Электронная библиотека » Брайан Китинг » » онлайн чтение - страница 6

Текст книги "Гонка за Нобелем"


  • Текст добавлен: 21 апреля 2022, 17:12


Автор книги: Брайан Китинг


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 6 (всего у книги 23 страниц) [доступный отрывок для чтения: 8 страниц]

Шрифт:
- 100% +

В 1948 году Голд и Бонди опубликовали описательную версию модели стационарного состояния Вселенной, а Хойл – отдельно – количественные расчеты, дополнявшие описание техническими деталями. Их теория разрешала все четыре фатальные проблемы теории Большого взрыва. Отныне на ринге Великих дебатов появилось два сильных соперника. Хотя две модели были почти полными противоположностями друг друга, у каждой имелись свои сильные стороны и свои явные недостатки. Что разрешит исход противостояния?

Некоторые любят погорячее

Существуют ли какие-то следы, некое подобие археологических источников, с помощью которых космологи смогли бы изучить историю Вселенной? В 1948 году, когда была постулирована теория стационарной Вселенной, Джордж (Георгий) Гамов и его аспирант Ральф Альфер открыли необычные космические часы, впрочем больше напоминавшие термометр, чем хронометр. Это было ядро изотопа водорода под названием дейтрон, которое позволило ученым заглянуть в прошлое, а именно в период между одной секундой и примерно 20 минутами после гипотетического Большого взрыва, который стал самым хорошо изученным этапом в космологической истории.

Гамов предположил, что понимание того, как сформировались самые легкие атомы в периодической таблице Менделеева (помните школьные уроки химии?), может пролить свет на события ранней Вселенной. Если Большой взрыв действительно был, то оставшиеся от него следы должны быть самыми легкими, самыми маленькими и самыми простыми по строению атомами, состоящими из минимального количества протонов и нейтронов. Эти легкие атомы были единственными «реликтами», возраст которых могли установить космические археологи. Гамов и Альфер показали, что относительное изобилие химических элементов может служить своего рода времязависимым термометром, который был наиболее чувствителен в период горячей Вселенной сразу после Большого взрыва.

В 1932 году американский физик Гарольд Юри открыл дейтерий (лат. deuterium – второй), чье название указывает на то, что ядро состоит из двух частиц. (Ядро атома водорода содержит один протон, дейтерий по химическому составу идентичен «разновидности» водорода, изотопу, ядро которого содержит протон и нейтрон.) Дейтрон, как называется ядро дейтерия, фактически представляет собой половину ядра гелия. Следовательно, кулинарный рецепт приготовления ядра гелия мог бы звучать так: «Возьмите два дейтрона и запекайте их при температуре в несколько миллиардов градусов в течение минуты». Тепловое излучение этой раскаленной печи, состоящее из частиц света (фотонов), способно прижать два дейтрона друг к другу достаточно сильно, чтобы преодолеть силу электрического отталкивания между двумя положительно заряженными протонами. (Конечно, реальный процесс образования гелия немного сложнее, но суть его такова.) Однако в этом кулинарном рецепте есть два критических условия. При малейшем превышении определенного порога температуры – примерно в 10 млрд градусов Цельсия – основной ингредиент, дейтрон, распадается на части. Следовательно, чтобы создать ядро гелия, температура должна быть выше нескольких миллиардов градусов, но ниже 10 млрд градусов. И вторая сложность: нестабильность нейтрона. Если он не связан с протоном в течение примерно десяти минут, происходит его радиоактивный распад.



Таким образом, чтобы во Вселенной осталось хоть сколько-нибудь дейтерия, строительного материала для гелия, а также свободных нейтронов, необходимых для формирования новых дейтронов, ее температура должна была упасть ниже магического порога в 10 млрд градусов за довольно короткое время – менее чем за 600 секунд. Благодаря неустойчивости нейтронов дейтерий стал для ученых температурозависимыми «часами» – термохронометром. Но что могло вызвать такое быстрое охлаждение от бесконечных температур до этой высокой, но все же конечной температуры? Расширение Вселенной. При расширении все охлаждается – например, вы сталкиваетесь с этим, когда распыляете аэрозоль. Когда выпускается содержимое баллончика, газ внутри него становится менее плотным и металлическая поверхность охлаждается.

Пока снижение температуры Вселенной не преодолело планку в 10 млрд градусов, кишащие в раскаленной плазме фотоны мгновенно разбивали любые образующиеся дейтроны, таким образом обрывая в самом начале цепочку реакций, ведущую к синтезу гелия. Как только Вселенная немного остыла, началось стремительное образование гелия. Но строительный ядерный бум продлился недолго. Через 20 минут после того, как началось охлаждение с бесконечных температур, все было кончено: Вселенная стала слишком холодной, чтобы сплавлять дейтроны в ядра гелия, и процесс, показанный на рис. 14, подошел к концу. С тех пор количество первозданного гелия в космосе оставалось неизменным. Только представьте: за отрезок времени короче одного эпизода сериала «Теория Большого взрыва» образовались почти все легкие элементы во Вселенной!

Три самых легких ядра – дейтроны и ядра водорода и гелия – стали древними артефактами, с помощью которых можно было протестировать модель Большого взрыва[52]52
  И, для любителей термоядерного синтеза, немного бериллия и лития.


[Закрыть]
. В 1949 году Гамов и Альфер предсказали, что на каждое ядро гелия должно приходиться 12 ядер водорода плюс небольшое количество остаточного дейтерия (который в то время астрономы не умели обнаруживать). Наблюдения за звездами в Млечном Пути в значительной степени согласовывались с этим прогнозом. Ободренные этим подтверждением, Гамов и Альфер пошли еще дальше и предположили, что все элементы, даже углерод, основа жизни, могли быть образованы в первые несколько минут после Большого взрыва в огненном шаре ранней Вселенной.

Позже Альфер и его коллега Роберт Херман выдвинули предположение, что процесс охлаждения Вселенной продолжается по сей день. При этом тепло, оставшееся от первоначального огненного шара, и сегодня подогревает космос до температуры в 5 кельвинов – на пять градусов выше абсолютного нуля по шкале Цельсия. Мы можем увидеть это тепло в виде микроволнового фонового излучения, равномерно заполняющего всю Вселенную.



Идея, что Вселенная превратилась из некогда кипящей и бурлящей точки сингулярности – состояния материи и энергии, с которого все началось, – в ледяную ванну из света, окружающего нас повсюду, была слишком нелепа, чтобы воспринимать ее всерьез. На самом деле только один космолог воспринял эту идею как вызов: Фред Хойл. И он сделал все, чтобы ее опровергнуть.

Опровержение творения

Теория образования химических элементов Альфера – Гамова – Хермана, впоследствии получившая название первичного нуклеосинтеза, для Хойла была неудобоварима: он не сомневался, что все можно объяснить в рамках модели стационарной Вселенной. Сделав это, он не только покончит с конкурирующей теорией космогенеза, но и впишет свое имя в историю космологии.

К четырем первородным грехам теории Большого взрыва Хойл добавил еще два. Во-первых, он доказал, что модель нуклеосинтеза Большого взрыва могла привести к образованию только трех самых легких элементов в периодической таблице: водорода, гелия и лития (имеющего в ядре три протона) и их изотопов. Большой взрыв, предположительно, начался с расширения Вселенной из ничтожно малой частицы, содержавшей зародыши легких элементов, которые, в свою очередь, стали строительным материалом для более тяжелых. Но модель Большого взрыва не предусматривала синтез элементов тяжелее лития. Теория, способная объяснить образование всего трех из почти сотни известных на тот момент элементов и изотопов, т. е. всего 3 %, вряд ли могла внушать доверие. Но Хойл на этом не остановился.

Вторая атака Хойла была направлена на предположение Альфера и Германа о том, что оставшееся от огненного шара тепло можно наблюдать в форме микроволнового фона температурой 5 кельвинов. Здесь тоже была проблема. Поскольку при расширении все охлаждается, а Вселенная в модели Большого взрыва все время расширялась, занижение Хабблом возраста Вселенной привело к тому, что Альфер и Герман (и позже Гамов) значительно завысили температуру этой микроволновой ванны. Чем моложе Вселенная, тем теплее она должна была быть. Оценка Альфера и Германа оказалась почти в два раза выше, чем могла быть максимальная температура фона Вселенной согласно измерениям, сделанным в 1941 году[53]53
  В 1941 г. канадский астроном Эндрю Маккеллар сделал приблизительное измерение температуры содержащих циан газовых облаков в галактике Млечный Путь и пришел к выводу, что их температура никак не может превышать 3 кельвина. Разница между 3 кельвинами, полученными Маккелларом, и 5 кельвинами, предсказанными Альфером и Германом, может показаться незначительной, но только если не знать, что удельная энергия излучения черного тела увеличивается пропорционально четвертой степени его температуры. Таким образом, Альфер и Герман предсказали в десять раз больше энергии в космическом тепловом фоне, чем это было допустимо. Говоря космическим языком, они предсказали жаркое, как в Майами лето, в сезон снежных буранов на Аляске.


[Закрыть]
.

Хуже того, через год они опубликовали другой прогноз, повысив космическую температуру с 5 до 28 кельвинов[54]54
  Оценки Гамова также варьировали довольно сильно, хотя они последовательно снижались и достигли 7 кельвинов в 1953 г. и 6 кельвинов в 1956 г.


[Закрыть]
. Такая игра с цифрами никак не способствовала доверию к их модели[55]55
  Helge Kragh, Cosmology and Controversy: The Historical Development of Two Theories of the Universe (Princeton: Princeton University Press, 1999).


[Закрыть]
. Напротив, модель Хойла не имела теплового фона, не говоря уже о микроволновом свечении, которое не соответствовало наблюдаемым данным и менялось с каждой последующей публикацией.

Но Хойл не просто опровергал модель Большого взрыва. Он предложил собственную альтернативную гипотезу о том, как могли сформироваться все химические элементы, не только первые три. Хойл был уверен, что все они образовались внутри звезд. Это была критическая проблема, которую модель Большого взрыва так и не сумела разрешить. Напомним: чтобы объяснить происхождение всех элементов, необходимо объяснить не только процесс их образования, но и то, откуда берутся новые ядра. Хойл поместил источник генерации новых ядер в самое логичное место в космосе – в звезды. И вскоре он продемонстрировал, каким образом звезды могут производить самый важный элемент для жизни во Вселенной – углерод.

В 1954 году Хойл показал, что для образования углерода должно было произойти чудо[56]56
  F. Hoyle, “On Nuclear Reactions Occurring in Very Hot STARS. I. the Synthesis of Elements from Carbon to Nickel,” Astrophysical Journal Supplement 1 (1954): 121, http://adsabs.harvard.edu/abs/1954ApJS….1..121H.


[Закрыть]
. Конечно, он не называл это именно так. Но, учитывая тот факт, что все мы состоим из углерода и нигде во Вселенной не обнаружены ядра с такими атомными массами, из которых мог бы образоваться углерод, Хойл пришел к выводу, что внутри звезд должно существовать особое состояние материи, которое каким-то образом катализирует преобразование гелия в углерод. Это особое каталитическое состояние, которое он назвал «резонансом», теперь известно как состояние Хойла (рис. 15). Не будь состояния Хойла, некому было бы сейчас читать эту книгу.

Три года спустя группа исследователей из Калтеха, возглавляемая Вилли Фаулером, обнаружила и подтвердила этот физический процесс[57]57
  C. W. Cook, W. A. Fowler, C. C. Lauritsen, and T. Lauritsen, “B12, C12, and the Red Giants,” Physical Review 107, no. 2 (1957): 508.


[Закрыть]
. Хойл оказался прав: углерод может создаваться только внутри звезд. Чудеса бывают.

Успех ободрил Хойла. Он не просто опроверг теорию Большого взрыва, не просто забил шестой и, вероятно, последний гвоздь в крышку ее гроба. Он выдвинул смелое предположение, которое могло оказаться ошибочным, однако этого не случилось.



В 1957 году Хойл начал проект, который впоследствии привел к Нобелевской премии, хотя и не для него. Работая вместе с Вилли Фаулером и Джеффом и Маргарет Бербидж, Хойл придумал комплексную модель образования всех элементов внутри звезд – звездного нуклеосинтеза в противоположность нуклеосинтезу Большого взрыва, которая оказалась умопомрачительно сложной, но удивительно эффективной. В своей эпохальной статье, опубликованной в 1957 году и известной как статья ББФХ по инициалам ее авторов, квартет изложил общую теорию термоядерного синтеза, который может протекать внутри различных типов звезд и приводить к образованию всех известных элементов. Важнейшая часть работы легла на хрупкие женские плечи Маргарет Бербидж, единственного астронома в команде, которая собрала наблюдаемые данные для подтверждения теоретической модели и навечно поместила квартет ББФХ в Зал научной славы (попутно обеспечив нобелевское золото Фаулеру).



Между тем Гамов и его бывший аспирант Альфер не оставляли попыток найти свидетельства Большого взрыва. На самом деле потребовались годы наблюдений, чтобы достичь изощренности конкурирующей модели стационарной Вселенной или убедительности доказательств чуда Хойла. Хойл был беспощаден. В окончательном варианте статьи ББФХ он заявил, что формирование легких элементов в альтернативной модели Большого взрыва требует «состояния Вселенной, никаких доказательств которого у нас нет». Напротив, звездный нуклеосинтез был обычным процессом во Вселенной, который подтверждался более чем 100 млрд примеров в одной только нашей Галактике.

Еще больше трещин в модели Большого взрыва

В статье ББФХ утверждалось, что все химические элементы могут образовываться в звездах, если они обладают достаточной массой. Гамов же, применительно к Большому взрыву, настаивал, что ядра сформировались задолго до рождения каких бы то ни было звезд, не говоря уже о массивных[58]58
  Edwin E. Salpeter, “Fallacies in Astronomy and Medicine,” Reports on Progress in Physics 68, no. 12 (2005): 2747, http://iopscience.iop.org/article/10.1088/0034–4885/68/12/R02/meta.


[Закрыть]
. Более того, Гамов считал, что большие звезды умирают молодыми, поэтому у них просто недостаточно времени, чтобы произвести тяжелые элементы. Но в 1958 году астрофизик Эдвин Солпитер доказал, что, несмотря на короткий срок жизни, массивные звезды могут производить тяжелые элементы, и на самом деле многие из них именно это и делают. Модель стационарной Вселенной выдержала очередную проверку, а модель Большого взрыва получила еще одну трещину. Если последняя не способна объяснить формирование тяжелых элементов, как можно доверять тому, что она говорит о легких элементах?

Наконец, последний вопрос, вызывавший жаркие споры между сторонниками конкурирующих теорий космогенеза, имел отношение не столько к науке, сколько к религии. Креационистские обертоны теории Большого взрыва отталкивали многих ученых-атеистов. По словам Хойла, это был наихудший пример ненаучного заблуждения: «Большой взрыв может нравиться только тем ученым, чей разум затуманен Книгой Бытия». Напротив, модель стационарного состояния Вселенной была законным наследником коперниканского принципа, присовокупляя к заурядности человечества в пространстве его заурядность во времени. Благодаря Хойлу человечество познало истинное смирение. Вряд ли ставки были выше со времен первых Великих дебатов, когда Галилей противостоял самой Церкви.

Какое-то время казалось, что Большой взрыв обречен обернуться горой астрономического пепла. Но в 1964 году случилось неожиданное: подобно супертяжеловесу, сбитому с ног в финальном раунде, модель стационарной Вселенной получила два сокрушительных удара.

Первый удар исходил от самих авторов модели. В опубликованной осенью 1964 года статье «Загадка космического изобилия гелия» Фред Хойл и его коллега Роджер Тайлер объявили об удивительном открытии[59]59
  F. Hoyle and R. J. Tayler, “The Mystery of the Cosmic Helium Abundance,” Nature 203 (1964): 1108–10, https://doi.org/10.1038/2031108a0.


[Закрыть]
. Изучив множество астрофизических источников, от Солнца до туманности Ориона, они обнаружили, что в космосе слишком много гелия – намного больше, чем могло образоваться исключительно внутри звезд. Хотя Хойл, Фаулер и Бербиджи в 1957 году показали, что звезды способны создавать все известные элементы и их изотопы, существовала одна проблема: звезды не могли производить достаточное количество второго по важности строительного материала – гелия. Звезды были подобны кустарным мастерским, неспособным масштабироваться до массового производства.

Хойл, который прежде заявлял, что у конкурирующей модели Гамова и Альфера «нет никаких доказательств», сам нашел пусть и косвенное, но все же свидетельство в ее пользу. В статье 1964 года он делал вывод, что «Вселенная либо имела сингулярное происхождение, либо имеет колебательную природу». Это заключительное утверждение поставило модель стационарного состояния на край пропасти: «сингулярное происхождение» по сути было эвфемизмом «Большого взрыва».

20 мая 1964 года новый тип телескопа, исследовавший небо над Нью-Джерси, вынес окончательный приговор модели стационарной Вселенной. Если зрительная труба Галилея в свое время подтвердила принцип Коперника, то этот телескоп нанес ему смертельный удар.

Коммуникационные сбои

В то время как 1960-е годы стали периодом серьезных потрясений для американского общества, для физики они были поистине золотым веком. Как ни парадоксально, от холодной войны между США и СССР научный мир получал щедрые дивиденды. Запуск Советским Союзом первого искусственного спутника на орбиту Земли заставил правительство США вливать деньги в любые проекты, дающие хотя бы малейшую надежду на потенциальное военное превосходство. Тогда же наступила новая эра в финансировании науки в частном секторе, а такие компании, как Kodak, Bell Labs и IBM, начали играть роль современных Медичи.

В Bell Labs – в те времена это было исследовательское подразделение телекоммуникационного конгломерата AT&T – построили огромную радиоантенну особой конструкции в виде рупора диаметром 6 м. Предназначалась она не для радиоастрономии, а для межконтинентальной связи и вместе с гигантским воздушным шаром с металлизированной оболочкой должна была использоваться в проекте НАСА с говорящим названием «Эхо». Идея проекта была проста: посылать из лаборатории реактивного движения в Пасадене, Калифорния, радиоволны, чтобы, отражаясь от наполненного гелием воздушного шара, находящегося на большой высоте, они возвращались на антенну Bell Labs. Успех проекта «Эхо» оказался под вопросом, так как интенсивность радиоволн стремительно снижалась с расстоянием, что существенно затрудняло прием трансконтинентальных радиосигналов.



Технические проблемы программы были существенны, а запуск советского спутника и вовсе свел ее на нет[60]60
  Интересно, что в настоящее время Google (Alphabet) разрабатывает воздушные шары для обеспечения дешевого и высокоскоростного доступа в интернет в труднодоступных местах планеты. См.: https://www.google.com/loon/.


[Закрыть]
. Американское правительство опасалось, что Соединенные Штаты могут проиграть не только космическую, но и телекоммуникационную гонку. Размещение передатчика в космосе позволяло решить многие из проблем, связанных с воздушными шарами. Поскольку передатчик мог усиливать радиоволны, сигналы, передаваемые им обратно на Землю, были намного сильнее. И находивший в космосе спутник становился видимым на принципиально бо́льших расстояниях. Ответом США Советскому Союзу стал первый активный спутник связи Telstar. Антенна Bell Labs с ее сверхчувствительной детекторной системой осталась не у дел, но, к счастью, ей нашли другое применение. Два радиоастронома, Арно Пензиас и Роберт Уилсон, быстро перековали телекоммуникационные мечи на космологические орала. Массивную рупорную антенну они приспособили под телескоп для астрономических наблюдений, который в скором времени нанес второй смертельный удар по стационарной космологической модели Хойла.

В поисках ничто и не там, где надо

Пензиас и Уилсон были радиоастрономами и специализировались на радио– и микроволновой части электромагнитного спектра – на электромагнитных волнах с длиной волны от 1 м до 1 мм, что соответствует частотам от 300 МГц до 300 ГГц. Во время обучения в Калтехе Уилсон посещал лекции по космологии самого Фреда Хойла в тот период, когда тот вместе с Вилли Фаулером занимался разработкой теории звездного нуклеосинтеза. Идеи Хойла и его модель стационарного состояния Вселенной произвели на Уилсона глубокое впечатление. Свой путь в историю два радиоастронома начали с простой цели: найти ничто. Но зачем искать ничто? Дело в том, что таким образом они могли откалибровать антенну, чтобы использовать ее как телескоп.

Если видимый свет отражается от каждой заряженной частицы и крупицы пыли, которая встречается у него на пути, то радиоволны перемещаются через межзвездное пространство почти беспрепятственно. Однако в 1964 году, всего через три десятилетия после того, как было открыто радиоволновое излучение Млечного Пути и положено начало новой науке – радиоастрономии, очень мало было известно о том, как «выглядит» наша Галактика на более высоких частотах, т. е. в микроволновом диапазоне излучения с длиной волн в 10–100 раз короче, чем у радиоволн.

Астрономов интересовало, зависит ли микроволновое излучение Млечного Пути от того, куда вы смотрите. Предполагалось, что если смотреть в направлении, далеком от дисковой части Галактики, в сторону так называемых «высоких галактических широт», то излучение меньше, подобно тому как звезды в зените видятся нам более четко, чем звезды у горизонта. Радиоастрономы также ожидали, что галактическое излучение на более высоких частотах (с более короткими длинами волн) должно быть намного слабее, чем на низких. Следовательно, если настроить радиотелескоп на высокие частоты и направить его на галактические полюса, он не должен уловить никаких волн.

Пензиас и Уилсон знали, что даже для наблюдения за самой спокойной точкой Галактики в направлении одного из ее полюсов и вдали от ее диска в первую очередь требуется откалибровать инструмент. Калибровка необходима во всех экспериментах, но особенно в астрономических, где физически невозможно добраться до источника сигнала. Чтобы откалибровать свой инструмент, астрономы направляют его на источник с известной величиной излучения и сравнивают показания измерений с этой величиной. Одна такая величина – это ноль, т. е. место, откуда не исходит никаких микроволн. Если задача «найти ничто» представляется вам сомнительным научным предприятием, отчасти вы правы: попробуйте получить финансирование под такой проект. Но когда вы смотрите в бездну, порой происходят удивительные вещи.

Как и Уильям Гершель, который рассчитывал найти несколько новых звезд, а вместо этого открыл планету Уран, Пензиас и Уилсон с их сверхчувствительным радиотелескопом поставили перед собой скромную цель: «Мы пытались убедиться в том, что нельзя измерить отсутствие излучения Млечного Пути, но вместо этого обнаружили излучение, исходящее, очевидно, из-за пределов Млечного Пути»[61]61
  John Oakes, “Interview with Arno Penzias and Robert Wilson,” Evidence for Christianity website, May 5, 2005, https://evidenceforchristianity.org/interview-with-arno-penzias-and-robert-wilson.


[Закрыть]
. Поначалу они восприняли это излучение как досадный радиошум.

Радиоастрономы измеряют интенсивность электромагнитных волн несколько странным способом, а именно с точки зрения того, насколько горячим, в градусах Кельвина, должен быть идеальный источник излучения – абсолютно черное тело, чтобы испускать обнаруженные ими сигналы. Таким образом, радиоастрономы говорят, что данный источник излучает столько-то кельвинов. Это также означает, что с помощью радиотелескопа можно дистанционно «измерять температуру» астрономических объектов с такой же точностью, как мы измеряем температуру более доступных земных объектов с помощью термометра.

В 1961 году, за три года до Пензиаса и Уилсона, инженер Bell Labs Эдвард Ом пытался откалибровать эту же антенну, но нашел ее слишком «шумной». Совершенных радиотелескопов не существует: любой инструмент генерирует некоторый шум, т. е. даже если направить его на объект с температурой абсолютный ноль, прибор покажет, что тот излучает какое-то тепло. Однако Ом счел, что телескоп слишком шумный, даже после того, как выявил и учел все возможные источники ошибки, так называемую «систематическую погрешность». Ом суммировал вклад всех известных ему источников помех, производивших избыточный сигнал, который показывали измерения: 22,2 кельвина с погрешностью в 2,2 кельвина[62]62
  E. A. Ohm, “Project Echo: Receiving System,” Bell System Technical Journal 40, no. 4 (1961): 1065, https://archive.org/details/bstj40-4-1065.


[Закрыть]
. (На первый взгляд это преобладание «2» кажется подозрительным, но для Ома дело было не в двойках.)

Модель Ома предполагала, что, если направить телескоп на самые темные участки неба, тот должен показать температуру около 19,1 кельвина. Именно этого он и ждал. Однако при измерениях она оказывалась почти на 3 кельвина больше расчетной величины – 22,2 кельвина. Ом списал этот избыток на неудачу и отмахнулся от не устраивавших его данных. При этом он допустил непростительную при анализе данных ошибку – склонность к подтверждению своей точки зрения. Вместо того чтобы предположить, что сигнал реален, и попытаться докопаться до его причины, он откинул его, исходя из своих представлений о том, каким этот сигнал должен быть. На самом деле ложноотрицательный результат хуже ложноположительного: если не говорить о шоке при страшном известии, то, как вы думаете, что лучше – чтобы ваш доктор не смог диагностировать у вас рак, который есть, или чтобы он сказал, что у вас рак, тогда как вы не больны?

В своей статье Ом делал ложноотрицательный вывод: нет необходимости учитывать фоновое тепловое излучение, предсказанное в расчетах Альфера и Германа. Всякий раз, когда я думаю об этом, у меня возникает острое желание схватить Ома за его узкий черный галстук по моде 1960-х и спросить: «Как ты мог, Эдвард?» Это противоречит всему тому, чему учат студентов-практикантов в научных лабораториях: нельзя относиться к данным избирательно, отбрасывая те, которые вам не нравятся. Впрочем, Ом и без того понес суровое наказание, собственноручно лишив себя Нобелевской премии.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации