Электронная библиотека » Анна Иванова » » онлайн чтение - страница 4


  • Текст добавлен: 8 июня 2023, 09:40


Автор книги: Анна Иванова


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 4 (всего у книги 16 страниц) [доступный отрывок для чтения: 5 страниц]

Шрифт:
- 100% +
1.9. Дашь списать?

Итак, гены – это фрагменты ДНК, а ДНК уложена в хромосомы. Наборов хромосом внутри одной соматической клетки может быть от одного до нескольких. Значит, копий каждого гена в геноме будет[53]53
  Будет как минимум столько же. Бывает так, что в процессе эволюции один и тот же ген по ошибке оказывается на одной и той же хромосоме несколько раз. Частенько это дает организму эволюционные преимущества. Допустим, продукт гена X выполнял какую-то невероятно важную роль в организме и малейшие ошибки в этом гене могли вызывать у организма огромные проблемы. Тогда, если вдруг однажды из-за ошибки молекулярных механизмов у одного из представителей вида окажется две копии гена X на одной хромосоме, одна из копий сможет и далее выполнять положенные ей жизненно важные функции, а во второй могут безопасно для организма происходить случайные мутации, которые однажды могут добавить потомкам этого организма новые выгодные свойства. Это как если бы у вас завелся клон, которого можно было бы отправлять вместо себя на работу и родительские собрания, а самим в это время валяться дома с книжкой или отправиться в кругосветное путешествие – никто и не заметит!


[Закрыть]
столько же, сколько в нем есть хромосом (его содержащих). Правда, копии из них почти такие же, как три варианта перевода трагедий Шекспира разными переводчиками, которые можно найти на одной полке в библиотеке. То есть, с одной стороны, в каждой из книг Монтекки все еще воюют с Капулетти, но, с другой стороны, делают они это с лингвистическими нюансами, по-разному влияющими на наше восприятие текста.

Мы выше уже поговорили о том, что каждому делению клетки предшествует удвоение числа хромосом. Такое удвоение больше всего похоже на бездумное списывание контрольной работы соседом-двоечником через плечо его соседа-отличника. Бездумное и автоматическое. Все сделанные им ошибки он сам заметить не в состоянии. Каждая новая нить ДНК в процессе репликации обязательно имеет такие ошибки. Часть из них заметят и исправят механизмы репарации, но что-то пройдет мимо их внимания[54]54
  Кроме механизмов репарации есть система исправления ошибок и у самих ДНК-полимераз. Не такое уж бездумное копирование они делают, обидно как-то за них. – Прим. науч. редактора.


[Закрыть]
. Так каждая новая нить ДНК – каждая новая хромосома, уходящая в новую клетку, – будет пусть совсем капельку, но отличаться от оригинала[55]55
  А «капельку» это сколько? Ответ на этот вопрос зависит от того, с каким организмом мы имеем дело, и даже от того, с каким именно участком его генома. Но, так как на какое-то число ориентироваться очень хочется, скажем, что одна ошибка происходит в среднем на 100 миллионов скопированных букв (https://www.nature.com/scitable/topicpage/dna-replication-and-causes-of-mutation-409).


[Закрыть]
. Такие отличия мы исторически зовем мутациями. И они – главная причина эволюции. В современной генетике ученые стараются избегать слова «мутация» из-за негативной окраски, которую оно приобрело в популярной культуре. Вместо слова «мутация» предпочитают говорить «вариант». Но в самих мутациях нет окраски оценкой, это лишь случайные события, которые могут оказаться для организма или его потомков вредными, полезными или и вовсе нейтральными. Благодаря мутациям жизнь сохранилась на нашей планете, несмотря на неоднократные и радикальные изменения окружающей среды. Сегодня о том, как жилось нашим первым на планете предкам, могут рассказать лишь одноклеточные жители горячих источников – ведь примерно такими были условия на планете долгое время после зарождения на ней жизни. Благодаря мутациям мы имеем огромное разнообразие форм жизни в прошлом, настоящем и обязательно будем иметь в будущем.

Мутации бывают разными: на уровне генома, на уровне хромосом и на уровне генов. Мутации геномного уровня, на самом деле, мы уже разобрали выше, когда говорили о плоидности. Таким образом, мутации на уровне генома – это изменение числа хромосом в нем: удвоение всего набора или только некоторых отдельных хромосом (как, например, удвоение 21-й хромосомы при синдроме Дауна), редукция числа хромосом. Хромосомные мутации – это крупные перестройки внутри одной хромосомы. Например, когда из хромосомы случайно удалился целый большой фрагмент. Такая мутация называется «делеция». Если откуда-то пришедший фрагмент, наоборот, вставился в хромосому, такая мутация зовется инсерцией. Бывает, что фрагмент хромосомы сначала «выпал», развернулся и вставился обратно в хромосому, но задом наперед. А бывает, что из-за какого-то молекулярного сбоя один фрагмент повторился несколько раз подряд, как заевшая пластинка. В общем, все такие достаточно крупные проблемы зовутся хромосомными мутациями.

Но в контексте этой подглавы интереснее всего нам мутации генные. То есть самые маленькие. Например, выпадение одной или нескольких нуклеотидов из цепочки ДНК или, наоборот, их случайная вставка. Такие мутации возможны, но они сравнительно редкие, ведь выпадение или добавление лишней буквы может приводить к сдвигу рамки считывания. Мы же читаем гены триплетами для перевода их на язык аминокислот. Значит, добавление или выпадение всего одной буквы сдвинет все, что написано после нее. Самая популярная генная мутация – замена одной буквы на другую. Или однонуклеотидный полиморфизм. Это самый безопасный для организма и потому самый популярный вариант мутаций. Эта относительная безопасность обеспечивается двумя вещами: первая – вероятность того, что мутация произошла в кодирующем хоть что-то полезное регионе генома, не такая высокая, вторая же связана с избыточностью генетического кода, о которой мы подробно говорили в главе 1.5, в которой индейцы совершенно ни при чем. То есть о большинстве таких мутаций никто до прочтения генома в лаборатории даже и не узнает: они или ни на что в организме просто не влияют, или в итоге все равно переводятся в нужную аминокислоту, так как большинство аминокислот может кодироваться сразу несколькими вариантами триплетов. Но даже если полиморфизм привел к замене аминокислоты, тут тоже не все потеряно – некоторые аминокислоты достаточно похожи друг на друга, чтобы справляться с более-менее правильной укладкой белка[56]56
  Но некоторые замены нуклеотидов все же могут привести к замене аминокислоты, которая скажется на всей структуре белка, или даже к появлению стоп-кодона там, где не надо (подробнее про это можно узнать по запросу «синонимичные и несинонимичные замены», «миссенс– и нонсенс-мутации»). – Прим. науч. редактора.


[Закрыть]
.

В общем, за счет генных мутаций копии гена и становятся не совсем копиями. То есть вариантами одного и того же гена. Такие варианты называют аллелями. Вот, например, есть у цветка ген, отвечающий за цвет его лепестков. Тогда вариант этого гена, при котором цвет лепестков будет розовым, – это один аллель. А вариант гена, дающего желтый, – другой.



Распространенных мутаций внутри одного гена бывает много, так что у одного и того же гена может быть множество аллелей. Если в клетке обе копии хромосомы несут одинаковый вариант некоего гена, то о такой клетке мы будем говорить, что она гомозиготна по данному гену. Если копии гена различны, то будем называть ее гетерозиготной по данному гену.

Если одна копия гена справляется с нужными процессам в клетке примерно так же, как если бы таких копий было две (или более, по числу хромосом в наборе), то мы называем признак, который задает этот аллель, доминантным. В противном случае – рецессивным. На самом деле аллели могут взаимодействовать друг с другом намного сложнее, и в рамки определения доминантности и рецессивности из школьного учебника это может сильно не укладываться, но для чтения этой книги эти подробности можно не рассматривать, а перейти наконец уже к самому интересному – к ГМО!

1.10. Немного выводов

В этой главе мы освежили знания самых основ генетики, которые обязательно пригодятся по мере чтения этой книги. В ней мы поговорили о том, из чего состоят ДНК, РНК и белки; как происходит репликация – удвоение ДНК или РНК, и транскрипция – чтение текста генов молекулярными механизмами клетки; что такое центральная догма молекулярной биологии; как происходит трансляция – перевод с языка ДНК на язык белков; и возможно ли найти в геноме встроенный чужой ген. Мы разобрались с хромосомами, аллелями, мутациями и кучей всего еще полезного для чтения книги. Когда встреченный далее по тексту термин не сможет оперативно выпрыгнуть из памяти, просто возвращайтесь к этой главе, чтобы использовать ее как шпаргалку.

Конечно, впереди еще не раз возникнут и новые термины, и новые теоретические вещи. Было бы нечестно пообещать, что дальше ничего такого вы уже не встретите и обмануть в первом же абзаце новой главы. Но все же точно могу ручаться, что следующие главы будут куда более динамичными и прикладными.

Глава 2. Как бактерии становятся суперзлодеями и поступают на службу к биотехнологам

Известно, что это самое высокое из млекопитающих животных обитает во внутренних областях Африки и водится в местах, где почва почти всегда сухая и лишена растительности. Это заставляет жирафа объедать листву деревьев и делать постоянные усилия, чтобы дотянуться до нее. Вследствие этой привычки, существующей с давних пор у всех особей данной породы, передние ноги жирафа стали длиннее задних, а его шея настолько удлинилась, что это животное, даже не приподнимаясь на задних ногах, подняв только голову, достигает шести метров в высоту.

Ж.-Б. Ламарк[57]57
  Великанов Л.П. Направленная изменчивость организмов и естественный отбор со ссылкой на: Ламарк Ж.-Б. Избранные произведения в двух томах. Том 1. Изд. АН СССР. 1955. С. 354.


[Закрыть]

2.1. Эх, мне б такой хвост…

Обычно гены передаются от родителей к детям. Не важно, как происходит процесс размножения – переносом спор, почкованием или привычным нам половым способом. Важно одно: одна родительская клетка (или две в случае полового размножения) делится и дает в результате клетки потомство. А значит, передает этим новым клеткам и свои гены. Этот механизм называется вертикальный перенос генов. От родителей к детям – по вертикали поколений.

Противоположностью вертикальному является горизонтальный перенос генов – или передача генетического материала от одного организма другому, не являющемуся его потомком. И долгое-долгое время биологи полагали, что это достаточно редкий процесс. Скорее исключение, чем правило. Но с накоплением геномных данных их взгляд кардинально поменялся. Теперь-то мы знаем, что горизонтальный перенос не просто достаточно частое явление, но мы даже обязаны ему такими судьбоносными для жизни на Земле событиями, как появление кислородной атмосферы в результате фотосинтеза[58]58
  Логика случая. О природе и происхождении биологической эволюции / Евгений Кунин со ссылкой на: The cyanobacterial genome core and the origin of photosynthesis. Armen Y. Mulkidjanian et al / Proceedings of the National Academy of Sciences Aug 2006, 103 (35) 13126–13131; DOI: 10.1073/pnas.0605709103. https://www.pnas.org/content/103/35/13126 и Lindell, D., Jaffe, J., Johnson, Z. et al. Photosynthesis genes in marine viruses yield proteins during host infection. Nature 438, 86–89 (2005). https://doi.org/10.1038/nature04111. https://www.nature.com/articles/nature04111


[Закрыть]
.

Конечно, как бы сильно я ни обнималась со своей кошкой, такой же шикарный хвост у меня не отрастет, и вы бы только знали, сколь сильно меня это расстраивает. Для того чтобы произошел горизонтальный перенос генов, потребуется соблюдение условий, о которых мы еще поговорим на страницах этой книги. Эту же главу я полностью посвящаю им – виртуозам горизонтальных манипуляций и верным помощникам многих поколений биологов – бактериям. Короче, пора начинать наш разговор о ГМО.

2.2. Пожалуйста, соблюдайте спокойствие и пристегните ремни, мы падаем

Возможно вы так же, как и я, обожаете разглядывать картинки с динозаврами (или даже бывать в музее, где вместо картинок настоящие скелеты). И тогда вы наверняка помните динозавров с о-о-очень длинными шеями. Например, брахиозавра. В детстве меня очень интересовал вопрос, почему же его шея такая длинная.

«Брахиозавры жили там, где съедобные листья росли очень высоко на деревьях. Так что тем динозаврам, кто рождался с короткой шеей, еды попросту не хватало, в результате чего они могли оставить меньше потомства. Так действовал естественный отбор, оставляя и позволяя размножаться только наиболее приспособленным особям – то есть с наиболее длинными шеями и генами длинношеести, которые они передавали своему потомству», – ответит нам без запинки последователь основателя всей современной эволюционной биологии Чарльза Дарвина. «Просто они очень тянулись к кронам деревьев, чтобы добыть себе листья. Так их шеи со временем становились все длиннее и длиннее», – ответит нам ламаркист, сторонник теории Жана-Батиста Ламарка, долгое время конкурировавшей с дарвиновской[59]59
  Конкурируют они только в школьных учебниках биологии. На деле же одна теория сильно предшествовала второй по времени. Да и в целом Дарвин во взглядах сам был ламаркистом, как ни парадоксально (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6446194/). – Прим. науч. редактора.


[Закрыть]
.

Иными словами, ламаркисты считали, что, если долго мучиться, что-нибудь получится. То есть организмы могут приобрести необходимые им для выживания в неких условиях качества, если будут очень стараться: прыгать с крыши, пока не отрастут крылья, тонуть в реке, пока не образуются жабры. Но так это, разумеется, не работает. Или все-таки…

Оказывается, есть в мире особенно «упрямые» и «целеустремленные» организмы, которые действительно могут «постараться»[60]60
  Здесь и далее во время разговора о вирусах, бактериях, абстрактных организмах или эволюции в целом, конечно же, речь не идет о некоем намеренном усилии, воле или планах. Под всеми этими очеловеченными словами я прячу «самые обыкновенные» случайные процессы, подчиняющиеся лишь законам математической статистики и ничему (и никому) более.


[Закрыть]
и приобрести новое свойство. Это бактерии. Да, бактерии подчиняются всем законам эволюции, и при делении старой клетки обе новые получают «в наследство» копии генома клетки родительской, в котором записаны все положенные им свойства. Но есть у бактерий одна ужасно любопытная сверхспособность: они умеют передавать генетический материал от одного организма другому, не являющемуся его потомком. То есть практикуют тот самый горизонтальный перенос.

Помните всех этих героических персонажей из кино, которые в экстремальной ситуации за 5 минут прочитывают руководство пилота и сажают терпящие бедствие самолеты с перепуганными пассажирами? Вот именно так и могут бактерии! Пусть пассажиров им и не спасти, но вовремя достать нужные инструкции – гены – и в короткие сроки научиться по ним работать – синтезировать новый для них белок – очень даже в их силах.



Все дело в необычном строении их генома: в теле бактерии помимо основной кольцевой хромосомы, в которой записана вся главная генетическая информация, есть еще и маленькие (и тоже кольцевые) двуцепочечные молекулы ДНК. Такие молекулы – плазмиды – хранят «дополнительные инструкции». У бактерии может быть от всего нескольких одинаковых плазмид до достаточно обширной и разнообразной «библиотеки».

Когда бактерия попадает в экстремальные для нее условия, ее внутриклеточный аппарат начинает считывать информацию с «нужного тома» в этой «библиотеке». С соответствующего гена соответствующей плазмиды синтезируется требуемый в данной ситуации «инструмент», например некий белок. Благодаря чему бактерия получает какие-то суперспособности. Например, одни плазмиды позволяют бактерии стать патогенной, вторые – дают оружие, которым можно уничтожать других бактерий, третьи – усиливают ее способности к размножению, четвертые – позволяют бактерии «переваривать» несъедобные для нее вещества, пятые делают ее устойчивой к новым условиям…

Примером таких условий является и среда, содержащая антибиотик. Вообще говоря, антибиотики – это оружие, которое изобрели одни бактерии для войны с другими. И как всегда в военном деле, главное, чтобы у нападающих была защита от собственных изобретений. Под такой защитой в мире бактерий можно понимать гены, в которых записаны различные ферменты, позволяющие своего врага уничтожить, изгнать или попросту от него замаскироваться. Однако таскать с собой бронежилет невыгодно в мире без огнестрельного оружия, а кованые доспехи – лишь досадная обуза во вселенной, где нет рыцарских поединков. Для бактерии оборона тоже дается не даром: на ее поддержание приходится расходовать драгоценную энергию. Здесь вполне логично напрашивается поискать какой-то механизм, благодаря которому бактерия могла бы читать нужные гены в определенных опасных условиях и не читать их, когда таких условий вокруг нее нет. Но вот беда: одних только природных антибиотиков огромное множество. А кроме них бактерии могут угрожать и другие опасности. Если все инструкции по выживанию постоянно носить с собой – в своем основном геноме, то со временем хромосома бактерии так увеличится, что на ее репликацию – удвоение в процессе деления бактерии на две новых – будет требоваться очень много времени. А это для бактерии недостаток.

В таких условиях гены «противотанковых гранат», «бронежилетов», «маскхалатов» и «противогазов» с собой на всякий случай таскать не станешь. Вот было бы хорошо хранить их где-то отдельно и доставать лишь по необходимости… С такой непростой задачкой эволюция отлично справилась. И один из ее весьма элегантных способов решения проблемы – плазмиды, о которых мы поговорили выше.

Если бактерия живет в условиях, где присутствует некий антибиотик, то держит внутри плазмиду, в ДНК которой записаны гены – инструкции по выживанию в этой среде. С этих генов считываются и синтезируются ферменты, которые и защищают бактерию от данного антибиотика. Если же антибиотик из среды исчезает, то и плазмида становится больше ненужной. А значит, ее просто можно случайно потерять без каких-либо для себя последствий[61]61
  Ну как без последствий… Если однажды антибиотик в среду вновь вернется, бактерия не слишком обрадуется.


[Закрыть]
.

Бактерия может обзавестись плазмидой разными способами. В первую очередь, получить в наследство от родительской клетки. Но это не все. Например, она может подобрать что-то кем-то выброшенное. Этот путь называется трансформацией: бактерия, находясь в определенных условиях, захватывает плазмиду из внешней среды. Или, например, может «попросить» себе копию чужой плазмиды напрямую у соседки. Такой путь осуществляется при помощи процесса конъюгации – аналога полового размножения у бактерий. Только в результате страстных отношений не появляется общий бактериальный малыш, теща и ипотека, а лишь копии генетического материала одной бактерии оказываются внутри второй. Помогать плазмидам перемещаться могут и вирусы бактерий – бактериофаги. Такой процесс вирусного горизонтального переноса называется трансдукцией. И даже это не все доступные способы![62]62
  Rodríguez-Beltrán, J., DelaFuente, J., León-Sampedro, R. et al. Beyond horizontal gene transfer: the role of plasmids in bacterial evolution. Nat Rev Microbiol 19, 347–359 (2021). https://doi.org/10.1038/s41579–020–00497–1


[Закрыть]

Кстати, горизонтальный перенос возможен не только среди бактерий одного вида, но и с бактериями другого вида, и даже с археями[63]63
  Rodríguez-Beltrán, J., DelaFuente, J., León-Sampedro, R. et al. Beyond horizontal gene transfer: the role of plasmids in bacterial evolution. Nat Rev Microbiol 19, 347–359 (2021). https://doi.org/10.1038/s41579–020–00497–1


[Закрыть]
, [64]64
  Nelson, K., Clayton, R., Gill, S. et al. Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima. Nature 399, 323–329 (1999). https://doi.org/10.1038/20601. https://www.nature.com/articles/20601.


[Закрыть]
. Таким образом гены, которые позволяют одним бактериям быть устойчивыми к какому-то антибиотику, могут появиться даже у вида, который ранее не мог против этого антибиотика сопротивляться[65]65
  Rodríguez-Beltrán, J., DelaFuente, J., León-Sampedro, R. et al. Beyond horizontal gene transfer: the role of plasmids in bacterial evolution. Nat Rev Microbiol 19, 347–359 (2021). https://doi.org/10.1038/s41579–020–00497–1


[Закрыть]
. Бактерии, которые собрали целую коллекцию защитных плазмид, могут быть устойчивы ко множеству разных антибиотиков. Так рождаются бактерии-суперзлодеи, против которых сегодня почти невозможно найти лекарства. Они могут встречаться в помещениях больниц, где регулярно контактируют с антибиотиками, а потому реже теряют свои плазмиды и соответственно суперзлодейские качества[66]66
  И для больниц (и их пациентов) это действительно проблема. Часто такие бактерии даже путешествуют вместе с пациентами между больницами (https://health.nv.ua/medicine/v-polskoy-bolnice-obnaruzhili-superbakteriyu-kotoraya-ustoychiva-k-antibiotikam-50036647.html и https://www.bbc.com/russian/science/2010/08/100811_uk_hospitals_superbug). Пусть это будет еще одним напоминанием хорошо мыть руки и не трогать ими глаза или иные слизистые в общественных местах. Это не панацея, но то, что мы действительно можем сделать для своей безопасности.


[Закрыть]
.

Часто исходная бактерия может не уничтожить (или выгнать) полностью попавший в нее антибиотик, но только его определенную дозу. Если антибиотика попало мало – она ослабнет, но выживет, а если много – погибнет. Такая «недобитая» бактерия даст следующее поколение, которое сможет защищаться от такого малого количества антибиотика, но более того – случайные мутации могут эту защиту усилить. Так, если в среде все это время будет оставаться антибиотик, правнуки первой бактерии будут еще более устойчивы, чем внуки. А их правнуки – еще более… Пока в один прекрасный (не для нас) день этому штамму такой антибиотик будет совсем не страшен[67]67
  Вообще говоря, нет никакого «совсем», это всегда вопрос дозы. Просто в случае с бактериями в организме доза антибиотика должна еще и человека не убить, убив бактерию. А так-то на чашке Петри ее можно повышать гораздо дольше с успехом. Baym, M., Lieberman, T. D., Kelsic, E. D., Chait, R., Gross, R., Yelin, I., & Kishony, R. (2016). Spatiotemporal microbial evolution on antibiotic landscapes. Science, 353(6304), 1147–1151. doi:10.1126/science.aag0822. – Прим. науч. редактора.


[Закрыть]
. Отсюда следует очень важное правило: не стоит принимать антибиотики без назначения компетентного врача, чтобы не делать свой вклад в создание супербактерий, против которых антибиотики будут уже бессильны. Однако последние годы в науке есть некоторые споры о том, обязательно ли следует проходить весь назначенный курс до самого конца или останавливать прием по достижении улучшения, и какая стратегия эффективнее уменьшает общий вклад в развитие антибиотикорезистентности у бактерий. Тем не менее текущими медицинскими рекомендациями все-таки является прохождение полного назначенного курса[68]68
  Llewelyn, M. J., Fitzpatrick, J. M., Darwin, E., SarahTonkin-Crine, Gorton, C., Paul, J., … Walker, A. S. (2017). The antibiotic course has had its day. BMJ, j3418. doi:10.1136/bmj.j3418 https://www.bmj.com/content/358/bmj.j3418.full. Read A. F., Woods R. J. Antibiotic resistance management. Evol Med Public Health. 2014; 2014(1):147. Published 2014 Oct 28. doi:10.1093/emph/eou024. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4228198/


[Закрыть]
.

Мир самого ближайшего будущего без антибиотиков представить очень страшно, а ведь именно таким он был еще сравнительно недавно. Это будет мир, где простое удаление зуба будет равняться по опасности операции на сердце, а бактериальные осложнения после любой болезни или процедуры вновь станут для нас смертельно опасны.

Новые антибиотики появляются очень редко. Их разработка чрезвычайно дорогая, а все этапы исследования занимают многие и многие годы. При этом ученые находятся в постоянной гонке: к моменту выхода нового антибиотика на рынок он уже может оказаться неэффективным, так как за время разработки и тестирования к нему уже была выработана резистентность[69]69
  WHO report highlights shortage of new antibiotics. Chris Dall | News Reporter | CIDRAP News | Apr 15, 2021. https://www.cidrap.umn.edu/news-perspective/2021/04/who-report-highlights-shortage-new-antibiotics


[Закрыть]
. Не очень оптимистичное вышло окончание у главы, добавим к нему ложку меда: сегодня ученые ищут принципиально новые решения на замену антибиотикам. Мне очень любопытно узнать, что из этого получится.

2.3. «Тот, кто нам мешает, тот нам поможет!»[70]70
  Как говорил дядюшка Нины из фильма «Кавказская пленница, или Новые приключения Шурика».


[Закрыть]

Представьте себя кинооператором эпохи пленочного кино. Вы снимаете сцену, в которой рыцарь стремительно скачет на лошади, скажем, в гости к дракону. Одновременно вы хотите показать, что дракон готовится ко встрече с рыцарем – чашки там на столе расставляет, варенье из сосновых шишек переливает в подаренные бабушкой блюдца. А рыцарь в это время скачет, плащ развевается, у коня из ноздрей пар валит – красотища! И что, ради смены плана на пещеру дракона останавливать на скаку рыцаря, а затем просить его продолжить свой путь с тем же решительным настроем? Ну уж нет! Есть другой выход, и «это называется монтаж!» – как объяснял мистер Джонни Фест своей нетерпеливой даме сердца[71]71
  Цитата из к/ф «Человек с бульвара Капуцинов», 1987 год.


[Закрыть]
. То есть кинопленку в нужном месте разрезают, а между двумя получившимися ее частями вставляют кусочек другой пленки с нужной сценой. Вот хорошо бы уметь «делать монтаж» в геномах разных организмов, чтобы добавлять и убирать из них гены по своему желанию!



Ученые мало чего придумывают сами. Чаще они подсматривают за природой, заимствуют ее механизмы, улучшают и добавляют их в свой арсенал. Так они поступили и при решении этой задачи. Как и нам, бактериям угрожают вирусы. Только вирусы у них специальные, бактериальные, и зовутся они бактериофаги. Бактериофаги превращают бактерию в завод по производству собственных вирусных копий, заставляя забыть обо всех собственных делах. Поэтому бактериям необходим некий механизм борьбы с интервентами. Что же они придумали?

Итак, вирус – это защитная белковая оболочка – капсид – и молекула ДНК или РНК внутри нее. Во время путешествий вирусный генетический материал упакован в капсид, но при проникновении в клетку капсид остается снаружи – как мокрое пальто на вешалке у входа в дом. В саму клетку проникает только молекула, поэтому эволюция выбрала такой подход: каждая проникающая в клетку молекула ДНК (или РНК), которая выглядит чужеродно, будет немедленно порезана на нефункциональные куски. Роль ножниц внутри бактерии исполняют специальные ферменты – эндонуклеазы рестрикции (рестриктазы). Их задача опознавать определенный довольно короткий (обычно состоящий из 4–8 букв) фрагмент генетического текста и в случае опознания делать в нем разрез по обеим цепям ДНК (или по единственной в случае РНК). Каждая эндонуклеаза рестрикции настроена на узнавание своего текстового фрагмента – сайта рестрикции. Некоторые рестриктазы делают разрез симметрично по обеим цепям, как показано на картинке ниже. Два конца молекулы, которые получаются в результате такого разреза, биотехнологи называют тупыми. Другие рестриктазы разрезают «внахлест»: разрез по одной цепи смещен на несколько букв от места разреза на второй цепи. Комплементарные цепочки на этом фрагменте расходятся и напоминают две ступеньки. Биотехнологи называют их липкими, и не случайно: в результате с каждой стороны от разреза остается по фрагменту одноцепочечной молекулы, которые могут легко соединиться обратно по принципу комплементарности.




Две получившиеся комплементарные[72]72
  И на самом деле цепочки даже не должны быть идеально комплементарными друг другу. Сцепление произойдет, даже если совпадение не идеально и какие-то буквы все-таки отличаются.


[Закрыть]
цепочки стремятся соединиться друг с другом обратно. Предотвратить это воссоединение можно, немного химически модифицировав нуклеотиды на концах. Или сделав на молекуле разрезы двумя разными типами рестриктаз на небольшом отдалении друг от друга – если удалить маленький фрагмент между разрезами, тогда оставшиеся концы не будут комплементарны друг другу и молекула не сможет соединиться по месту такого разреза.



Внимание, дальше нам снова понадобится воображение. Представьте себе коробку детского конструктора, в которой есть множество элементов типа «кирпичик» разного цвета. Независимо от цвета мы можем сцеплять эти кирпичики в любом порядке, выстраивая все более и более высокую башню. Секрет башни из кирпичиков в механизме сцепления деталей между собой: выпуклости на одной детали идеально подходят к разъемам на другой. И ничего кроме длины рук строителя не мешает нам вырастить эту башенку хоть до самого неба. Липкие концы позволяют проделывать похожий фокус: если разрезать одной и той же рестриктазой две разные молекулы ДНК, то оставшиеся в обоих случаях хвостики будут прекрасно соответствовать друг другу. А это значит, что их можно соединить между собой – встроить фрагмент одной ДНК в другую. Или даже множество фрагментов. Затем останется только сшить оставшиеся пробелы между нуклеотидами каждой цепи. Для этого пригодится еще один фермент – лигаза. И вуаля, у нас получился монтаж, то есть генетическая рекомбинация.



Тут любопытному читателю самое время спросить: неужели в геноме самой бактерии не найдется таких же фрагментов текста, которые способны узнавать рестриктазы? Как же рестриктазам тогда отличить чужеродную ДНК от собственной бактериальной и не совершить по неосторожности харакири? И этот вопрос совершенно справедливый!

А бактерии выкручиваются так: ДНК бактерии имеет своего рода химическую надстройку над нуклеотидами А и Ц, содержащую метильную группу. Поэтому называется такая надстройка «метилирование». В обычное время вся бактериальная ДНК метилирована, то есть замаскирована от рыскающих в поиске врагов рестриктаз[73]73
  Альбертс Б., Брей Д., Льюис Дж., Рэфф М., Робертс К., Уотсон Дж. Молекулярная биология клетки: в трех томах. Москва: Мир, 1994. Т. 1. 517 с. 10 000 экз. – ISBN 5030019855.


[Закрыть]
. Так что от собственных острых ножниц бактерия находится в полной безопасности.

Возможно, вы уже догадались, что такой механизм можно поставить на службу науке. Так и было сделано, причем о-о-очень давно.

Пожалуй, самый частый аргумент противников ГМО, который мне приходилось слышать, – это обвинение технологий генной инженерии в их непростительной молодости. А если продолжить распутывать нить разговора, то чаще всего выясняется, что появление генной модификации в человеческой памяти на временной шкале стоит где-то рядом с клонированием овечки Долли. То есть на рубеже XX и XIX веков. То есть буквально вчера. (И мне тоже кажется, что этот рубеж был буквально вчера. Пока не вспоминаю, что пора идти искать подарок на тридцатилетний юбилей моему «маленькому братишке»). И мало кто знает, что технология рекомбинантных ДНК, отрасль генной инженерии, в 2021 году отпраздновала свой 50-летний юбилей!

А начиналось все вот как. В 1971 году американский ученый Пол Берг в лаборатории Стэнфордского университета провел эксперимент, который навсегда вошел в историю науки. Спустя 9 лет на одной сцене с Уолтером Гилбертом и Фредериком Сенгером – изобретателями двух самых первых методов чтения ДНК – Берг получил за этот эксперимент Нобелевскую премию по химии[74]74
  Science History Institute. Paul Berg. https://www.sciencehistory.org/historical-profile/paul-berg.


[Закрыть]
.

К тому моменту механизмы рестрикции уже были известны ученым, в наличии имелись даже выделенные рестриктазы[75]75
  Cohen S.N. DNA cloning: a personal view after 40 years. Proc Natl Acad Sci U S A. 2013;110(39):15521–15529. doi:10.1073/pnas.1313397110. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3785787/


[Закрыть]
. В своей лаборатории Поль Берг взял ДНК вируса SV40, который был выделен из клеток макак-резусов; бактериофаг λ (лямбда) – вирус, поражающий кишечную палочку E. coli; и рестриктазу EcoRI, дающую липкие концы у разрезаемой молекулы. Кольцевые ДНК обоих вирусов разрезали при помощи одной и той же рестриктазы – EcoRI, затем специальным образом обработали получившиеся линейные молекулы и смешали их в одной пробирке[76]76
  Вообще говоря, не просто смешали, а провели реакцию лигирования. От одного только смешивания рекомбинантные молекулы не образуются, к сожалению (вернее, может, и образуются, но тут же распадаются). – Прим. науч. редактора.


[Закрыть]
. Концы двух молекул соединились друг с другом, образовав новую гибридную кольцевую молекулу ДНК. Новую комбинацию генов. То есть первую в истории человечества искусственно созданную рекомбинантную молекулу.



Это открыло дорогу исследованиям и экспериментам с бактериями. Создать рекомбинантную ДНК – это только половина работы. Вторая половина – заставить бактерию такую плазмиду проглотить. В обычном состоянии бактериальная клетка не «подбирает все, что валяется на дороге», ее стенки достаточно плотные, чтобы такого не происходило. Однако в определенных условиях клетка может стать компетентной – ее стенки начнут пропускать внутрь разный генетический «мусор» снаружи. Переход в состояние компетентности – задача довольно сложная, а случается он под действием разных факторов, которые мы не станем разбирать здесь, чтобы окончательно не заблудиться в молекулярных дебрях. Важно только отметить, что внутри таких бактерий запустятся определенные молекулярные процессы, начнут читаться ответственные за состояние компетентности гены, и клетка перейдет в состояние, в котором через ее стенки сможет проникать генетический материал из внешней среды.

Такое состояние бактерий к 1970-м годам было известно уже очень давно: впервые его обнаружил британский бактериолог Фредерик Гриффит в попытках создать вакцину от пневмонии. Он заметил, что одни бактерии могут передать другим свои свойства при определенных условиях среды. В те времена знаний о наследственности было слишком мало, чтобы разобраться в механизмах случайно обнаруженного процесса. Выяснить причину трансформации и назначить «виновницей» ДНК только много лет спустя смогли трое канадских и американских исследователей Освальд Эвери, Маклин Маккарти и Колин Маклауд[77]77
  Прочитать об этом больше можно, например, здесь: Классические эксперименты: ДНК как генетический материал. Эксперименты Фредерика Гриффита, Освальда Эвери и его коллег, а также Альфреда Херши и Марты Чейз. https://ru.khanacademy.org/science/biology/dna-as-the-genetic-material/dna-discovery-and-structure/a/classic-experiments-dna-as-the-genetic-material.


[Закрыть]
.

Теперь, объединив знания о трансформации бактерий путем искусственного введения ее в состояние компетентности с умением создавать рекомбинантные ДНК, можно было приступать к работе – к созданию первых генетически модифицированных бактерий. За дело одновременно взялись многие ученые.

На плазмидах бактерии могут хранить самые разные гены. Например, гены резистентности к различным антибиотикам. Такие плазмиды называются R-плазмидами, или R-фактором. Если у бактерии есть такая плазмида, то антибиотики, защитные гены от которых есть в этой плазмиде, бактерии не страшны. Когда в среде ее обитания окажется один из таких антибиотиков, бактерия будет жить себе припеваючи, не замечая, что среда вообще-то отравлена.

Итак, ученые взялись за разработку методов трансформации для разных бактерий. Дошло дело и до любимой учеными кишечной палочки[78]78
  Cohen S.N., Chang A.C., Hsu L. Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc Natl Acad Sci U S A. 1972;69(8):2110–2114. doi:10.1073/pnas.69.8.2110. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC426879/?page=1


[Закрыть]
. Пробежимся галопом по истории.

• Следующим успехом стала трансформация кишечной палочки рекомбинантной плазмидой pSC101[79]79
  Vector Database. pSC101. https://www.addgene.org/vector-database/4055/


[Закрыть]
, благодаря которой та стала устойчивой к антибиотику тетрациклину.

• Затем новый успех – трансформация кишечной палочки уже гибридной плазмидой, дающей устойчивость сразу к двум антибиотикам: тетрациклину и канамицину. Причем гены устойчивости к канамицину располагались на той части плазмиды, что была получена от другой бактерии – стафилококка (Staphylococcus). Так было показано, что генетический материал может передаваться даже между видами организмов!

• И вот, чтобы уж совсем закрепить успех, все тот же союз ученых, состоящий из Стенли Коэна и Герберта Бойэра, разработал еще более удивительную химеру: для все той же кишечной палочки создали плазмиду, в которую встроили ген южноафриканской лягушки (Xenopus laevis)[80]80
  Science History Institute. Herbert W. Boyer and Stanley N. Cohen. https://www.sciencehistory.org/historical-profile/herbert-w-boyer-and-stanley-n-cohen.


[Закрыть]
– так показали, что даже разные царства не помеха для переноса генов.

Кстати, свойство антибиотикорезистентности ученые тоже поставили себе на службу: добавляя в редактируемую бактерию дополнительно R-плазмиду, можно определять, произошла ли у бактерий целевая модификация, поместив их в среду с антибиотиком: если бактерии выживут, значит, редактирование в них произошло. Таким образом R-плазмиду можно использовать в качестве маркера трансформации.

Так начинается история технологий рекомбинации генов, подаривших нам те самые ГМО, которым посвящена эта книга. Там, на заре 1970-х, начался отсчет новой эры – эры биотехнологии.

Выходит, что технологии направленной контролируемой генетической модификации недавно исполнилось полвека. Но многие люди все еще по привычке продолжают считать ее молодой (как я считаю маленьким своего младшего брата и все еще делаю ему дурацкие подарки. Нет, ну правда, что вообще дарят 30-летним «маленьким братишкам»?).


Страницы книги >> Предыдущая | 1 2 3 4 5 | Следующая
  • 4.4 Оценок: 5

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации