Автор книги: Андрей Чемезов
Жанр: Техническая литература, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 7 (всего у книги 24 страниц) [доступный отрывок для чтения: 8 страниц]
XXI. Образование электрических искр
Вращение режущего инструмента на станке и вращение электрического заряда в проводе одинаково производит искры, разлетающиеся в стороны под действием центробежной силы вращения. Объясняю, как это происходит.
Электрические искры образуются в точке контакта проводников под напряжением через тонкую воздушную прослойку, диэлектрик, диэлектрический материал, очень тонкий изолятор.
При этом сначала на ничтожные доли секунды образуется электрическая дуга, а только затем уже искры, вследствие работы этой дуги по металлу-проводнику.
Любая дуга, даже очень тонкая, едва заметная, состоит из высокотемпературной плазмы. Диэлектрик, нагретый до состояния плазмы, проводит ток с минимальным сопротивлением, однако если электроды подвижны, как при сварке, то дуга может исчезать и появляться, что приводит к ещё большему образованию искр.
Процесс сварки очень сложен на самом деле, по-видимому он может сопровождаться одновременным появлением множества микроскопических дуг на конце электрода и образованием искр от этих дуг.
Стоит вспомнить, что расположение диэлектрика между двумя токопроводными пластинами представляет собой не что иное как конденсатор. Многие вещи устроены как конденсатор, но сварка работает в необычном для конденсатора режиме – в режиме пробоя диэлектрика.
В результате диэлектрик, то есть воздух, постоянно горит.
В момент пробоя конденсатор мгновенно разряжается. Баночный вообще перестаëт существовать, поскольку он от пробоя взрывается, атмосферный конденсатор разряжается молнией, а сварочный процесс штатно идёт, возможно что разряд – заряд идут циклически с высокой частотой…
Разряженный конденсатор в первое мгновение пропускает ток беспрепятственно, но не потому, что ток проскакивает через диэлектрик, а потому, что ток заходит в диэлектрические обкладки конденсатора, накапливая заряд на пластинах.
В режиме пробоя возникает дуга, она поддерживает высокую температуру плазмы… Также в режиме пробоя распадаются ионизированные цепи, которые формируют максимально высокое напряжение в диэлектрическом слое конденсатора, когда он заряжен.
Каждое образование снопа искр сопровождается хлопком, а сама дуга гудит, вовсю проявляя механические свойства частиц, передающих ток.
Если рассматривать свариваемую точку под микроскопом с немыслимым разрешением, то мы увидим, скорее всего, нечто, похожее на два раскрученных «наждака», бьющихся друг о друга…
Заряды передают ток друг другу продольным вращением, а напряжение – осевым вращением.
Поэтому если приложить сварочный электрод к металлу, то он просто прилипнет. Это явление называется электромагнетизмом. Создаётся оно осевым вкручиванием зарядов друг в друга, как винта в гайку, только не такое жёсткое, как в закалëнном металле, это соединение больше похоже на текучую резьбу в сыром металле, по силе сцепления зарядов в осевом направлении. Такой вид сцепления зарядов не передаëт ток, он передаëт только напряжение. Поэтому при залипании электрода сварка не идëт.
Чтобы сварка пошла, сварщику нужно произвести манипуляцию с электродом. Во-первых, нужно отвести электрод от металла на минимальное расстояние, чтобы поднять уровень сопротивления в точке сваривания с нулевого на низкоомный. Этого будет достаточно, чтобы ток пошёл и дуга появилась. Сопротивление появляется прямо в воздушной прослойке, воздух – это диэлектрик, имеющий высокое сопротивление току, но, как обычно, чем тоньше слой диэлектрика, тем ниже его физическое сопротивление проходящему току.
Низкоомное сопротивление в точке контакта даëт падение напряжения и появляется дуга, вследствие высокой температуры частиц разогретого током воздуха.
Этой дугой выбивается искра из металла, она выбивается из свариваемого металла и из металла на конце электрода.
Что значит «выбивается искра»? Этот процесс выглядит так: сильно разогретые трением электрического тока заряды вырываются из металла (разрываются их гравитационные связи, вследствие полученной ими тепловой энергии) и эти заряды получают толчок от проводника за счëт центробежной силы вращения соседних зарядов. Эти соседние заряды цепляют своими энергетическими полями освободившиеся заряды и выбрасывают их из проводника.
Вот откуда берётся скорость у искр, обладающих какой-никакой, но собственной массой! Скорость материи из, казалось бы, неподвижно лежащего проводника!
Электрические искры – самое наглядное проявление вращения зарядов в проводнике, нагляднее просто некуда…
Вращение атомов невозможно разглядеть толком даже в электронный микроскоп, настолько оно мало, что электронный микроскоп фиксирует только сам факт вращения и его направление – по часовой или против часовой стрелки, что определяется как положительный заряд либо отрицательный.
Но скорость вращения зарядов вполне можно оценить, подставив под искру ладошку!
Не забывайте о технике безопасности: искры представляют серьëзную опасность для глаз, крупные искры могут вызвать ожоги на теле. Но просто подумайте, обратите внимание: из спокойно лежащего провода искры летят, как камушки из-под колëс! То есть летят из-под чего-то, что вращается!
Будучи раскрученными и запущенными в полёт центробежной силой вращения заряда, кусочки металла с примесью налëта ржавчины и т. п. вылетают расплавленными искрами, содержащими в себе, может быть, миллиграмм металла, может быть меньше.
Точно такие же снопы искр, только менее яркие, менее горячие, вылетают из-под работающего наждака, наждачного круга, болгарки, фрезы и т. п., потому что во всех перечисленных случаях, включая электросварку, идут одинаковые, с точки зрения механики, процессы трения металла о вращающиеся механические части, только в одном случае вращается режущий инструмент, а в другом случае заряд электрического тока.
ХХII. Всеволновая передача электромагнитных колебаний / настройка на мозг
Всеволновая передача может быть двух видов: переменная частота при фиксированном уровне напряжения (радиолиния с фиксированным уровнем напряжения, например) и переменная частота при переменном уровне напряжения – это самый сложный вариант. Технически ни первый, ни второй вариант никем в мире пока не был осуществлён.
Радиолиния передатчик-приëмник всегда строится на фиксированной частоте, на ней передаëтся сигнал, изменяющий своë напряжение. Но передача настроения (именно настроения, а не мысли) от человека к человеку уж точно не работает на фиксированной частоте, иначе мы бы этот сигнал давно бы заметили, прослушивая все частоты.
В радиоэлектроннике не существует средств для обнаружения сигнала на несущем напряжении, тем более – сигнала без несущей частоты и без несущего напряжения, так как не вполне понятно, как создать нормальное приëмное устройство для таких видов сигналов (передатчик– то ладно, мы его создадим в любом виде, но ведь это комплексная аппаратура – передатчик и приёмник), и вообще можно ли передавать хоть какую-то информацию при помощи сигнала без несущей составляющей?
В этой статье будут рассмотрены физические принципы, на основе которых можно попытаться создать передатчик и приёмник, работающие на всеволновой передаче.
Итак, давайте вспомним, какие формы движений заряды могут передавать друг другу?
В диэлектрике таких форм всего две: направление закрутки и скорость закрутки связанной ионной нити. В проводнике есть ещё третья форма передачи движения: продольное вращение зарядов, передающее силу тока…
В свою очередь направлений закрутки ионной нити тоже может быть только два варианта: по часовой и против часовой стрелки. Одно из этих направлений определяется как положительный заряд, а другое как отрицательный заряд. Положительные и отрицательные заряды очень легко читаются электронной аппаратурой.
Скорость смены направления закрутки связанной ионной нити между радиопередатчиком и радиоприёмником определяется как частота радиопередачи.
Физически каждая смена направления меняет направление тока между антеннами радиопередатчика и радиоприëмника.
То есть ровно половину времени ток течëт от радиопередатчика к приëмнику, и ровно половину времени наоборот, от приёмника к радиопередатчику. Всё как в цепи переменного тока (к рассмотрению оной применительно к технологии радиопередачи мы ещё вернёмся).
Второй ключевой параметр – напряжение закрутки.
Если первый параметр – частота– прокладывает эшелонированный путь радиоволне, то второй параметр – напряжение – формирует непосредственно радиосигнал.
Напряжение закрутки – это сила закрутки, частота вращения, количество оборотов вращающийся ионной нити в секунду. Понятно, что при высокой частоте смены направления тока ионная нить не сделает и одного оборота, я правда не знаю, какая частота электромагнитной волны должна быть для этого, полагаю, что где-то в крайнем правом диапазоне радиоактивного излучения это происходит, но могу и ошибаться.
Сила напряжения ионной нити попадает на антенну, где вызывает продольное вращение зарядов – электрический ток, этот электрический ток передаëт напряжение на усилитель. Таким образом напряжение ионной нити формирует радиосигнал, который радиоприёмник принимает на свою антенну, усиливает каскадом транзисторов и через динамик превращает в звук.
Поскольку сигнал переменного напряжения, от нуля и выше, он вызывает колебания мембраны динамика. Эти колебания оказывают механическое воздействие на частицы воздуха. А поскольку между частицами воздуха нет пустоты – возникает переменное давление частиц, продольная звуковая волна, которая, в отличии от радиоволны, является истинной волной, а не мнимой.
Всё это понятно и просто, когда дело касается радиопередачи на несущей частоте.
Но для того, чтобы увидеть (хотя бы увидеть!) всеволновой сигнал, нужно перестраивать шкалу осциллографа…
Осциллограф – это прибор, измеряющий напряжение на несущей частоте. А нам понадобится прибор, измеряющий частоту на несущем напряжении… Вообще это будет уже другой прибор, с другим названием, видимо.
Да, осциллограф показывает частоту тоже, но он не чертит кривую частоты по напряжению, измерение частоты осциллографом не информативно в плане получения сигнала от мозга человека.
Обычный радиоприёмник настраивают на частоту радиопередатчика, после чего идëт передача сигнала от приёмника передатчику.
Фактически приëмник тоже излучает сигнал своим колебательным LC-контуром и выводит его в эфир через свою антенну. Когда на антенне передатчика сигнал низкого уровня (-), LOW, на антенне приёмника сигнал высокого уровня (+), HIGH. И наоборот. Смена полярности на антеннах происходит с частотой радиопередачи.
Всё это работает как замкнутая электрическая цепь, внутри которой течёт переменный ток через конденсатор, первый электрод этого конденсатора – антенна передатчика, второй электрод этого конденсатора – антенна приёмника, между электродами этого конденсатора огромная диэлектрическая прослойка – как правило, воздух, либо космический вакуум.
При этом нужно учесть, что через диэлектрик, то есть через эфир, где распространяется радиосигнал, ток не течёт. Диэлектрик только передаëт физическое напряжение, которое вызывает физическое вращение зарядов на антенне. Ток на антенне получается не силовой, а сигнальный! Даже мизерная нагрузка измерительного прибора его погасит. Чтобы этого не произошло, ток сразу отправляется на усилительный каскад, после чего на нагрузку в виде динамика.
Комментарий:
Обычный радиоприёмник настраивают на частоту радиопередатчика, после чего идëт передача сигнала от передатчику приёмнику.
Фактически приëмник тоже излучает сигнал своим колебательным LC-контуром и выводит его в эфир через свою антенну. Этот сигнал прослушивается в виде шумов радиоэфира на самом приёмнике. Пока выбранная частота на приёмнике не совпадëт с частотой на радиопередатчике, из динамика приёмника несутся громкие шумы, которые означают, что радиоприëмник ловит сигнал, но этот сигнал производит сам радиоприёмник. А при совпадении частот, когда на антенне передатчика сигнал низкого уровня (-), LOW, на антенне приёмника производится сигнал высокого уровня (+), HIGH. И наоборот. Смена полярности на антеннах происходит с частотой радиопередачи.
Сцеплением зарядов, вращающихся на одной частоте, выстраивается ионная нить, которая имеет определëнные характеристики прочности, препятствующие еë разрыванию. Если вы будете по чуть-чуть вращать ручку настройки приёмника, вы не сразу оторвëтесь от радиоволны – частота на приёмнике сдвинется, но связующий сигнал будет продолжать поступать на приёмник. При этом ручка настройки приёмника будет уже не в том положении, где радиосигнал был пойман и пошла радиопередача.
XXII-A. Радиопередача в двух измерениях
Чтобы увеличить скорость радиопередачи до бесконечности (в любом диапазоне частот, даже в низкочастотном), надо передавать сигнал не только по линии напряжения X, но и по линии частоты Y. Содержимое сигнала должно формироваться на пересечении X и Y, и приниматься также. Такой способ увеличит скорость радиопередачи во столько раз, во сколько строк диапазона вы его уложите, формируя пакет для радиопередачи. Также такой способ может обеспечить помехозащищëнность и крипту (шифрование), поскольку объём передаваемой информации за единицу времени не ограничен, она может передаваться столько раз, сколько потребуется, до тех пор, пока пакеты не будут переданы с проверкой. Традиционно сигнал передаëтся по радиолинии, которая определяется приëмником по частоте. Линия – это нить. Она может быть порвана источником помех на этой же радиолинии. Представьте себе, что вы соткали из нитей ковëр, и передаëте сигнал ковровым способом, а не линейным. Во-первых, ширину ковра вы можете сделать бесконечной, поэтому и скорость радиопередачи вы можете сделать бесконечной. На занятых другими передатчиками частотах сигнал не пройдëт, но всегда найдëтся такая частота, по которой можно успеть передать хотя бы часть сигнала, а это означает, что радиосвязь не прервëтся.
Практически это можно реализовать на программируемом SDR. Когда вы включаете радио в режим автонастройки, ваш приëмник сканирует все радиочастоты, пробегает по радиоволнам и вылавливает всё, что может поймать. Это радиосканер. SDR – это программно определяемая радиосистема. Обычный SDR нельзя запрограммировать на такую работу, о которой я рассказал выше, поскольку он технически не пригоден для осуществления такого принципа. Но можно создать свой SDR, с той начинкой, которая обеспечивает выполнение описанной выше программной задачи. А дальше всë уже будет зависеть от самой программы, ведь еë можно менять, корректировать, экспериментировать с ней. Насколько качественно программа сможет сформировать пакеты для передачи данных и распределить их по разным частотам, сможет ли она передать эти пакеты так, чтобы линии по частоте были отдалены друг от друга и сигналы не запутывались, всë будет зависеть от программиста. В ходе экспериментального программирования также может быть определено, какие ещё технические доработки необходимы SDR-системе.
XXIII. Северное сияние
Северное сияние представляет собой наиболее наглядное изображение работы неподвижных частиц в атмосфере. НЕПОДВИЖНЫХ! Разве вы когда-нибудь видели, чтобы от Северного сияния оставались тепловые (инверсионные) следы в атмосфере, свидетельствующие о кинетическом воздействии частиц на атмосферу? Ведь между частицами всегда действует сила гравитационного притяжения. Всегда! Все частицы, как я уже отмечал в главе ХХ, находятся в гравитационном плену друг у друга. Следовательно, чтобы преодолевать силу гравитационного притяжения, частицам нужна кинетическая энергия. А чтобы кинетической энергии в инерционном режиме движения частиц в атмосфере было достаточно для преодоления силы гравитационного притяжения между частицами, соотношение массы частиц к площади их поверхности должно быть таким, как у камня (метеорита, падающего на Землю), но не таким, как у пылинки – пылинка будет мгновенно остановлена атмосферой, что мы наблюдаем при взрывах. И уж тем более не таким, как у отдельной частицы! Ядро частицы может чертыпыхаться в гравитационном плену, но сама частица не сдвинется с места из-за того, что со всех сторон еë окружают такие же по массе частицы. Такие же, или чуть меньше…
Этим, кстати, объясняется ещё одно природное явление – длительное левитирование мелких пылинок в атмосфере. Пылинки могут часами двигаться то вверх, то вниз, словно гравитационное поле планеты для них ослаблено в сотни раз! А ведь так оно и есть. Гравитационное поле планеты для мелких пылинок сильно ослаблено гравитационными полями частиц воздуха, окружающих эти пылинки (либо частиц космического вакуума, как на Луне). Тут в дело вступает математика – чья сила кого куда перетянет, и да, это похоже на перетягивание каната! Поэтому вес отдельных пылинок на весах всегда должен быть меньше их земной массы, то есть объëма, умноженного на плотность. Это означает, что если вы возьмëте твëрдое тело массой 1 кг. и раздробите его в микронную пыль, а затем взвесите каждую микронную пылинку по отдельности, то у вас в сумме получится не 1 кг., а гораздо меньше.
Работу частиц без кинетического воздействия друг на друга мы можем наблюдать на любом экране, где производится изображение. Поэтому можно сказать, что работа частиц в атмосфере при Северном сиянии производит не что иное как изображение в атмосфере, внутри объëмного 3D-экрана, в роли которого выступает сама атмосфера.
Вращательные движения космических частиц высоких энергий передаются частицам в атмосфере и возникают объëмные всполохи разнообоазных цветов – Северное сияние. При этом направление вращения частиц меняется не только с частотой видимого спектра излучения 385—790ТГц, но и в других диапазонах частот тоже, однако мы эти частоты не видим.
Позвольте сказать буквально: по-видимому, Северным сиянием называется только то, что видимо человеческому глазу. Остальное не по-видимому, а по-приборному, то есть оно тоже есть, тоже присутствует, и это надо учитывать при попытке, например, создать объëмные картинные изображения по принципу Северного сияния, только искусственным путём… при помощи ускорителей заряженных частиц, запущенных на орбитальных аппаратах, либо… при помощи электронно-лучевых трубок, подобных тем, что применялись в старых кинескопах.
Электронно-лучевые трубки не только разгоняют частицы, но и направляют их в нужное на экране место, позволяя создать картинку изображения.
Северное сияние – это переменные треки заряженных частиц в атмосфере, наблюдаемые в видимом спектре электромагнитного излучения.
От лучей дневного солнечного света они отличаются тем, что могут заходить на ночную сторону планеты, потому что в тот момент, когда эти лучи под действием магнитного поля Земли огибают нашу планету, они являются лучами рентгеновского диапазона, а в тот момент, когда они входят в атмосферу, когда происходит контакт космических частиц с атмосферными частицами, частота переменного вращения космических частиц резко снижается, а частота переменного вращения частиц воздуха наоборот, резко увеличивается, и в результате от лучей рентгеновского диапазона рождаются производные лучи видимого спектра излучения.
Солнечный свет – это постоянные треки частиц, а северное сияние – переменные, неустойчивые, зависящие от множества факторов. Но, как и в случае с электрическими искрами, производимыми от контакта проводов под напряжением, Северное сияние более чем наглядно демонстрирует физическую работу заряженных частиц, только на этот раз в атмосфере.
Как на большом трëхмерном экране, предназначенном для просмотра глазами человека, Северное сияние демонстрирует свойства заряженных частиц, их неподвижность, их взаимодействие путём передачи цепей вращения друг другу, распространение этого цепного взаимодействия от космического излучения и поглощение лучей космического излучения атмосферой.
Драйвером Северного сияния являются космические частицы, которые не заходят в атмосферу, а лишь передают ей свою энергию вращения, как солнечный свет.
Как я уже говорил, видимый свет – это самый жёсткий вид излучения, то есть жëсткость лучей света не позволяет им изгибаться. Из-за своей жёсткости свет прямолинеен.
Как известно из школьного курса физики, лучи рентгеновского диапазона отклоняются магнитным полем Земли на тысячи километров, благодаря чему они обходят Землю вокруг, в отличии от видимомого света. Северное сияние вызывает отклонённая, но не пролетевшая мимо Земли часть лучей рентгеновского диапазона, попавшая в атмосферу.
Ранее Северное сияние наблюдалось вблизи полюсов Земли, сейчас, в связи с ослаблением магнитного поля Земли и ростом числа побочных полюсов (они всегда были, но сейчас их становится больше и они становятся сильнее), Северное сияние наблюдается и в средних широтах, вблизи этих побочных полюсов, называемых магнитными аномалиями (не всегда связанных с залеганиями железной руды, кстати), Северное сияние наблюдается не постоянно, а только когда лучей рентгеновского диапазона в космосе становится слишком много, в результате солнечных вспышек, например.
С дневной стороны планеты Северного сияния должно быть больше, чем с ночной, но так же, как звëзды при свете дня не видны, не видно и Северного сияния днём.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?