Электронная библиотека » Анатолий Левенчук » » онлайн чтение - страница 4

Текст книги "Интеллект-стек 2023"


  • Текст добавлен: 30 августа 2023, 15:20


Автор книги: Анатолий Левенчук


Жанр: Физика, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 4 (всего у книги 48 страниц) [доступный отрывок для чтения: 16 страниц]

Шрифт:
- 100% +
Интеллект и прикладное мастерство неразрывны, мышление и прикладное рассуждение тесто переплетены

Интеллект и прикладное мастерство неразрывны, ибо в разных практиках/алгоритмах познания тесно переплетено мышление как поиск новых объяснений (более высокий уровень вычислений) и рассуждения по уже объяснённому материалу (более низкий уровень вычислений, подчинено целям входит в состав мышления).

В сложных когнитивных архитектурах5353
  «Болваны для искусственного интеллекта», https://ailev.livejournal.com/1356016.html


[Закрыть]
рассуждения/вывод/inference и познание/learn существенно переплетены в разных алгоритмах, они задействуются на разных уровнях мышления/вычисления. Например, в искусственном интеллекте на базе нейронных сетей часто используют отдельные сетки: сетку-учитель и сетку-студент, которые учатся по-разному и ещё и учат друг друга (учат – это значит не познают сами, а просто используют имеющиеся у них знания для рассуждений/вывода). В разных вариантах архитектур GAN (generative adversarial network, порождающая противоборствующая сеть) это две нейронных сети: сетка-генератор и сетка-дискриминатор, которые тоже вместе познают, но внутри они ещё и занимаются прикладным выводом на базе познанного на текущий момент – накапливают мастерство решения задачи порождения заданных объектов, мастерство творчества!

В эволюционных алгоритмах и алгоритмах обучения/познания с подкреплением в машинном интеллекте тоже в рамках всех вычислений есть и производимый текущим изготавливаемым мастерством прикладной вывод, и какая-то поисковая активность. Иногда об этой поисковой активности говорят как об исследованиях/exploration, противопоставляя эксплуатации/exploitation как использованию уже наисследованного.

Вот это разделение на exploitation и exploration относится не только к вычислениям и использованию уже известных знаний, чисто информационной работе без выхода в мир. Это полностью применимо и к действиям в мире, то есть возможности изменения вычислителем с датчиками и актуаторами окружающей вычислитель среды. Мы одновременно воспринимаем кусочек изменяемого мира нашими органами чувств/машинными датчиками, вычисляем/думаем/рассуждаем и изменяем окружающий мир нашими актуаторами.


Мы уже упоминали, что иногда разницу между вычислениями и действиями с их участием подчёркивают, а иногда наоборот, считают их едиными и неразделимыми – extended cognition, embodied mind и другие подобные идеи). Поэтому интеллект и мастерство (в том числе мыслительное мастерство – мастерство в вычислениях по алгоритмам отдельных трансдисциплин, требуемых для познания) иногда относят чисто к «вычислениям» при выполнении практик, а иногда к «вычислениям и изменениям мира», то есть к самим практикам. В любом случае, надо помнить положения подхода «деятельных рассуждений» (active inference):

• Все самые разные агенты (от молекул до человечества) пытаются минимальными действиями минимизировать неприятные сюрпризы, угрожающие стабильности их существования

• Планирующие агенты при этом планируют и проводят изменения четырёх возможных объектов: модели мира, модели себя, мира, себя.

• Для этого агенты улучшают свои возможности моделирования мира и себя, возможности изменения мира и себя, то есть применяют интеллект в ходе многоуровневого обучения.


Иногда особо оговаривают, что «мыслительные практики», «практики рассуждений», «практики коммуникации» имеют дело строго с информацией и вычислениями как изменением информации в какой-то памяти, причём оговаривают, что эти вычисления не затрагивают реальный мир («себя» как вычислителя и окружающую среду). Тут нужно быть внимательным: никакие вычисления не производятся сами по себе, «в вакууме», из ниоткуда в никуда. Они всегда производятся с моделями, как-то отражающими мир абстракций и/или физический мир. Все вычисления привязаны тем самым в конечном итоге к практикам по изменению мира, они проводятся автономными агентами, имеющими какие-то цели. И эти агенты обладают устройствами ввода-вывода информации для вычислений, никакое вычисление не может быть сделано без входной информации, или проведено без вывода информации.

Примеры самых разных под-вычислителей (компетенций, мастерства разных видов) в составе других вычислителей можно приводить и приводить, и каждый раз нужно помнить, что речь идёт о физических вычислителях, функционирующих в составе какого-то (разумного или не очень, например, кошки или AI) агента, который в свою очередь действует совместно с другими агентами в физическом мире, занимается деятельностью/практиками.

Есть ещё и проблема алгоритмической многоуровневости (одни вычисления внутри других) и цепочечности (одни алгоритмы/программы/правила/знания/объяснения изготавливаются по длинной цепочке/pipeline вычислений другими алгоритмами/программами/правилами/знаниями/объяснениями в рамках одного и того же, или даже разных вычислителей). При выходе на уровень трансдисциплин это проявляется как плохое понимание прикладных рассуждений в рамках системного мышления как познающего мышления, это ж «вывод внутри познания», «простые рассуждения внутри работы интеллекта», признание того, что в составе интеллекта тоже есть мастерство! Это обычное дело в информатике: разобраться, что там «внутри», а что «снаружи» каких-то вычислений трудно (для разработчика прикладной программы операционная система вроде как «снаружи программы», но разработчики операционной системы считают, что программа как раз внутри их системы. Framework и library вроде как обозначают одно и тоже, но прикладной код вызывает library, но вызывается сам из framework. Так и тут в общем случае универсальных алгоритмов интеллекта и мастерства: при проблемах в рассуждениях в прикладном мастерстве вызывается интеллект, а при проблемах в познании в интеллект вызывается то или иное трансдисциплинарное (а иногда и прикладное) мастерство. И чтобы было что вызвать, этим мастерством нужно овладеть: или «импортом» от тех, кто им уже владеет и в состоянии внятно передать знания (в том числе через отчуждённые теории/модели/дисциплины/объяснения), или получить самостоятельно в результате исследований.

Интеллект и прикладное мастерство участвуют совместно в некотором цикле развития: ибо если нет проблем, то не нужно и познание, интеллект включать не нужно. А если проблема есть, то она будет решена, и цикл повторится – новая проблема обязательно появится, мир ведь не стоит на месте!

Проблематизация (обнаружение и «заострение», более строгая формализация противоречия) проявится как обнаружение невозможности рассуждений по правилам текущих лучших (SoTA) версий прикладных дисциплин, на понятийной базе объяснений которых идут эти рассуждения. И тогда подключается интеллект с входящим в него мыслительным мастерством рассуждения с набором понятий трансдисциплин/учений, чтобы преодолеть эту невозможность рассуждений из-за обнаруженных противоречий в прикладных дисциплинах, прикладном мастерстве.

Получается, что в мире есть некоторый набор очень похожих по содержанию, но различающихся по терминологии и акцентам в ответах на те или иные деятельностные интересы теорий/идей/объяснений интеллекта и мышления, мастерства (в том числе мыслительного мастерства), быстрых интуитивных и медленных осознанных рассуждений с использованием каких-то правил и шаблонов, практик и их дисциплин, трансдисциплинарности5454
  https://en.wikipedia.org/wiki/Transdisciplinarity


[Закрыть]
, агентности как умения ставить цели и планировать их достижение, в том числе корректировать планы для достижения целей в кооперации с другими агентами. В основе хорошо поставленного мышления (хорошо развитого интеллекта, мастерства мыслить – это об одном и том же) лежит не просто интеллект, а тщательно предобученный интеллект (человека, машины или группы людей с машинами – это не так важно).

И дальше можно ожидать, что такой интеллект, полученный каким-то многоступенчатым и длительным предобучением, будет быстро «изготавливать» мастерство, демонстрирующее высокую квалификацию в какой-то деятельности, включая качественные рассуждения по правилам и с объектами, которые есть в прикладной теории/дисциплине/модели этой деятельности.

При написании нашего курса «Интеллект-стек» была проделана примерно такая же работа, которая была сделана при создании и развитии курса системногоу мышления. Для курса системного мышления были вытащены разные фрагменты знания о системах и правилах рассуждений о них из инженерных и отчасти менеджерских стандартов, терминология гармонизирована и всё это было изложено в виде связного текста. Это всё была методологическая работа (методология помогает изложить методы/способы какой-то работы, в данном случае методы/способы системного мышления как мышления «системного интеллекта», решающего проблемы с использованием понятий системного подхода). И ещё было проведено относительно немного методической (облегчающей восприятие студентами) работы. Похожая работа была сделана Дэвидом Дойчем в книге «Структура реальности» по поводу вытаскивания и гармонизации основных понятий из четырёх теорий/объяснений (Дойч называет их «сюжетными линиями» объяснительного повествования) структуры вселенной: квантовая физика, эпистемология, теория эволюции и вычисления, которые невозможно понять без учёта их тесной связи. Вот и у нас оказывается, что интеллект и прикладное мастерство и их мышление и прикладные рассуждения нельзя понять без учёта тесной связи трансдисциплин, как-то алгоритмизирующих работу общего интеллекта.

Общий интеллект, который подробно определял Chollet в своих работах, оказался состоящим не из какого-то мастерства, а из набора широких способностей/broad abilities по научению своего носителя/владельца каким-то навыкам и умениям/skills, которые мы по-русски называем мастерством. А уже это приобретённое в обучении (по литературе, или с учителем, или просто методом проб и ошибок плюс рассуждений в поисках объяснений в ходе каких-то проектов) мастерство решает задачи, и это уже будет не общий интеллект и не его часть как мыслительное мастерство, а прикладной интеллект и прикладное мастерство.

Интеллект тем самым оказывается не про решение задач! Экскаватор решает задачи копания, калькулятор решает задачи счёта, и это мы не считаем интеллектуальным! Интеллект включается там и тогда, где и когда в ходе обычного решения задач встречается что-то необычное, новая проблема, решениям которой его ещё не учили, и наш решатель задач вынужден научиться чему-то новенькому. Мышление/познание нужно в этот момент. Всё остальное – это «просто вычисления», какие-то прикладные рассуждения, но не познание/мышление. При ответе на вопрос «сколько будет 2*2» человек вспоминает, рассуждает, но не мыслит!

У СМД-методологов проводилось очень похожее различение, они делили «работу мозгами и телом» на «чистое мышление» (похожее на то, как мы это обсуждаем по мотивам работ Chollet), мыслекоммуникацию (поскольку мышление обычно происходит в ситуациях коллективной деятельности в разного рода проектах) и «мыследействование» (похожее на автоматическую работу сделанного/обученного интеллектом устройства – каких-то остальных частей мозга и тела, взятых вместе).

Экскаватор копает и встречает огромный валун под землёй, калькулятор встречает необходимость перемножения чисел, записанных прописью – без внешнего управления они просто остановятся, или будут совершать глупые действия.

Человек, если его натаскать на какой-то узкий/прикладной класс задач, получает умение, приобретает в нём навык/компетенцию/skill, то есть какой-то кусочек мозга превращает в прикладное мастерство – и будет решать их довольно эффективно. Интеллект тут ему нужен будет только в момент обучения, когда мастерства ещё нет. Задачи же того класса, которому его обучили, он будет решать «на автомате», это уже не требует интеллекта. Способность к отращиванию себе нового навыка, нового автоматизма по решению задач – вот в чём умность! Человек способен отрастить себе навыки и умения от требующихся в инженерии до требующихся в менеджменте, от требующихся в исследованиях до требующихся в медицине. Котёнок этого не может, у него интеллект слабее. Нейронные сети – могут, но некоторые классы задач им даются с огромным трудом. Например, «базовое знание» (core knowledge, умение распознавать абстрактные паттерны/закономерности, не требующее даже знания естественного или искусственного языка) по Chollet5555
  https://lab42.global/arc/core-knowledge/


[Закрыть]
оказывается плохо доступным для нейросетей, в мае 2023 года лучший результат по набору тестов ARC показывался в 31% решённых задач, в то время как люди решают 80% таких задач. На эту тему проводится хакатон по созданию машинного интеллекта, способного решать такие задачи5656
  https://lab42.global/arcathon/


[Закрыть]
, и что-то там пока не видно особых улучшений в результатах5757
  https://lab42.global/arcathon/leaderboard/


[Закрыть]
.

Человек с интеллектом будет над задачами нового класса задумываться – и находить решения, нарабатывать себе новые умения/виды мастерства (использовав для этого учебники, привлекая учителя, или даже просто методом проб и ошибок, приобретая опыт в «исследованиях»). Или он не сможет приобрести нужное умение/мастерство, или приобретёт, но за пять лет, а не за пять минут. Повторим: интеллект – это вычислитель, дающий эффективность в научении какого-то кусочка агента (будущее «мастерство») решению какого-то класса прикладных задач. Более сильный/общий интеллект, демонстрирующий более сильное/общее мышление даёт скорость в создании/отращивании/выучивании/познании самых разных умений (общий/широкий/сильный интеллект – «самые разные умения»), это «способности к получению мастерства», а не конечный прикладной навык, набор видов какого-то прикладного мастерства. Хотя, конечно, можно говорить и об интеллекте как связной совокупности особых видов мастерства рассуждений по теориям/объяснениям/дисциплинам, помогающим создавать какое-то прикладное мастерство. Мы называем такие дисциплины трансдисциплинами, или мета-дисциплинами, или фундаментальными дисциплинами: они помогают получить другие дисциплины, которые потом лягут в основу прикладных практик, которые будут выполняться прикладными видами мастерства.

Скажем, в состав интеллекта мы включаем способность логически («логически» – это в соответствии с идеями математической логики, идеями причинного обновления/causal inference) рассуждать, ибо логика – это трансдисциплина, которая используется во всех рассуждениях при любом мастерстве – в том числе требуется логично рассуждать о самой логике! Логическое мастерство трансдисциплинарно, оно просто входит (наряду с мастерством в других трансдисциплинах – системном мышлении, эпистемологии и т.д.) в интеллект. А вот мастерство игры на гитаре или мастерство готовить кашу не входят в общий интеллект, поэтому мы иногда говорим не только о логичных рассуждениях, но и о логичном мышлении, но не говорим «гитарное мышление» или «кашеварное мышление», а только «рассуждения по игре на гитаре» и «кашеварные рассуждения». Но если сделать шаг в сторону расширения классов решаемых задач, то «музыкальное мышление» вполне можно уже сказать, равно как и «кулинарное мышление».

Конечно, можно выделить много серых зон, где размыта граница между широким интеллектом как «мастерством во всём» («талантливый человек талантлив во всём» – это как раз про интеллект) и прикладным мастерством как узким/прикладным интеллектом.

Бытовой язык по поводу любых рассуждений/вычислений говорит «мышление», при этом часто ещё и ограничиваясь только человеческими вычислениями в мозге и исключая компьютерную часть. Мы постоянно подчёркиваем, что современный человек по факту никогда не мыслит только «внутри головы», всегда используется экзокортекс, всегда идёт коммуникация с другими людьми!

Бытовое использование терминов, которые мы использовали при рассказе об интеллекте и мышлении

Предложенные понятия и термины для них в нашем рассказе об интеллекте и мышлении, мастерстве и рассуждениях более-менее совпадают с традиционным «бытовым» словоупотреблением, они как-то представлены в культуре. Но это не означает, что с этой терминологией не будет ошибок. Нужно всегда помнить, что в словарях недаром у каждого слова приводится множество значений в разных словарных гнёздах, и смысл говоримого приходится уточнять не по словарям, а исходя из каждой ситуации использования в тексте или речи тех или иных слов. Смысл в использовании слов, а не в словарях!

Например, «познание» цепляет где-то в памяти ассоциации с когда-то (обычно много лет назад) читанными представлениями об эпистемологии/научном мышлении (а то и гносеологии, включающей ещё и религиозное, и художественное «познание»), «вывод» и «рассуждения по правилам» цепляет логику (и даже не современную математическую, а Аристотелевскую, с силлогизмами и всеми её уже сотню лет известными ограничениями). И ещё отечественные «знатоки русской научной терминологии» обязательно проявятся со своими претензиями на термины и их значения – причём они все будут предлагать каждый разное, приводя самые разные обоснования, ссылки на самые разные авторитеты. Но это нормально, мы всё равно будем использовать описанный тут набор понятий и терминов для обсуждения интеллекта и мышления: лучше иметь универсальный и маленький набор понятий, который позволяет делать объяснения/модели мира, чем много самых разных несовместимых друг с другом и никак не соотносящихся понятий из слабо связанных друг с другом объяснений/теорий/дисциплин/моделей. Универсальность и компактность объяснений рулят, в том числе в трансдисциплинах. Универсальность как свойство хороших объяснений особо подчёркивал Дэвид Дойч.


Затруднения обычно возникают, когда мы говорим о частях общего интеллекта как вычислителя и частях мышления как частях функциональности общего интеллекта: о трансдисциплинарных практиках. Проблема с трансдисциплинами в том, что они используются для объяснений как в прикладных предметных областях, так и для объяснений самих себя! Условно можно считать эти трансдициплины выстроенными в некоторое подобие «стека» (stack, «стопка»). Описанию современного состояния этих трансдициплин и посвящён наш курс. Вот эти трансдициплины, которые расположены в очень приблизительном порядке задействования объяснений, «чтобы объяснить как-то дисциплины, стоящие выше, нужно использовать знание дисциплины, стоящей в стеке ниже»:

• Системная инженерия

• Методология

• Риторика

•  Этика

• Эстетика

• Исследования

• Рациональность

• Логика

• Алгоритмика

• Онтология

• Теория понятий

• Физика

• Математика

• Семантика

• Собранность

• Понятизация


Конечно, все понятия и отношения из этих дисциплин никак не выстраиваются в такой «стек», это очень тесно связанный граф, никак не раскладывающийся в «последовательное объяснение вышестоящего на основе нижестоящего». Мы сделали этот стек, существенно огрубив все взаимосвязи в этом графе. Неминуемо приходится обращаться при объяснении физики к математике, но и при объяснении математики приходится обращаться к физике, но и при обсуждении семантики тоже приходится обращаться к физике, равно как и при обсуждении физики к семантике – и так буквально со всеми перечисленными трансдисциплинами. Как с этим справляться? Чтобы по последовательному описанию разобраться с графом, неминуемо содержащим «ссылки вперёд», надо просто прочесть описание два раза. В первый раз будут встречаться некоторые понятия, которые используются, но ещё не объяснены. Даже сразу можно и не сообразить, что какое-то понятие используется как термин, а не как отсылка к бытовому знанию. После первого прочтения окажется, что вычитаны из текста все объяснения. Тогда при повторном чтении текста будет уже понятно всё (хотя уверенность тут надо бы сильно понизить, люди не логические компьютеры, и нейронные сетки могут не справиться с полноценным пониманием через два последовательных чтения).

В любом случае, не надо относиться к предлагаемым в нашем курсе классификациям как к чему-то окончательному. Например, мы определяем, что мышление – это задействование рассуждений с использованием трансдисциплин (объяснительных теорий/моделей, использующихся для ускорения познания). Вопрос: если дан набор понятий и их отношений из учебника кулинарии, можем ли мы считать это «кулинарным интеллектом»? Если вы знаете про различие общего/сильного и узкого/слабого интеллекта, то можно. Если речь идёт о каком-то кулинарном трудовом кругозоре, общем понимании, как связаны друг с другом разные кулинарные практики (варка, жарка, приготовление десертов и т.д.), то тут можно допустить, что говорим о кулинарной трансдисциплине как основе для кулинарного познания – и тогда смело используем слова «кулинарный интеллект» и даже производимое им «кулинарное мышление» в ходе различных экспериментов по получению новых вкусов или новых более простых способов кулинарной обработки продуктов при сохранении прежних вкусов.

Так, для обзорных трансдисциплин, объясняющих происходящее в практиках менеджмента и инженерии, мы вполне можем говорить об менеджерском и инженерном интеллекте или мастерстве, менеджерском и инженерном мышлении как функции этого интеллекта или мастерства. Но в целом, если говорить, например, о менеджерском интеллекте, то речь идёт больше об умении разобраться с новыми проблемами в менеджменте (продвинуть мастерство менеджмента), а если говорить о менеджерском мастерстве, то речь идёт об опыте разбирательства с типовыми ситуациями, «умение не делать новичковых ошибок менеджера».

Есть ещё примеры, как люди определяют «мышления». Программисты могут вспомнить Дейкстру, который вводил виды мышления (его интересовало программистское мышление/мастерство в его отличии от физического и математического мастерства) на примерах: «Хотя во времена, к которым относится наша история, человечество не знало ЭВМ, неизвестный, нашедший это решение, был первым в мире компетентным программистом. Я рассказывал эту историю разным людям. Программистам, как правило, она нравилась, а их начальники обычно сердились все больше и больше по мере ее развития. Hастоящие математики, однако, не могли понять, в чем соль.» – это знаменитая история о туалетах5858
  http://hosting.vspu.ac.ru/~chul/dijkstra/pritcha/pritcha.htm


[Закрыть]
.

Помним, что «программирование» – это для Дейкстры практика «структурного программирования», то есть дисциплина/теория алгоритмики на императивном языке с простыми структурами данных. Но вот это «чем мышление программиста отличается от мышления математика» – это оказывается важно, Дейкстра пытался разобраться, чем рассуждения с объектами программистского интереса/внимания отличаются от таковых для математиков и физиков. «Хвост коровы Маргариты – это часть стада» для системного мыслителя неправильное высказывание (нет осмысленных операций в жизни для хвоста в стаде, а вот для «хвоста у коровы»/«хвоста в корове» и для коровы в стаде – есть! Системные уровни важны, через них нельзя прыгать в мышлении!), а для математика, логика, физика – правильное. Системное мастерство по сравнению с математическим, логическим или даже физическим мастерством будут рассуждать по-разному, давать разные ответы на даже простые вопросы! Системный интеллект и математический/логический или даже физический интеллект породят разные варианты какого-то прикладного мастерства, ибо они мыслят по-разному!

Тут произошёл незаметный, но важный сдвиг в онтологическое трансдисциплинарное разбирательство: мы говорим уже не об интеллекте и мышлении, а также мастерстве и рассуждениях как таковых, а об их видах (специализациях), их экземплярах и примерах (классификациях), об их частях (композициях, именно это отношение между объектами-системами на разных системных уровнях), создании и развитии (один объект как-то создаёт и развивает другой объект, часто по цепочке создания). Мы задаёмся вопросом отношений, в которых разные экземпляры и целые множества «интеллекта», «мышления», «мастерства», «рассуждений» могут находиться друг с другом. В онтологии вопрос выбора типа отношения в трудных случаях (например, выбор специализации, классификации или даже композиции) для создания компактной теории/модели/объяснений/онтологического описания зависит от тех проблем, которые вы пытаетесь решить. Для решения каких-то проблем удобно выбрать мир состоящим из одних объектов и отношений между ними, для других проблем – выбрать по-другому. Так что пока не будем обсуждать этот вопрос более подробно, пока вы сами не займётесь исследованиями интеллекта и мышления, мастерства и рассуждения. В любом случае помним, что речь идёт о работающих вычислителях (интеллекте, мастерстве, которые реализуются работающими мозгами, компьютерами и линиями связи) и разворачивающихся во времени в них физических процессах вычисления (мышлении, рассуждениях). Так что интеллект, мастерство выделяются в окружающих людях и их компьютерах и других инструментах вниманием, равно как происходящие в ходе протекания процессов мышления и рассуждений изменения/поведение тоже выделяются изо всех изменений в окружающем мире тоже вниманием. А вот куда направлено это внимание, это и определяется трансдисциплинами, занимающимися интеллектом и мастерством, мышлением и рассуждениями.

И, конечно, познание и рассуждение тесно связаны ещё и тем, что в машинном интеллекте обсуждается как «обучение/познание всю жизнь»/lifelong learning: все рассуждения оцениваются на предмет того, насколько они оказались успешными в реальной жизни, и эта успешность или неуспешность тоже идёт как входной материал для мышления. При этом времени на мышление (познание и обучение) не хватает в живой природе, и по итогам рассуждений при действиях во время бодрствования познание идёт ещё и во сне (мозг пересматривает записи того, что там происходило в ходе практики и использованных в практике рассуждений и доучивается: перестраивает мастерство, улучшает его).

Так же рассматриваем мышление и рассуждение в ходе творчества и импровизации (помним, что там обычно участвует какой-то генератор случайностей, меняющий рассуждения), познание с подкреплением, познание на основе принципа свободной энергии (есть и такие объяснения познания живыми существами)5959
  https://en.wikipedia.org/wiki/Free_energy_principle


[Закрыть]
.

Конечно, мышление в его SoTA варианте (с выходом на осознанность в использовании каких-то новых понятий из новых полученных обучением или исследованиями объяснений/теорий/моделей) в мире встречается сильно реже, чем простые рассуждения. СМД-методологи любят говорить, что «чистое мышление» так же часто встречается в мире, как танцы лошадей. А как же люди занимаются какой-то деятельностью? Они мыследействуют!

Вычислений интеллекта, то есть мышления у человечества по объёму не так много. Это главным образом рассуждения с использованием трансдисциплин (логики, онтологии, системного мышления и т.д.). Но эти вычисления таки бывают. Основной объём «думания», прикладных рассуждений на планете – это мыследействование/вывод/рассуждение по правилам с использованием плодов интеллекта: обеспеченного/enabled интеллектом мастерства как прикладных теорий/дисциплин/моделей/объяснений по решению каких-то классов задач, для которых понятна понятийная структура. Нет затыков в (мысле) деятельности – мозг работает в режиме автомата, лёгкий режим с использованием быстрого интуитивного режима работы мозга-вычислителя S1 (как это было описано в книге Д. Канемана «Думай медленно… решай быстро»6060
  https://www.ozon.ru/product/dumay-medlenno-reshay-bystro-kaneman-daniel-240690039/


[Закрыть]
). Случился затык, найдена проблема – включается медленный режим работы мозга S2, который за счёт падения скорости и вывода рассуждения в сознание (помним, что сознание управляет вниманием!) гарантирует выполнение правил рассуждения, то есть использование заведомо известных операций с заведомо известными объектами, которые определяются какой-то дисциплиной. Или же такое медленное осознанное рассуждение с использованием трансдисциплин будет в рамках мышления, занимающегося поиском правил для какой-то прикладной дисциплины, которую должен создать интеллект.

У мыслителей, которые главным образом вырабатывают новые понятия (наука, да и существенная часть инженерии) познания/мышления/learning много. А вот у каких-нибудь клерков среднего звена – понятийной работы ноль, сплошные «рассуждения на полном автомате», вот их и списывают за ненадобностью, заменяют компьютерами, это легко. Пока ещё плохо понятно, как заставлять заниматься мышлением компьютер, поэтому интеллект тут берётся у разработчиков софта со всем их искусством исследования рассуждений в ходе выполнения каких-то прикладных практик (методологическая работа) и пересадки найденных правил рассуждений в компьютер (программная инженерия). Но хорошо известно, как потом заставить рассуждать компьютер, когда его уже научили делать рассуждения (то есть «разработали софт»). Софт типа Bing, Bart, прочие «нейросетевые ассистенты» как-то пытаются решать эту проблему полноценного компьютерного мышления, но это ещё не слишком надёжно и плохо работает для ответственных приложений. Из компьютеров пока получаются плохие методологи, они плохо описывают новые деятельности, плохо предлагают новые понятия. В любом случае, ситуация быстро меняется, ибо человеческий и машинный интеллект задействуются не по одиночке, а совместно – и вот эта связка работает уже много надёжней.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации