Электронная библиотека » Андрей Жуковский » » онлайн чтение - страница 3


  • Текст добавлен: 18 сентября 2024, 14:20


Автор книги: Андрей Жуковский


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 3 (всего у книги 3 страниц)

Шрифт:
- 100% +

Рассуждения о том, как может выглядеть подобная реальность, мы продолжим чуть позже, в заключительной части и выводах. Для того чтобы делать выводы сейчас, нам еще не хватает фактов. Пока же, суммируя результаты эксперимента с отложенным выбором, давайте еще раз отметим, что картина микромира фотона в данном эксперименте с обыденной точки зрения является совершенно непонятной, если не сказать невероятной – так же, как и во многих других экспериментах.

И это не может не воодушевлять любого исследователя, не так ли?

Следующий парадокс квантовой физики, о котором мне хотелось бы коротко рассказать, называется парадоксом Зенона.

1.5. Странность «первого» рода №5. Квантовый парадокс Зенона

Известный греческий философ Зенон Элейский когда-то предположил, что если время разделить на множество отдельных частей, то все движение в мире может остановиться. На эту тему существует два известных примера: первый – про черепаху и спринтера, и второй – про стрелу. По своей сути они несколько похожи, суть апории Зенона про стрелу выглядит так: представьте, что мы возьмем летящую стрелу и рассмотрим ее полет в каждое мгновение времени. Очевидно, что в каждое мгновение она будет стоять на месте. Но тогда, если в каждое мгновение времени стрела стоит на месте, то, может быть, она вовсе и не движется?

Смысл апории про черепаху и спринтера следующий: представьте, что спринтеру надо догнать черепаху. Допустим, между ними 100 метров. Давайте разделим путь спринтера на два, т. е. представим, что вначале ему надо пробежать половину расстояния – 50 метров. Далее он должен пробежать половину от оставшейся половины, т. е. 25 метров. Далее еще одну половину – 12,5 метров и т. д. Но ведь этим половинам никогда не будет конца! Это значит, что он никогда не догонит черепаху!

Понятно, что стрела все-таки летит (и это подтвердит любой проведенный эксперимент), а любой спринтер легко догонит черепаху. Тем не менее парадоксы Зенона, несомненно, полезны, поскольку заставляют нас еще раз подумать о природе дискретного и непрерывного, конечного и бесконечного, аналогий математической и физической реальности.

Здесь необходимо сказать, что, в отличие от неработающих апорий Зенона, названный в его честь квантовый парадокс Зенона – работает! Подтвержденный экспериментально, он выглядит следующим образом: если начать наблюдать за квантовыми частицами, находящимися в процессе радиоактивного распада, то их распад… приостановится. В идеале, если сделать наблюдение непрерывным, такой распад станет… просто невозможным.

Почему замедляется распад во время наблюдения за квантовыми частицами?

Базовая причина этой странности является такой же, как и в других экспериментах, раскрывающих странности микромира, – повторяющееся (в идеале – непрерывное) измерение квантовой системы препятствует ее переходу в другое состояние (подробнее – см.1212
  Белинский А. В. Квантовые измерения. – М.: БИНОМ. Лаборатория знаний, 2008. – С. 182.


[Закрыть]
).

Продолжая ряд примеров с парадоксами микромира, можно также назвать парадокс нелинейного светоделителя1313
  Парадокс нелинейного светоделителя и его разрешение / А. В. Белинский, Д. В. Волков, А. В. Дмитриев, М. Х. Шульман // Журнал экспериментальной и теоретической физики. – 2013. – Т. 144. – №5 (11). – С. 891—905.


[Закрыть]
и некоторые другие странности, список которых можно было бы продолжить, если бы все они в той или иной степени всякий раз не возвращали бы нас к главным парадоксам микромира: корпускулярно-волновому дуализму, запутанности, нелокальности, отложенному выбору, а также таинственному «нежеланию» элементарных частиц предъявить миру информацию о своей траектории и состоянии, т. е. к тем парадоксам, которые мы уже перечислили выше.

На этом я предлагаю завершить краткий курс изучения странностей микромира (или странностей первого рода), подведя под ним черту.

Глава 2. Странности самой теории квантовой физики, или Странности «второго» рода

Напомню – странностями «второго» рода мы назвали «странности» самой квантовой теории, которая, объясняя парадоксы микромира, выявленные в ходе экспериментов, сделала это не менее парадоксальным образом. Для того чтобы нам еще лучше стала ясна разница между реальностью и математикой, я даже предлагаю назвать их странностями математического аппарата КМ.

Итак, чем квантовая физика, описывающая поведение микротел, отличается от «нормальной», классической физики, описывающей поведение макротел, которую все мы учили в школе?

Если классическая физика говорит, что ядро, выпущенное из пушки, направленной на север, всегда летит на север (при этом оно будет лететь туда всегда – и на бумаге, и в результате любого поставленного эксперимента), то квантовая физика, которая вместо ядра оперирует с элементарной частицей, говорит о том, что эта частица теоретически, с определенной вероятностью, может полететь в разные стороны и, соответственно, оказаться в самых разнообразных точках пространства – как на севере, так и на западе и востоке, а может быть, даже и на юге.

Или с такой же определенной вероятностью получить какие-то определенные свойства.

Сотни лет теоретическая физика говорила нам о том, что мы, если захотим, можем вычислить траекторию любого тела точно – при условии, что мы точно знаем его начальное положение и действующие на него силы.

В КМ оказывается, что это не так. В ней поведение каждой ЭЧ описывается так называемой волной вероятности (ВВ) – величиной, определяющей плотность вероятности обнаружения этой ЭЧ в заданной точке пространства и ее свойства.

Это немного необычно, но не так уж чтобы очень, скажете вы. Ведь и в классической физике множество процессов используют вероятность как рабочий инструмент! Все мы учили в школе про броуновское движение и случайные процессы, а кое-кто даже помнит про то, что такое дисперсия и математическое ожидание.

Отличие КМ от обычной физики заключается в том, что в первой нет даже теоретической возможности точно посчитать все параметры, связанные с элементарной частицей.

Таким образом, математический аппарат КМ оперирует только вероятностными величинами.

Еще раз, КМ говорит, что дело не в том, что частицы очень маленькие, из-за чего нам просто сложно установить их начальные координаты и действующие на них силы, и именно поэтому мы не сможем рассчитать их конечное положение. Все гораздо хуже. КМ устанавливает теоретическую невозможность точного расчета траектории или конечного положения элементарной частицы. Одним из главных оснований для подобного подхода является соотношение неопределенностей Гейзенберга, являющееся одним из центральных положений КМ. Это соотношение говорит о том, что элементарная частица не может находиться в состояниях, в которых координаты ее центра инерции и ее импульс могут одновременно принять точные значения. Математически это выглядит так: неопределенность координаты элементарной частицы, умноженная на неопределенность проекции ее импульса по соответствующей координате, должна быть больше или равна определенному числу – квантовой постоянной Планка.

Таким образом, соотношение Гейзенберга устанавливает теоретический предел точности для квантовых измерений. Если перевести это на русский язык, то получается, что опять-таки в соответствии с принципами КМ мы даже теоретически не можем знать полную информацию о частице. Если мы узнаем точную-преточную скорость частицы – то мы фактически вообще ничего не будем знать о ее местоположении. Если же мы вдруг узнаем ее точное местоположение, то мы вообще ничего не сможем сказать о ее скорости…

Иными словами, КМ постулирует, что в природе существует точно вычислимый предел нашего знания о микромире.

Является ли этот предел естественным (т. е. мы действительно ни при каких обстоятельствах не сможем узнать о частице больше) или же этот предел является «искусственной», математической преградой, существующей только потому, что единственной теорией, описывающей человечеству частицы, является КМ? Опять-таки это покажет только время…

В итоге повторим еще раз – первой странностью «второго рода», т. е. странностью квантовой механики, является вероятностная (в фундаментальном смысле!) природа ее математического аппарата. В соответствии с формулами КМ у каждой из элементарных частиц нет конкретного местоположения, скорости, траектории или других характеристик – вместо этого существуют лишь волны их вероятности.

Волна вероятности фактически говорит нам о том, что с точки зрения квантовой теории у любой элементарной частицы между измерениями просто нет определенных характеристик.

Но тогда как и где она существует?

Для того чтобы ответить на этот довольно простой вопрос, основатели КМ предложили считать, что частица находится в суперпозиции всех своих возможных состояний. Что это значит? Если в результате расчета получается, что фотон может с вероятностью 30% находиться в правом канале, с вероятностью 30% – в левом, а с вероятностью 40% – в обоих каналах, то они предложили считать, что фотон существует во всех этих местах сразу, что он, таким образом, «размазан в пространстве».

Уважаемые читатели, обратите свое внимание еще раз на то, что в соответствии с принципом суперпозиции микрочастицы не имеют никаких определенных характеристик между измерениями, т. е. обладают ими всеми «сразу». Оппонентами такого подхода являются ученые, которые говорят, что волновая функция и сопровождающая ее суперпозиция являются всего-навсего математическим приемом для вычислений, не имеющим никакого отношения к реальности. Мы обязательно поговорим об этом подробнее в третьей части, когда будем рассматривать интерпретации КМ.

Внимание! Это не конец книги.

Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!

Страницы книги >> Предыдущая | 1 2 3
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации