Электронная библиотека » Андрей Чемезов » » онлайн чтение - страница 7


  • Текст добавлен: 1 августа 2024, 06:41


Автор книги: Андрей Чемезов


Жанр: Техническая литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 7 (всего у книги 7 страниц)

Шрифт:
- 100% +

XXI. Образование электрических искр

Вращение режущего инструмента на станке и вращение электрического заряда в проводе одинаково производит искры, разлетающиеся в стороны под действием центробежной силы вращения. Объясняю, как это происходит.


Электрические искры образуются в точке контакта проводников под напряжением через тонкую воздушную прослойку, диэлектрик, диэлектрический материал, очень тонкий изолятор.

При этом сначала на ничтожные доли секунды образуется электрическая дуга, а только затем уже искры, вследствие работы этой дуги по металлу-проводнику.


Любая дуга, даже очень тонкая, едва заметная, состоит из высокотемпературной плазмы. Диэлектрик, нагретый до состояния плазмы, проводит ток с минимальным сопротивлением, однако если электроды подвижны, как при сварке, то дуга может исчезать и появляться, что приводит к ещё большему образованию искр.

Процесс сварки очень сложен на самом деле, по-видимому он может сопровождаться одновременным появлением множества микроскопических дуг на конце электрода и образованием искр от этих дуг.


Стоит вспомнить, что расположение диэлектрика между двумя токопроводными пластинами представляет собой не что иное как конденсатор. Многие вещи устроены как конденсатор, но сварка работает в необычном для конденсатора режиме – в режиме пробоя диэлектрика.

В результате диэлектрик, то есть воздух, постоянно горит.

В момент пробоя конденсатор мгновенно разряжается. Баночный вообще перестаëт существовать, поскольку он от пробоя взрывается, атмосферный конденсатор разряжается молнией, а сварочный процесс штатно идёт, возможно что разряд – заряд идут циклически с высокой частотой…

Разряженный конденсатор в первое мгновение пропускает ток беспрепятственно, но не потому, что ток проскакивает через диэлектрик, а потому, что ток заходит в диэлектрические обкладки конденсатора, накапливая заряд на пластинах.

В режиме пробоя возникает дуга, она поддерживает высокую температуру плазмы… Также в режиме пробоя распадаются ионизированные цепи, которые формируют максимально высокое напряжение в диэлектрическом слое конденсатора, когда он заряжен.


Каждое образование снопа искр сопровождается хлопком, а сама дуга гудит, вовсю проявляя механические свойства частиц, передающих ток.

Если рассматривать свариваемую точку под микроскопом с немыслимым разрешением, то мы увидим, скорее всего, нечто, похожее на два раскрученных «наждака», бьющихся друг о друга…


Заряды передают ток друг другу продольным вращением, а напряжение – осевым вращением.


Поэтому если приложить сварочный электрод к металлу, то он просто прилипнет. Это явление называется электромагнетизмом. Создаётся оно осевым вкручиванием зарядов друг в друга, как винта в гайку, только не такое жёсткое, как в закалëнном металле, это соединение больше похоже на текучую резьбу в сыром металле, по силе сцепления зарядов в осевом направлении. Такой вид сцепления зарядов не передаëт ток, он передаëт только напряжение. Поэтому при залипании электрода сварка не идëт.


Чтобы сварка пошла, сварщику нужно произвести манипуляцию с электродом. Во-первых, нужно отвести электрод от металла на минимальное расстояние, чтобы поднять уровень сопротивления в точке сваривания с нулевого на низкоомный. Этого будет достаточно, чтобы ток пошёл и дуга появилась. Сопротивление появляется прямо в воздушной прослойке, воздух – это диэлектрик, имеющий высокое сопротивление току, но, как обычно, чем тоньше слой диэлектрика, тем ниже его физическое сопротивление проходящему току.

Низкоомное сопротивление в точке контакта даëт падение напряжения и появляется дуга, вследствие высокой температуры частиц разогретого током воздуха.

Этой дугой выбивается искра из металла, она выбивается из свариваемого металла и из металла на конце электрода.

Что значит «выбивается искра»? Этот процесс выглядит так: сильно разогретые трением электрического тока заряды вырываются из металла (разрываются их гравитационные связи, вследствие полученной ими тепловой энергии) и эти заряды получают толчок от проводника за счëт центробежной силы вращения соседних зарядов. Эти соседние заряды цепляют своими энергетическими полями освободившиеся заряды и выбрасывают их из проводника.


Вот откуда берётся скорость у искр, обладающих какой-никакой, но собственной массой! Скорость материи из, казалось бы, неподвижно лежащего проводника!

Электрические искры – самое наглядное проявление вращения зарядов в проводнике, нагляднее просто некуда…

Вращение атомов невозможно разглядеть толком даже в электронный микроскоп, настолько оно мало, что электронный микроскоп фиксирует только сам факт вращения и его направление – по часовой или против часовой стрелки, что определяется как положительный заряд либо отрицательный.

Но скорость вращения зарядов вполне можно оценить, подставив под искру ладошку!

Не забывайте о технике безопасности: искры представляют серьëзную опасность для глаз, крупные искры могут вызвать ожоги на теле. Но просто подумайте, обратите внимание: из спокойно лежащего провода искры летят, как камушки из-под колëс! То есть летят из-под чего-то, что вращается!


Будучи раскрученными и запущенными в полёт центробежной силой вращения заряда, кусочки металла с примесью налëта ржавчины и т. п. вылетают расплавленными искрами, содержащими в себе, может быть, миллиграмм металла, может быть меньше.


Точно такие же снопы искр, только менее яркие, менее горячие, вылетают из-под работающего наждака, наждачного круга, болгарки, фрезы и т. п., потому что во всех перечисленных случаях, включая электросварку, идут одинаковые, с точки зрения механики, процессы трения металла о вращающиеся механические части, только в одном случае вращается режущий инструмент, а в другом случае заряд электрического тока.

ХХII. Всеволновая передача электромагнитных колебаний / настройка на мозг

Всеволновая передача может быть двух видов: переменная частота при фиксированном уровне напряжения (радиолиния с фиксированным уровнем напряжения, например) и переменная частота при переменном уровне напряжения – это самый сложный вариант. Технически ни первый, ни второй вариант никем в мире пока не был осуществлён.


Радиолиния передатчик-приëмник всегда строится на фиксированной частоте, на ней передаëтся сигнал, изменяющий своë напряжение. Но передача настроения (именно настроения, а не мысли) от человека к человеку уж точно не работает на фиксированной частоте, иначе мы бы этот сигнал давно бы заметили, прослушивая все частоты.

В радиоэлектроннике не существует средств для обнаружения сигнала на несущем напряжении, тем более – сигнала без несущей частоты и без несущего напряжения, так как не вполне понятно, как создать нормальное приëмное устройство для таких видов сигналов (передатчик– то ладно, мы его создадим в любом виде, но ведь это комплексная аппаратура – передатчик и приёмник), и вообще можно ли передавать хоть какую-то информацию при помощи сигнала без несущей составляющей?


В этой статье будут рассмотрены физические принципы, на основе которых можно попытаться создать передатчик и приёмник, работающие на всеволновой передаче.


Итак, давайте вспомним, какие формы движений заряды могут передавать друг другу?

В диэлектрике таких форм всего две: направление закрутки и скорость закрутки связанной ионной нити. В проводнике есть ещё третья форма передачи движения: продольное вращение зарядов, передающее силу тока…


В свою очередь направлений закрутки ионной нити тоже может быть только два варианта: по часовой и против часовой стрелки. Одно из этих направлений определяется как положительный заряд, а другое как отрицательный заряд. Положительные и отрицательные заряды очень легко читаются электронной аппаратурой.

Скорость смены направления закрутки связанной ионной нити между радиопередатчиком и радиоприёмником определяется как частота радиопередачи.

Физически каждая смена направления меняет направление тока между антеннами радиопередатчика и радиоприëмника.

То есть ровно половину времени ток течëт от радиопередатчика к приëмнику, и ровно половину времени наоборот, от приёмника к радиопередатчику. Всё как в цепи переменного тока (к рассмотрению оной применительно к технологии радиопередачи мы ещё вернёмся).

Второй ключевой параметр – напряжение закрутки.

Если первый параметр – частота– прокладывает эшелонированный путь радиоволне, то второй параметр – напряжение – формирует непосредственно радиосигнал.

Напряжение закрутки – это сила закрутки, частота вращения, количество оборотов вращающийся ионной нити в секунду. Понятно, что при высокой частоте смены направления тока ионная нить не сделает и одного оборота, я правда не знаю, какая частота электромагнитной волны должна быть для этого, полагаю, что где-то в крайнем правом диапазоне радиоактивного излучения это происходит, но могу и ошибаться.


Сила напряжения ионной нити попадает на антенну, где вызывает продольное вращение зарядов – электрический ток, этот электрический ток передаëт напряжение на усилитель. Таким образом напряжение ионной нити формирует радиосигнал, который радиоприёмник принимает на свою антенну, усиливает каскадом транзисторов и через динамик превращает в звук.

Поскольку сигнал переменного напряжения, от нуля и выше, он вызывает колебания мембраны динамика. Эти колебания оказывают механическое воздействие на частицы воздуха. А поскольку между частицами воздуха нет пустоты – возникает переменное давление частиц, продольная звуковая волна, которая, в отличии от радиоволны, является истинной волной, а не мнимой.


Всё это понятно и просто, когда дело касается радиопередачи на несущей частоте.


Но для того, чтобы увидеть (хотя бы увидеть!) всеволновой сигнал, нужно перестраивать шкалу осциллографа…

Осциллограф – это прибор, измеряющий напряжение на несущей частоте. А нам понадобится прибор, измеряющий частоту на несущем напряжении… Вообще это будет уже другой прибор, с другим названием, видимо.

Да, осциллограф показывает частоту тоже, но он не чертит кривую частоты по напряжению, измерение частоты осциллографом не информативно в плане получения сигнала от мозга человека.


Обычный радиоприёмник настраивают на частоту радиопередатчика, после чего идëт передача сигнала от приёмника передатчику.

Фактически приëмник тоже излучает сигнал своим колебательным LC-контуром и выводит его в эфир через свою антенну. Когда на антенне передатчика сигнал низкого уровня (-), LOW, на антенне приёмника сигнал высокого уровня (+), HIGH. И наоборот. Смена полярности на антеннах происходит с частотой радиопередачи.

Внимание! Это не конец книги.

Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!

Страницы книги >> Предыдущая | 1 2 3 4 5 6 7
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации