени (ту самую миллисекунду). В следующую миллисекунду сила тяги может измениться, а кроме того, появляется сила сопротивления со стороны воздуха. Две силы действуют в противоположных направлениях, одну надо вычесть из другой, а результат умножить снова на выбранный интервал времени длиной в миллисекунду, и так мы узнаем, сколько же количества движения прибавилось за вторую миллисекунду. Потом мы точно так же поступаем с третьей миллисекундой и не забываем суммировать все накопленные прибавки к количеству движения. Если нам нужна особая точность (и уж во всяком случае, если речь идет о взлете ракеты), то надо вспомнить, что по мере израсходования топлива уменьшается масса, поэтому пересчет количества движения в набранную скорость надо производить внимательно, помня, что и масса меняется от миллисекунды к миллисекунде. Например, ракета-носитель «Сатурн V» сжигала – и выбрасывала из себя – 15 кг смеси из горючего и окислителя в миллисекунду, т. е. 15 тонн в секунду.

Поведение – результат сложения причин

Стратегия, позволяющая узнать, что получится, т. е. делать предсказания о том, что будет, состоит в суммировании накопленных прибавок. Компьютер буквально суммирует накопленное по малым интервалам времени, а Ньютон (изобрел и) широко применял математический метод такого суммирования. Он называется интегрированием и не требует, чтобы разбиение на малые интервалы времени выполнялось буквально: такое разбиение встроено в сам метод, причем наилучшим возможным способом. Дело в том, что если для самолета миллисекунда – это малый интервал времени в том смысле, что действующие силы (да и масса) практически не успевают измениться, то для других процессов (например, горения или взрыва) расчет с шагом в миллисекунду даст неправильный результат, потому что за это время многое успевает измениться, и интервал времени надо выбирать еще короче. Вся идея интегрирования состоит в том, что интервал «уже взят» меньше любого, который вы в состоянии назвать. Поэтому интегрирование как математическая процедура точнее любого вычисления на компьютере. Другое дело, что результат интегрирования далеко, далеко не всегда удается выразить в обозримых терминах (т. е. используя привычные функции): хотя задача поставлена математически точно, записать точный ответ мы часто оказываемся не в силах. В таких случаях или изобретают приближенные способы осуществить математическую процедуру, или, конечно же, «сажают задачу на компьютер», т. е. применяют одну из многочисленных программ, которые, да, суммируют малые накопления.

Промежуточный итог: Ньютон не считал (и с тех пор никто, в общем, не считает), что законы природы могут описывать картину целиком. Кеплер со своими тремя абсолютно верными законами, в которых констатировалось поведение в целом, остался в прошлом. Законы Ньютона говорят, как причины (силы) определяют темп изменения количества движения. А дальше уж что получится путем «накопления», то получится – или на компьютере, или с помощью специальной математической процедуры. Если не удается ни то ни другое, то это наша проблема, а не проблема природы, в которой все «само себя суммирует» по мере того, как течет время: разнообразные причины постоянно действуют, накапливаемые изменения, в свою очередь, рождают новые причины, которые снова влияют, и так далее; время – это и есть способ упорядочения действующих причин и накапливающихся следствий.

*****

Всеобщее притяжение. Причины изменений количества движения планет в Солнечной системе (и подоплека законов Кеплера) – притяжение. Это ключевой дополнительный постулат, без которого у Ньютона ничего бы не получилось. Все тела притягивают друг друга. Одни делают это сильнее, другие слабее. Мерой («гравитационным зарядом») является масса каждого тела – то, что мы обычно измеряем в килограммах. Никакие подробности касательно состава и других свойств тел не имеют значения. Странно, нет? Из всего многообразия свойств материи в данном случае важно только одно число[14]14
  Еще более странно, что одно и то же число – масса тела – измеряет два совершенно разных свойства: степень инертности и гравитационный заряд, но мы вынуждены отложить обсуждение этой загадки до одной из следующих прогулок.


[Закрыть]
.

Масса – гравитационный заряд

Гравитационные заряды одного знака притягиваются, а масса любого тела может быть только положительной; никакие тела поэтому не отталкиваются. Это делает гравитацию всепобеждающей: нет возможности «закрыть» положительный гравитационный заряд отрицательным и тем самым спрятаться от действия гравитации (нельзя «заземлиться», давая зарядам стечь туда, где они скомпенсируются противоположными). Гравитация слаба (см. добавления к этой прогулке), но неостановима. Гравитация убывает с расстоянием, но делает это не слишком быстро – как обычно говорят, «по закону обратных квадратов». Я никогда не понимал, почему здесь появляется множественное число: в законе тяготения присутствует всего один квадрат всего одной величины – расстояния R между двумя маленькими кусками материи (любой материи, как уже было сказано) массами M1 и M2. Сила притяжения между ними равна



Буква G здесь обозначает постоянную, которая, собственно, и выражает интенсивность гравитационного взаимодействия; это одна из Мировых постоянных – величин, встроенных куда-то глубоко в устройство нашей Вселенной. Численное значение этой постоянной – не предмет рассуждений, а экспериментальный факт. При всех «разумных» единицах измерения, выбранных для других входящих в формулу величин, постоянная G весьма мала, из-за этого гравитационное взаимодействие и оказывается таким слабым. Ньютон угадал формулу (1.1) (пришел к ней на основе ряда вспомогательных рассуждений), а многие тысячи раз ее использования с тех пор привели к впечатляющему прогрессу в познании мира[15]15
  Привычная для нас формулировка «закон всемирного тяготения» содержит неидеальный, с моей точки зрения, перевод слова universal (lex universalis, если с латыни). Лучше было бы говорить «всеобщего», но калька в виде «универсальный закон тяготения» была бы еще лучше, подчеркивая ключевую идею универсальности: в гравитационном взаимодействии участвуют все тела, причем универсальным образом, а именно вне зависимости от того, из чего они сделаны, и любых других особенностей.


[Закрыть]
. Ньютонова теория тяготения позволяет делать отличные предсказания о движении притягивающих друг друга тел; она описывает и падение яблока, и движение Луны вокруг Земли. Лабораторией для систематических проверок ее предсказаний стала Солнечная система; мы увидим несколько ее триумфов на следующих прогулках.

Постепенно (сильно не сразу), впрочем, выяснилось, что приведенная формула хорошо работает, пока нет быстрых движений, а сама гравитация не адски сильная. В случае «быстрых» и «сильной» приходится довольно радикально менять взгляды на устройство тяготения (прогулка 6), но в Солнечной системе мы окружены «медленными» и «слабой», за одним-единственным астрономическим исключением: это движение планеты Меркурий вокруг Солнца, которое очень немного, но все же отличается от предсказанного по Ньютону (и которое у нас будет еще много поводов обсудить). Эти отличия свидетельствуют, что закон тяготения в форме (1.1) все же не является точным. Средства наблюдений, имевшиеся во времена Ньютона, не позволяли заметить отклонения в движении Меркурия, но у Ньютона были независимые основания для некоторого беспокойства за свой закон тяготения, исходя из того, что мы сейчас бы назвали проблемой передачи информации. Предположим, что Солнце по какой-либо причине внезапно начинает двигаться с ускорением в направлении какой-нибудь выбранной звезды. (Реализовать такое крайне непросто, но это не запрещено законами природы, а физические законы должны корректно описывать явления вне зависимости от того, в людских ли силах эти явления осуществить.) Спрашивается, как скоро Земля почувствует изменения в силе притяжения со стороны Солнца? Каким образом Земле передастся информация о том, где Солнце? Проблема с законом тяготения в виде формулы (1.1) в том, что если продолжить применять ее «как написано» (а что еще делать?!) и в этом гипотетическом случае, то мы вынуждены будем заключить, что изменения силы притяжения передаются к Земле (и вообще куда угодно) мгновенно. Это называется «действие на расстоянии»: эффект мгновенно передается через пустоту. Действие на расстоянии определенно не нравилось Ньютону:

Тот факт, что гравитация должна быть внутренним, существенным образом присуща материи так, чтобы одно тело воздействовало на другое на расстоянии через пустоту без посредничества чего бы то ни было еще, способного передавать воздействие или силу от одного тела к другому, представляется мне таким колоссальным абсурдом, что, как я полагаю, никто со сколько-нибудь развитым пониманием философских вопросов в него не впадет. Гравитация должна вызываться каким-либо агентом, действующим постоянно и в соответствии с определенными законами; но вопрос о том, быть этому Агенту материальным или нематериальным, я оставил на Усмотрение моих читателей[16]16
  Письмо Ньютона к Бентли, 1692 г.


[Закрыть]
.

Ньютон подозревал наличие Агента

Судя по этому фрагменту (который кажется мне гениальным из-за намека на совершенно неизвестную в то время форму материи – поле), Ньютон понимал, что отгаданный им закон не может быть последним словом в описании гравитации. Тем не менее ему пришлось постулировать закон природы, в котором говорится о силе гравитационного притяжения между двумя малыми кусками массы в зависимости от разделяющего их расстояния, но вообще ничего не сообщается о том, как гравитация распространяется через пространство – грубо говоря, как «движется» сама гравитация (в нашем изложении эта история тоже далеко впереди). Для всех тел Ньютон сформулировал закон движения, в котором ключевую роль играет изменение (количества движения) во времени, но в его законе гравитации не предусмотрена возможность какого-либо изменения гравитации во времени, потому что время вообще не участвует в формулировке этого закона (это статический закон). Ньютон не мог не видеть этого недостатка своей теории, но никаких данных, которые хотя бы отдаленно подсказывали, в каком направлении искать ответ, в то время не было. Hypotheses non fingo[17]17
  «Гипотез же я не измышляю» (пер. А. Н. Крылова) – знаменитые слова из «Общего поучения» в финале «Математических начал натуральной философии». – Прим. ред.


[Закрыть]
.

*****

Уравнения движения. Закон природы «сила – это темп изменения количества движения» традиционно называется вторым законом Ньютона. Его еще часто называют уравнением движения или уравнениями движения. Вот как получается уравнение, например, для Марса. Солнце притягивает Марс с силой, которая зависит от расстояния между Марсом и Солнцем. Но оно-то и неизвестно, ведь задача как раз и состоит в том, чтобы узнать, как положение планеты зависит от времени. А как мы вообще применяем уравнения для решения задач? Мы делаем вид, что неизвестное нам известно, обозначаем его какой-нибудь буквой (например, но совершенно не обязательно, x) и стараемся переписать условие задачи, используя эту букву. В случае с Марсом мы поступаем точно так же, только буква кодирует не неизвестное нам число, а неизвестное нам поведение, т. е. функцию времени. (И таких букв/функций вообще-то три, когда движение происходит в трехмерном пространстве.) Условие задачи, которое надо использовать, чтобы составить уравнение, – это и есть второй закон Ньютона: мы совершаем с неизвестной функцией два разных действия, что дает две разные вещи, но их нужно приравнять. Во-первых, мы записываем выражение для силы; она зависит от расстояния, а потому и от искомого положения планеты по отношению к Солнцу. Во-вторых, мы берем темп изменения количества движения, в данном случае – темп изменения скорости планеты (умноженной на массу). Но сама скорость планеты – это темп изменения ее положения. Итак, мы выразили две разные величины через (пока неизвестное) положение планеты, изменяющееся со временем. Ньютон же говорит нам, что эти две разные величины равны друг другу. Все, что происходит в мире, происходит так, что они совпадают. Поэтому мы принимаемся за выяснение, как должно себя вести положение планеты в зависимости от времени, чтобы записанное равенство действительно было равенством. Это и выражают словами «решить уравнения движения».

Разумеется, не все стрелы летят по одной и той же параболе даже в отсутствие сопротивления воздуха, а планеты не сидят все на одной-единственной эллиптической орбите. Кроме собственно закона движения, важно и то, как я запустил стрелу (куда направил и с какой скоростью) и где именно находился и с какой скоростью двигался Марс, скажем, в 00:00:00 GMT 1 января 2000 г. Эти данные удачно называются начальными условиями. Они включают положения и скорости всего, что движется, в некоторый момент времени, который условно считается начальным. Решая уравнения движения для конкретных систем, мы каждый раз задаемся какими-то начальными условиями. Для разгоняющегося самолета это положение в начале полосы и нулевая скорость. Используя уравнения движения с учетом тяги, сопротивления воздуха в зависимости от скорости и подъемной силы в зависимости от скорости, мы можем определить, где и когда самолет оторвется от полосы.

Для сложных систем, как правило, ответ невозможно выразить в виде функции времени, записанной на бумаге обозримым образом. В таких случаях говорят, что «уравнения движения нельзя решить точно», но в этой фразе нет никакого глубокого философского смысла; это довольно технический момент, к тому же стимулирующий развитие как приближенных математических методов, так и компьютерных вычислений. Но для одинокой планеты, обращающейся вокруг звезды, по прекрасному математическому везению уравнения движения можно решить точно, и именно это Ньютон и проделал, с выдающимися последствиями.

Уравнения движения для одной планеты можно решить точно

*****

Больше чем Кеплер. Ко временам Ньютона законы Кеплера можно было воспринимать как экспериментальный факт, т. е. результат наблюдений. Привнесенные в эту историю Ньютоном математика и дополнительная догадка о том, как действует гравитация, воспроизвели эллипсы для планет. Три закона Кеплера перестали быть разрозненными высказываниями и приобрели логическую связь между собой: все три оказались следствиями закона движения и закона тяготения. Слово «следствие» здесь означает математическую неизбежность: если верны второй закон Ньютона и закон тяготения Ньютона, то никак по-другому планеты двигаться не могут[18]18
  Речь идет о системе «Солнце плюс одна планета»; про остальные планеты мы временно забываем. Эта задача на профессиональном жаргоне, кстати, называется задачей Кеплера.


[Закрыть]
. Точнее говоря, могут, но только не совсем планеты (которые одни только и входили в предмет вычислений Кеплера), а тела, прилетающие извне Солнечной системы и улетающие куда-то прочь из нее. Здесь произошло очередное маленькое чудо: с помощью логического анализа (математики) познание вышло за текущие пределы наблюдений. Математический вывод законов Кеплера в большой степени поддержал уверенность в том, что и догадки по поводу законов неплохи, и математика выбрана правильно. А затем та же математика стала для нас проводником, указывая на новые, ранее не наблюдавшиеся виды движения. Для тел вблизи Солнца их оказалось три (вместе с эллипсами), если не считать движения по прямой точно в направлении Солнца[19]19
  Его редко упоминают, видимо, ввиду его тривиальности с теоретической точки зрения; с практической же точки зрения направить корабль с околоземной орбиты по прямой к Солнцу намного труднее, чем за пределы Солнечной системы.


[Закрыть]
. И буква, и дух метода исследования мира по схеме «причина – следствие» говорят, что нет никакой возможности принять одни выводы и отказаться от других – неважно, что другие виды движения не наблюдались. Вот все виды движения под действием притяжения к центральному телу (рис. 1.5).


Рис. 1.5. Орбиты: эллипс, гипербола и парабола


Эллипсы. Во-первых (Кеплер был абсолютно прав!), эллипсы: математически точные эллипсы. Движение в разных частях эллипса происходит быстрее или медленнее точно так, как это утверждал Кеплер, вот только после Ньютона это утверждение перестало быть отдельным законом природы, а стало следствием закона движения и закона тяготения. Точно так же и третий закон Кеплера потерял самостоятельность.

Для Кеплера имеющиеся орбиты планет были уникальными. Для Ньютона, получившего контроль над тем, как эти эллипсы вырастают из законов и начальных условий, очевидно, что эллипсы могут быть очень разными: сильнее или слабее вытянутыми («совсем не вытянутый» эллипс – это попросту окружность). Математически тот или иной эллипс, по которому движется планета, определяется начальными условиями: тем, в каком направлении и с какой скоростью планета двигалась в выбранный «начальный» момент. Чтобы предсказать поведение реальных планет, надо взять эти начальные условия из наблюдений (определить скорость может оказаться сложнее, чем определить положение; но нужно и то и другое). Решение уравнений движения с такими начальными условиями дает в точности те траектории, которым реальные планеты и следуют, и мы уверенно предсказываем, что с ними будет в будущем[20]20
  А также и что было в прошлом: уравнения таковы, что их можно с равным успехом решать в обе стороны по времени, предсказывая будущее и описывая прошлое с одинаковой степенью надежности.


[Закрыть]
. Для воображаемой планеты начальные условия можно выбрать любыми, и эллипсы получатся самые разные: например, сильно вытянутые. Настоящие планеты в Солнечной системе таких вытянутых эллипсов не демонстрируют, но и здесь оказалось, что если математика показывает наличие решения определенного вида, то стоит поискать его в физическом мире. Кометы – это тела, которые движутся по сильно вытянутым орбитам (не каким-то, а именно эллипсам, пока они не портятся за счет прохождения вблизи массивных планет). При движении по вытянутому эллипсу тело проводит бо́льшую часть времени далеко от Солнца, где его не разглядеть, и лишь за короткое время и с высокой скоростью пролетает вблизи Солнца. Именно тогда комета становится видна с Земли (которая, не будем забывать, и сама достаточно близка к Солнцу – примерно в 10 раз ближе, чем Сатурн, самая дальняя из известных во времена Ньютона планет, и в 30 раз ближе, чем Нептун)[21]21
  Приближение к Солнцу делает комету заметной еще и потому – и даже в первую очередь потому, – что испаряемое с ее поверхности вещество образует хвост. При удалении от Солнца испарение прекращается и хвост исчезает, делая наблюдение кометы особенно трудной задачей.


[Закрыть]
.

«Начала» Ньютона вышли в 1687 г., а в 1705-м его уравнения были использованы для предсказания, причем с размахом на полвека вперед: в 1758 г. будет наблюдаться комета. Эта комета сейчас называется 1P/Halley. В этом обозначении 1P указывает на ее порядковый номер (один!!) и ее «периодичность», а Halley – это в русской традиции Галлей, хотя точнее было бы Хэли или Холи. (Пример другой кометы: 67P/Churyumov – Gerasimenko; здесь пусть англоговорящие мучаются с тем, как произнести.) Галлей – современник Ньютона, сыгравший немалую роль в том, чтобы «Начала» вообще увидели свет, – не открыл свою комету, он «всего лишь» заявил, что кометы, наблюдавшиеся ранее, в частности в 1531, 1607 (при Кеплере!) и 1682 гг., – это одна и та же комета. Заявление не было произвольной догадкой, но подтверждалось результатами вычислений того, как большие планеты влияют на орбиты комет (как именно они портят те самые вытянутые эллипсы). На основе вычислений, пользуясь законами Ньютона, Галлей и предсказал следующее появление кометы в 1758 г. Сбывшееся предсказание означало бы, что в Солнечной системе есть по крайней мере одно тело, не являющееся планетой, которое обращается вокруг Солнца.

Галлей скончался за 16 лет до установленного им срока возвращения кометы и был лишен возможности переживать «в реальном времени», сбудется или не сбудется его предсказание, – а переживать было от чего. Указанный им 1758 год прошел без кометы, точнее, почти прошел: комета объявилась практически в последний момент, 25 декабря. Увидел ее 35-летний саксонский фермер и астроном-любитель Палич. Его жизненная стезя определялась унаследованными им обязанностями по ведению фермерского хозяйства, и в юности ему приходилось скрывать свою любовь к астрономии[22]22
  После себя Палич оставил три с половиной тысячи книг, часть из которых были переписанными от руки научными трудами, приобретение которых было ему не по карману.


[Закрыть]
. Вообще-то я не думаю, что Галлей хоть сколько-нибудь сомневался, что его комета вернется и будет возвращаться. После трех полных оборотов вслед за своим появлением в 1758–1759 гг. комета вернулась в 1986-м, но я упустил свою возможность ее увидеть. Она приблизилась к Солнцу, но оказалась по другую сторону от него, чем Земля, что создало худшие условия для ее наблюдения с Земли за последние 2000 лет. Надеюсь, многие из моих читателей используют свой шанс в 2061-м. Целый класс комет – с периодом обращения от 20 до 200 лет – называют кометами галлеевского типа; типичная такая комета появляется во внутренней области Солнечной системы один-два раза за одну человеческую жизнь.

1 января 1801 г. на небе обнаружилось неизвестное до того тело. Автор открытия (астроном Пьяцци, католический священник из Палермо) продолжал наблюдения до начала февраля, когда ему пришлось прервать их из-за болезни. К сентябрю, когда он опубликовал результаты своих наблюдений, новое небесное тело заняло на небе положение, близкое к Солнцу, из-за чего наблюдать его стало невозможно. Возможность наблюдений должна была вернуться в конце года, но для их возобновления требовалось с достаточной точностью знать, где новое тело к тому времени окажется. В его розыске принял участие 24-летний Гаусс (по мнению многих – величайший математик из всех когда-либо живших). Он разработал «быстрый алгоритм» восстановления орбиты по трем наблюдениям и с его помощью определил эллипс, на котором это тело должно было находиться. На основе его предсказаний потерянная планетка, названная Церерой, была успешно «возвращена» 31 декабря 1801 г.; едва ли какая-нибудь другая подобная история наблюдений укладывается точно в календарный год[23]23
  Пьяцци назвал открытое им тело Cerere Ferdinandea, почтив не только римскую богиню сицилийского происхождения, но и короля Неаполя Фердинанда IV, и короля Сицилии Фердинанда III (это одно и то же лицо). Королевская часть имени не прижилась (да и Фердинанд был в 1805 г. смещен Наполеоном и снова сделался королем, на этот раз Фердинандом I в Королевстве обеих Сицилий, лишь в 1816 г.). Сейчас мы относим Цереру – диаметр которой чуть меньше 1000 км – к классу карликовых планет. Они нам еще встретятся, но не на этой прогулке: все, кроме Цереры, пребывают намного дальше от Солнца – за орбитой Нептуна, так что до них еще надо добраться.


[Закрыть]
. Большая полуось эллипса, на котором пребывает Церера, – примерно 2,8 а.е. (астрономическая единица – среднее расстояние от Земли до Солнца, удобная мера длины в Солнечной системе); это между Марсом и Юпитером.

К решениям уравнений движения для планеты, притягиваемой Солнцем, следует относиться как к описанию всех возможных видов движения в такой системе. Несколько удивительно, что их так мало: кроме вышеупомянутых эллипсов, осталось только два.


Гиперболы. Если запускать тела из какой-нибудь суперпушки, находящейся на некотором расстоянии от Солнца, то при достаточно большой начальной скорости тело не попадет на замкнутую орбиту, а, «завернув» вокруг Солнца, улетит прочь. Решение уравнений движения говорит, что такое движение непременно происходит по математически точным кривым, которые называются гиперболами. Они родственны эллипсам, но, в отличие от замкнутого эллипса, гиперболы разомкнуты. Два конца гиперболы по мере удаления от ее «середины» делаются все больше похожими на прямые (что неплохо согласуется с нашим представлением о том, что, когда тело находится очень далеко от Солнца, солнечное притяжение почти не ощущается и тело летит почти по прямой). У гиперболы тоже есть фокус (специальная точка вне самой гиперболы); гиперболические траектории небесных тел таковы, что (как и в случае эллипса) Солнце сидит точно в фокусе. Движение по гиперболе, как говорят, «не финитно»: тело приходит откуда-то издалека, отклоняется Солнцем и, изменив направление, уходит куда-то в неопределенное далеко, причем скорость его, хотя и уменьшается по мере удаления, приближается к некоторому фиксированному значению, не равному нулю.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации