Электронная библиотека » Алла Казанцева » » онлайн чтение - страница 12


  • Текст добавлен: 6 августа 2021, 10:21


Автор книги: Алла Казанцева


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 12 (всего у книги 29 страниц)

Шрифт:
- 100% +
23 мая
Загадка сверхпроводимости

23 мая 1908 года родился американский физик Джон Бардин (ум. 1991), лауреат Нобелевской премии «за создание теории сверхпроводимости».


Сверхпроводимость, открытая в 1911 году (см. 28 апреля), долго оставалась загадкой. Только в 1957-м Джон Бардин и его молодые сотрудники Леон Купер и Джон Шриффер построили теорию, объяснившую это явление. Эту теорию называют БКШ – по начальным буквам фамилий ученых. Они показали, что в сверхпроводнике свободные электроны могут двигаться согласованным образом. На квантовом языке это означает, что они находятся в одном и том же квантовом состоянии. Вы можете удивиться: это же противоречит запрету Паули (см. 21 марта)! Но Леон Купер выдвинул идею: электроны при низкой температуре спариваются, образуя пары с нулевым спином (их называют куперовскими парами). Запрет Паули не действует на эти пары, и в одном квантовом состоянии их может быть сколько угодно. Вы опять можете удивиться: спариваться – значит притягиваться, но одноименно заряженные электроны отталкиваются друг от друга! Оказывается, спариванию электронов помогает положительно заряженная ионная решетка. Электрон стягивает на себя ионы решетки, и другой электрон притягивается к этому сгущению положительного заряда. Когда огромное число пар движется согласованно, т. е. течет ток, отдельные возмущения решетки (тепловые колебания, дефекты) не могут нарушить это движение, поэтому сопротивление отсутствует. А при нагревании сверхпроводника до определенной критической температуры куперовские пары распадаются, и сверхпроводимость исчезает (см. 17 апреля).

24 мая
Художник-изобретатель

24 мая 1844 года изобретатель Сэмюэл Морзе ввел в эксплуатацию первую в США линию пишущего электромагнитного телеграфа между Вашингтоном и Балтимором длиной свыше 60 км.


Всем известна телеграфная «азбука Морзе» – точки, тире… Достаточно двух проводов и всего двух сигналов, чтобы зашифровать все буквы и цифры. Автор этой азбуки Сэмюэл Морзе (1791–1872) сначала был художником, причем вполне успешным. Он основал в Нью-Йорке Национальную академию рисунка и был ее президентом. Будучи в Европе, он написал самую известную свою картину «Галерея Лувра», на заднем плане которой изображено в миниатюре столько шедевров, сколько смогло вместить полотно. Вернувшись в Америку, Морзе стал профессором живописи в Нью-Йоркском университете. Но в это время он увлекся новым делом.

Интерес к электричеству возник у Морзе в то время, когда он был в Европе. Как раз тогда вышла книга Фарадея по электромагнетизму, и описанные в ней опыты демонстрировались повсеместно. Увиденные опыты натолкнули Морзе на мысль о создании системы передачи сигналов по проводам. Во время месячного плавания домой он сделал несколько предварительных чертежей, а по прибытии в Америку построил по ним электромагнитный телеграфный аппарат. В 1838 году Морзе разработал для своего телеграфа специальный код (азбуку Морзе) и послал первое телеграфное сообщение: «Чудны дела твои, Господи!» Усовершенствованные им (совместно с физиком Дж. Генри) телеграфные аппараты были установлены на первой в Америке коммерческой телеграфной линии Вашингтон – Балтимор.

25 мая
Поверхностное натяжение

Поверхность жидкости похожа на упругую пленку. Причина в том, что молекулы, находящиеся на поверхности, гораздо сильнее притягиваются внутрь (к молекулам плотной жидкости), чем наружу (к молекулам разреженного воздуха). Упругость этой пленки заставляет маленькие капли принимать сферическую форму.

Вот что Ричард Фейнман увидел через лупу с большим увеличением. «На листе сидела тля, мимо пробегал муравей, он подбежал к ней и начал пошлепывать ее лапками – всю тлю, шлеп, шлеп, шлеп. Зрелище было потрясающее! Потом на спинке тли начал выделяться сок. И поскольку я смотрел через лупу, я видел огромный, красивый, блестящий мяч, который из-за поверхностного натяжения походил на воздушный шар. Муравей взял этот мяч передними лапками, поднял его с тли и держал его. Мир становится совсем другим, когда на него смотришь в таком масштабе, где можно поднять каплю воды и удержать ее! Возможно, на лапках муравьев есть какая-то смазка, которая не разрушает поверхностное натяжение воды, когда они поднимают каплю. Потом муравей надкусил поверхность капли, и под давлением поверхностного натяжения капля попала прямо в его живот. Было безумно интересно наблюдать, как это происходит».

Когда вы будете в космическом корабле в состоянии невесомости, то сможете держать даже большие водяные шары в руках, как тот муравей – там сила тяжести не «конкурирует» с поверхностным натяжением и не заставляет воду растекаться, поэтому в невесомости жидкость принимает форму шара. Не забудьте только предварительно смазать руки каким-либо жиром, чтобы вода не смачивала ладони.

26 мая
Звездный час Михайло Ломоносова

26 мая 1761 года Михаил Ломоносов открыл атмосферу на Венере, наблюдая ее прохождение по Солнечному диску.


26 мая 1761 года все астрономы прильнули к окулярам своих телескопов: они всматривались в край Солнца, на котором вот-вот должна была появиться черная горошина – диск Венеры. Ломоносов наблюдал явление «любопытства больше для физических примечаний». Он обратил внимание на то, что при соприкосновении Венеры с диском Солнца вокруг планеты возникло «тонкое, как волос, сияние». Такой же светлый ореол наблюдался и при схождении Венеры с солнечного диска. Нюанс этот заметили многие астрономы, но лишь Ломоносов дал верное объяснение: «Венера окружена знатной атмосферой, таковой (лишь бы не большею), какова обливается около нашего шара земного». Открытие атмосферы на другой планете – одно из ярчайших событий XVIII века. Ломоносов мечтал разглядеть поверхность планеты, которая могла оказаться обитаемой. Однако атмосфера оказалась настолько «знатной», что в течение еще двух веков мы так и не смогли увидеть поверхность Венеры. Ровно через 200 лет, в 1961 году, к Венере направилась первая космическая станция (см. также 18 и 22 октября).

Хотя Ломоносов опубликовал сообщение об открытии атмосферы Венеры на русском и немецком языках, но оно прошло незамеченным. И через 30 лет Уильям Гершель открыл атмосферу Венеры во второй раз. Приоритет Ломоносова был восстановлен лишь в середине ХХ века.

27 мая
Покорение стратосферы

27 мая 1931 года швейцарские ученые Огюст Пикар и Пауль Кипфер совершили первый в мире полет на стратостате, достигнув высоты 15,785 км.


На высоте от 11 до 50 км располагается стратосфера – сильно разреженная атмосфера. На высоте 30–35 км атмосферное давление в 100 раз меньше, чем на земле. Для подъема в стратосферу служат стратостаты. Чтобы сохранять величину подъемной силы, несмотря на уменьшение плотности окружающего воздуха, баллон стратостата по мере движения вверх увеличивает свой объем. На старте он имеет сильно вытянутую грушевидную форму, а вблизи верхней точки полета баллон раздувается и становится шарообразным. Наполняют баллон гелием (до войны использовали водород, но он в смеси с воздухом очень взрывоопасен). Снизу к баллону подвешивается герметичная гондола для пилотов.

Первый в мире стратостат был сконструирован и построен Огюстом Пикаром («отцом» первого батискафа – см. 23 января). На своем стратостате Пикар поднялся выше всех в стратосферу, но этот полет едва не окончился трагедией, так как нарушилась герметичность кабины.

В 30-е годы ХХ века стратостаты поднимали на высоту 20–25 км аппаратуру весом до 6 тонн – целые астрономические обсерватории! Они использовались для изучения воздушных течений, научных исследований, разведки, дальней радиосвязи и других целей. Стратостаты могли висеть в условиях, близких к космическим, в течение многих часов, что позволило отрабатывать системы жизнеобеспечения космических полетов, космические скафандры и парашютные системы для приземления c большой высоты. Стратостаты проложили людям дорогу в космос.

28 мая
Из чего сделано ядро?

28 мая 1932 года советский физик Дмитрий Дмитриевич Иваненко (1904–1994) опубликовал в журнале «Nature» гипотезу о протонно-нейтронной модели ядра.


После открытия электрона и протона физикам казалось, что основные кирпичики мироздания уже найдены: атомы состоят из ядер и обращающихся вокруг них электронов. Сами же ядра, как полагали, состоят из протонов и электронов. Ведь при радиоактивном бета-распаде ядер испускаются электроны – значит, они там находятся. Нейтрон же, открытый в 1932 году, рассматривался поначалу не как элементарная частица, а как некое соединение протона и электрона. Но уже через три месяца после открытия нейтрона Иваненко высказал гипотезу о том, что ядра состоят только из тяжелых частиц – протонов и нейтронов. А в июне 1932 года с большой статьей о протонно-нейтронной модели ядра выступил Гейзенберг.

Что касается бета-распада, объяснял Иваненко, то «появление электронов следует трактовать как своего рода рождение частиц, по аналогии с излучением светового кванта, также не имевшего индивидуального существования до испускания из атома». Его идея о том, что протон и нейтрон «должны, по-видимому, обладать одинаковой степенью элементарности» и могут переходить друг в друга, испуская электрон или позитрон, полностью верна. Однако физики встретили новую модель ядра скептически. Гейзенберг вспоминал, что гипотезу об отсутствии электронов в ядре «довольно сильно критиковали самые крупные физики». Это показывает, писал он, «как на самом деле трудно отказаться от вещей, которые кажутся настолько очевидными, что принимаются априорно».

29 мая
Петров – первый электротехник

29 мая 1802 года российский академик В.В. Петров (1761–1834) открыл явление дугового разряда.


В 1800 году А. Вольта сделал электрическую батарею, и началась эпоха изучения электричества. Василий Владимирович Петров подошел к электричеству с позиции технической: как использовать его на благо людей. И стал первым в мире электротехником.

Прежде всего он построил огромную батарею, состоявшую из 4200 медных и цинковых кружков, между которыми были проложены суконные кружочки, смоченные раствором нашатыря. Выражаясь современным языком, батарея состояла из 2100 медно-цинковых элементов, соединенных последовательно. Общая длина батареи достигала 12 метров. Петров разместил элементы горизонтально в четыре ряда в большом деревянном ящике. Батарея давала напряжение около 1700 вольт и ток около 0,1 ампера (ни единиц измерения, ни измерительных приборов в то время еще не было – Петров использовал для оценки тока свой палец, срезав с него кусочек кожи). Его батарея в 100 раз превосходила существовавшие ранее вольтовы столбы. С ее помощью Петров изучал свойства электрического тока. Но самое важное его открытие – это явление электрической дуги. Между кусочками угля, подключенными к полюсам батареи, вспыхивал яркий белый свет. Заменив один из угольков металлической проволокой, Петров научился использовать дугу для плавления металла.

Увы, труды Петрова не стали достоянием мирового научного сообщества. И он сам, и его открытия были прочно забыты. Лишь через сто лет его приоритеты были восстановлены, и Петров получил свою долю мировой славы – посмертно.

30 мая
Загадки Фобоса

30 мая 1971 года стартовала американская космическая станция «Маринер-9», цель которой – изучение Марса и его спутников.


Благодаря «Маринеру-9» мы впервые увидели таинственные спутники Марса вблизи. Еще в 1959 году, анализируя данные о быстром торможении Фобоса в верхних слоях атмосферы Марса, советский астрофизик Шкловский выдвинул интригующую гипотезу: скорость торможения говорит о низкой плотности этого спутника, возможно, он полый внутри? Может, этот спутник – искусственный? Гипотеза имела огромный успех.

«Маринер-9» получил снимки Фобоса и Деймоса с хорошим разрешением. Искатели внеземного разума были разочарованы. Но интерес ученых к марсианским лунам не уменьшился. Дело в том, что геологическое строение Фобоса и Деймоса не претерпело больших изменений со времени образования Солнечной системы. Их изучение даст возможность судить об условиях формирования тел Солнечной системы и последующей их эволюции.

В июле 1988 года к крошечному марсианскому спутнику отправились сразу две российские станции «Фобос». Сблизиться с ним удалось только «Фобосу-2». Он успел передать на Землю 38 изображений Фобоса с разрешением до 40 метров, измерить температуру его поверхности (30 °C в самых горячих точках), после чего связь с аппаратом была потеряна навсегда. Спускаемый аппарат, к великому огорчению ученых, так и не попал на Фобос. Запущенная в 2011 году российская межпланетная станция «Фобос-грунт», которая должна была доставить образцы грунта с поверхности Фобоса на Землю, потерпела фиаско еще на околоземной орбите. В 2025 году планируется миссия «Фобос-грунт-2».

31 мая
Только факты

В 1988 году Всемирная организация здравоохранения (ВОЗ) провозгласила 31 мая «Всемирным днем без табака».


ВОЗ констатирует, что:

• Курение табака убивает до половины людей, которые его употребляют.

• Прогнозируемая продолжительность жизни курящих на продолжительной основе на 10–18 лет короче, чем у некурящих.

• Вторичный табачный дым является причиной более 1,2 млн случаев преждевременной смерти в год.

• У взрослых вторичный табачный дым вызывает серьезные сердечно-сосудистые и респираторные заболевания, включая ишемическую болезнь сердца и рак легких.

• Почти половина детей во всем мире регулярно вдыхают воздух, загрязненный табачным дымом, в общественных местах.

• Ежегодно 65 000 детей гибнет от болезней, ассоциируемых с воздействием вторичного табачного дыма.

• Безопасного уровня воздействия вторичного табачного дыма не существует.

• Около половины всех курящих на продолжительной основе мужчин умрут от болезней, вызванных курением.

• Среди курящих мужчин вероятность заболеть раком легких в течение жизни составляет 17,2 %, среди некурящих – 1,3 %.

• Через год после отказа от курения риск возникновения заболеваний сердечно-сосудистой системы уменьшается вдвое.

• Табачная эпидемия является одной из самых значительных угроз для здоровья населения, когда-либо возникавших в мире.

Июнь

1 июня
Сади Карно – основатель термодинамики

1 июня 1796 года родился Сади Карно, французский инженер-физик (ум 1832).


К концу XVIII века по всей Европе ширилась молва о могучей машине, с грохотом изрыгающей клубы дыма и пара и, главное, способной заменить труд многих людей. Паровая машина прямо-таки заворожила молодого военного инженера Сади Карно и заставила его глубоко задуматься над принципами ее работы. В 1824 году вышла его первая и единственная книга – «Размышления о движущей силе огня и о машинах, способных развивать эту силу». С этой работы началась наука термодинамика. Карно начал с «азов», ввел основные понятия термодинамики: идеальная тепловая машина, идеальный цикл, обратимость и необратимость тепловых процессов. Он собрал воедино все известные к тому времени свойства теплоты и сформулировал их в виде основных законов, или, как принято их называть в термодинамике, основных начал. Для практических нужд важно было понять, как можно повысить КПД тепловых машин (у паровых машин того времени КПД не превышал 2 %). Карно нашел ответ на важнейший вопрос: каков наибольший КПД, который в принципе возможен, и что для этого надо сделать. Выводы Карно стали «светом в окошке» для всех инженеров, конструирующих тепловые двигатели. Его идеи были оценены лишь 10 лет спустя, когда Клапейрон проделал вычисления, описанные у Карно словами.

Карно умер в 36 лет от холеры. По правилам все его имущество, в том числе и бумаги, было сожжено. Таким образом, его научное наследие было утрачено. Уцелела только одна записная книжка – в ней сформулировано Первое начало термодинамики.

2 июня
Загадка гамма-всплесков

2 июня 1967 года американский спутник-шпион впервые зарегистрировал мощный всплеск гамма-излучения космического происхождения.


После принятия в 1963 году международной конвенции о запрещении наземных ядерных испытаний были запущены спутники-шпионы, оснащенные детекторами рентгеновского и гамма излучений для контроля атомных взрывов. Один из них вдруг зафиксировал кратковременную, но очень мощную вспышку гамма-излучения из космоса. Спустя несколько месяцев зарегистрировали еще один всплеск, затем еще и еще… Некоторое время американцы подозревали Советский Союз в совсем уж экзотическом преступлении – ядерных испытаниях на Луне, но вскоре от этой мысли пришлось отказаться. Каждый раз гамма-всплески приходили из разных точек небосклона, даже не из Млечного Пути. То есть что-то непонятное происходит даже не в нашей Галактике, а где-то далеко за ее пределами. Поражала мощность этих явлений: за доли секунды на расстояниях в миллиарды световых лет от нас выделялась такая энергия, какую обычная галактика испускает за тысячу лет! Измерительные приборы на околоземных спутниках зашкаливали!

Долго гамма-всплески оставались самой интригующей загадкой астрофизики. Только в самом конце ХХ столетия появились гипотезы об их происхождении. Вероятно, эти выплески энергии происходят при слиянии двух нейтронных звезд или при гравитационном коллапсе ядра очень большой звезды. Такой всплеск способен истребить все живое в радиусе сотен световых лет! К счастью, гамма-всплески достаточно редки: примерно один всплеск на галактику раз в миллион лет.

3 июня
Изотопы водорода

3 июня 1920 года Резерфорд прочитал знаменитую лекцию «Нуклеарное строение атома», в которой предсказал существование нейтрона и тяжелых изотопов водорода.


Термин «изотопы» ввел в 1913 году английский физик и химик Фредерик Содди. Слово образовано из двух греческих слов «изос» и «топос» и в буквальном переводе означает «одинаковоместные». Все изотопы данного элемента занимают одну и ту же клетку в периодической таблице элементов Менделеева, следовательно, имеют одинаковые химические свойства; различна у них только атомная масса.

У первого элемента таблицы – водорода – имеются три изотопа. Самый известный и распространенный из них называют протием, т. к. его ядро состоит из одного протона. Ядро дейтерия (что означает «двойной») состоит из протона и нейтрона, а ядро трития – из протона и двух нейтронов. Тритий радиоактивен, он испытывает электронный распад с периодом полураспада 12,35 лет.

Дейтерий открыл в 1931 году американский химик и физик Гарольд Юри. Зная о предсказании Резерфорда, он искал и нашел подтверждение существования тяжелого изотопа водорода в спектре атомарного водорода. В природном водороде содержание дейтерия составляет всего 0,0156 %. Трития там практически нет, но его легко получить искусственным путем при облучении лития нейтронами.

В будущем дейтерий, возможно, станет основным топливом в термоядерных реакторах: 1 грамм дейтерия может дать в 10 тысяч раз больше энергии, чем 1 килограмм угля при сгорании. В водах Мирового океана содержатся многие миллиарды тонн дейтерия, входящего в состав так называемой тяжелой воды.

4 июня
Персональные компьютеры

4 июня 1977 года поступил в продажу первый персональный компьютер “Apple”.


Обычно считают, что эра персональных компьютеров (ПК) началась в 1977 году, когда в США появились примитивные и дешевые компьютеры Apple. Основным их преимуществом было не быстродействие и удобство использования, а возможность приобретения и даже сборки широкими массами радиолюбителей.

В нашей стране в это время тоже создавались персональные компьютеры, но не для квалифицированных радиолюбителей, а для ученых и инженеров на крупных предприятиях. Такие машины назвались Малыми инженерными решателями задач (МИР) и уже тогда обладали такими возможностями для удобной работы, как световое перо, цветная графика, язык программирования высокого уровня (тогда он назывался системой автопрограммирования). МИРы производили аналитические вычисления, вычисления с произвольной разрядностью и обладали элементами искусственного интеллекта. Все это реализовывалось на дискретной элементной (транзисторной) базе того времени, умещалось на двух-трех столах и по цене было вполне доступно крупному предприятию. Работали на таких машинах только лучшие инженеры. В наше же время ПК есть почти у всех, и эффективность их использования резко упала, т. к. она в основном определяется не характеристиками ПК, а способностями его хозяина. Если раньше для допуска к работе на МИРе необходимо было выдержать большой конкурс, сдав сложный экзамен, то теперь достаточно нажать кнопку Power или пошевелить мышкой.

Компьютер позволяет решать все те проблемы, которые до изобретения компьютера не существовали.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | Следующая
  • 0 Оценок: 0

Правообладателям!

Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.


Популярные книги за неделю


Рекомендации