Электронная библиотека » Брюс Липтон » » онлайн чтение - страница 3


  • Текст добавлен: 25 сентября 2018, 12:40


Автор книги: Брюс Липтон


Жанр: Эзотерика, Религия


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 3 (всего у книги 22 страниц) [доступный отрывок для чтения: 6 страниц]

Шрифт:
- 100% +
Клетки как маленькие человечки

Как выяснилось впоследствии, этому курсу гистологии суждено было стать самым прекрасным и интеллектуально богатым периодом в моей академической карьере. Пользуясь предоставленной мне свободой, я построил курс по собственному желанию, сообразно новому подходу, уже несколько лет зревшему в моей голове. Мной завладела мысль, что понять физиологию и поведение клеток будет легче, если представить их себе как неких маленьких человечков. Размышляя над новой структурой курса, я воодушевлялся все больше. Идея состыковки клеточной и человеческой биологии вновь зажгла во мне давний детский энтузиазм к научным занятиям, который по-прежнему вызывала у меня работа в лаборатории, а ни в коем случае не бумажная трясина, бесконечные заседания и безмерно надоевшие мне факультетские вечеринки – этот неизменный атрибут штатной университетской должности.

Мое стремление очеловечить клетки объясняется тем, что годы за микроскопом выработали у меня немалый пиетет перед сложностью и могуществом того, что поначалу представлялось мне анатомически незамысловатыми комочками, движущимися в чашке Петри. Вероятно, вы помните из школьного курса основные элементы клетки: ядро, где содержится генетический материал, клеточные энергетические станции – митохондрии, защитную внешнюю оболочку-мембрану и цитоплазму, заполняющую внутреннее пространство. Но за этой кажущейся простотой скрывается сложнейший мир, и порой клетки используют технологии, которые ученым еще лишь предстоит до конца понять.

Большинству биологов мое представление о клетках как о людях в миниатюре покажется ересью. Попытки объяснить что-либо нечеловеческое, соотнося его с поведением людей, называются антропоморфизмом. Для «истинных» ученых антропоморфизм – это что-то вроде смертного греха, и тех, кто сознательно к нему прибегает, они подвергают безусловному остракизму.

Но я верил, что для такого выхода за ортодоксальные рамки существуют веские причины. В своей работе биологи стремятся обрести научное знание, наблюдая природу и строя гипотезы о том, как функционируют те или иные объекты. Затем они разрабатывают эксперименты, при помощи которых можно было бы проверить их теории. Построение гипотез и разработка эксперимента требуют от ученого «думать», как клетка или другой живой организм осуществляют свою жизнедеятельность. Применение таких «человеческих» подходов к решению загадок биологии автоматически делает этих ученых виновными в антропоморфизме. Как ни крути, в основе биологической науки лежит то или иное очеловечивание предмета изучения.

По моему глубокому убеждению, неписаный запрет на антропоморфизм – это пережиток мрачного средневековья, когда церковные авторитеты не допускали и мысли, что между человеком и другими Божьими творениями может существовать какая-либо связь. Согласен, что такой подход полезен при попытках очеловечить электрическую лампочку, радиоприемник или перочинный нож, но критиковать исследователей живых организмов, по-моему, бессмысленно. Люди – это существа, состоящие из множества клеток, поэтому в силу самой своей природы мы должны демонстрировать общие с ними способы поведения.

Я хорошо понимаю, что для признания таких параллелей требуется некоторое изменение восприятия. Исторически иудеохристианские верования привели нас к мысли, что мы – разумные существа, созданные посредством некоего процесса, отдельного и отличного от процесса создания всех прочих растений и животных. Такое представление заставляет нас свысока смотреть на другие формы живого, почитая их неразумными – в особенности если речь идет о тех, что стоят на более низкой эволюционной ступени.

Большую нелепость трудно себе представить. Когда мы, глядя на себя или других людей в зеркале, рассматриваем их как изолированные организмы, то такое представление в каком-то смысле правомерно – во всяком случае, в рамках нашего уровня наблюдения. Но если вы посмотрите на свое тело с точки зрения клетки, то оно предстанет вам совсем иначе. Вы больше не покажетесь себе изолированной сущностью. Вашему взору откроется неугомонное сообщество из более чем 50 триллионов отдельных клеток.

Пока я перебирал в голове подобные мысли, передо мной раз за разом возникала одна и та же картинка из энциклопедии, увиденная мной еще в детстве. К статье о человеке там прилагалась иллюстрация на семи прозрачных пластиковых страницах. На каждой из них был изображен один и тот же контур человеческого тела. На первой странице этот контур был заполнен изображением обнаженного человека. Перевернув ее, вы словно снимали с него кожу и обнажали мускулатуру – таково было изображение на второй странице. Затем перед вами открывался наглядно выполненный разрез всего тела, и вы поочередно видели скелет, мозг и нервы, кровеносные сосуды и систему внутренних органов.

Для своего карибского курса я мысленно дополнил эти картинки еще несколькими изображениями, каждое из которых иллюстрировало те или иные клеточные структуры. Большинство их обычно называют органеллами – «миниатюрными органами», плавающими в желеобразной цитоплазме. Органеллы – это функциональные эквиваленты тканей и органов нашего собственного тела. К ним относятся ядро (самая крупная органелла), аппарат Гольджи и вакуоли. Традиционно в подобных курсах сначала рассматривают эти клеточные структуры, а затем переходят к тканям и органам человеческого тела. Мне захотелось объединить эти две части и показать сходство человека и клетки.

Люди – это существа, состоящие из множества клеток, поэтому в силу самой своей природы мы должны демонстрировать общие с ними способы поведения.

Я говорил своим студентам, что биохимические механизмы в системах клеточных органелл, по существу, те же самые, что и в системах наших внутренних органов. И хотя человеческое тело состоит из триллионов клеток, в нем нет ни одной «новой» функции, которая не фигурировала бы уже в отдельной клетке. Всякая эукариота (клетка, содержащая ядро) обладает функциональными эквивалентами нашей нервной системы, системы пищеварения, системы дыхания, выделительной системы, эндокринной системы, костно-мышечной системы, системы кровообращения, наружных покровов (кожи), репродуктивной системы и даже примитивной иммунной системы, функционирование которой обеспечивается семейством антителоподобных белков, называемых убиквитинами.

Также я недвусмысленно заявил своим студентам, что каждая клетка – это разумное существо, способное к самостоятельной жизни (ученые демонстрируют это всякий раз, когда отделяют те или иные клетки от организма и выращивают их в культуре). Как мне и показалось в детстве, эти разумные клетки обладают намерением и целью: они активно ищут для себя условия, поддерживающие их жизнедеятельность, и в то же время избегают агрессивных и ядовитых сред. Как и люди, отдельные клетки анализируют тысячи сигналов, поступающих от их микроокружения. Посредством анализа этих данных они вырабатывают необходимые поведенческие реакции для выживания.

Отдельные клетки также способны к обучению на основании результатов взаимодействия с окружающей средой. Они умеют хранить память об этом опыте и передавать его своим потомкам. Например, когда в тело ребенка проникает вирус кори, незрелые иммунные клетки получают сигнал на выработку против него защитного белка-антитела. Одновременно с этим клетка должна создать новый ген, который послужит «шаблоном» для последующей выработки противокоревого белка.

Первый шаг при создании специфического гена выработки противокоревых антител происходит в ядре этих незрелых иммунных клеток. В их собственных генах имеется огромное количество участков ДНК, каждый из которых кодирует синтез того или иного уникального белкового фрагмента. По-разному перетасовывая эти участки ДНК, иммунные клетки создают огромный массив различных генов, соответствующих различным антителам. Если незрелой иммунной клетке удается выработать белок антитела, достаточно хорошо соответствующий (комплементарный) внедрившемуся в организм вирусу кори, такая клетка активируется.

Активированные иммунные клетки, в свою очередь, запускают удивительный механизм аффинного созревания, который позволяет клетке точнейшим образом «подогнать» окончательное строение белка-антитела для обеспечения его полнейшей комплементарности вторгшемуся вирусу кори. При помощи процесса соматической гипермутации активированные иммунные клетки в сотнях копий размножают исходный ген антитела. Однако каждая очередная копия оказывается слегка мутировавшей и отличной от оригинала, благодаря чему кодирует синтез несколько отличающегося по своему строению белка. Из множества вариантов клетка выбирает тот, который дает наиболее соответствующее антитело. Этот избранный вариант гена снова и снова проходит процедуру соматической гипермутации, пока получившееся в результате антитело не будет представлять собой идеальный «слепок» с вируса кори.

Прикрепляясь ко вторгшемуся вирусу, сформированное таким образом антитело инактивирует его и помечает как подлежащий уничтожению, тем самым ограждая ребенка от пагубного воздействия заболевания. При этом клетки его организма хранят генетическую «память» об этом антителе, так что, если в будущем он снова подвергнется атаке вируса, клетки практически мгновенно обеспечат защитный иммунный ответ. Когда клетка делится, она еще и передает новый ген антитела всем своим потомкам. Таким образом, клетка не только «узнает» о вирусе кори, но и создает «память», наследуемую и распространяемую дочерними клетками. Эта удивительная генно-инженерная способность клетки имеет огромное значение, так как свидетельствует о врожденном «интеллектуальном» механизме клеточного развития.

Истоки живого: умные клетки становятся умнее

Не стоит удивляться, что клетки такие умные. Одноклеточные организмы были первыми формами жизни на этой планете. Ископаемые окаменелости свидетельствуют, что они существовали уже спустя 600 миллионов лет после возникновения Земли. И в последующие 2,75 миллиарда лет наш мир населяли исключительно свободноживущие одноклеточные организмы – бактерии, водоросли и амебоподобные простейшие.

Около 750 млн лет назад эти хитроумные клетки изобрели способ стать еще умней: именно тогда возникли первые многоклеточные организмы – растения и животные. Поначалу многоклеточные формы жизни представляли собой свободные сообщества, или «колонии» одноклеточных организмов. Первое время они насчитывали от десятков до сотен членов. Однако эволюционные преимущества совместной жизни вскоре привели к возникновению сообществ из миллионов, миллиардов и даже триллионов социально взаимодействующих клеток. И хотя отдельные клетки микроскопически малы, многоклеточные сообщества по своему размеру могут варьироваться от едва заметных до поистине гигантских. Биологи произвели классификацию таких организованных сообществ, основываясь на их наблюдаемой структуре. Но хотя невооруженным глазом они видны как некий целостный организм – мышь, собака, человек, по своей сути они представляют собой высокоорганизованные объединения миллионов и триллионов клеток.

Эволюционный толчок к разрастанию сообществ – это не что иное, как отражение биологического императива к выживанию. Чем более организм информирован о своем окружении, тем выше его шансы. Объединяясь друг с другом, клетки кардинально увеличивают свои знания о внешнем мире. Если каждой отдельной клетке условно приписать уровень информированности X, то потенциальная совокупная информированность колониального организма будет равняться как минимум X, умноженному на число входящих в него клеток.

Чтобы выжить в условиях такой высокой плотности заселения, клетки создали структурированные среды. Распределение функций, имевшее место в этих сложнейших сообществах, по своей эффективности намного превосходило все хитроумные организационные диаграммы сегодняшних больших корпораций. Оказалось, что в клеточном сообществе гораздо выгодней иметь специализированные клетки, предназначенные для выполнения конкретных задач. При развитии организма животных и растений такое распределение ролей начинает происходить еще на стадии зародыша. Процесс цитологической специализации дает возможность клеткам сформировать конкретные ткани и органы. Со временем такая дифференциация, т. е. распределение обязанностей между членами сообщества, оказалась запечатлена в генах каждой входящей в него клетки, что существенно увеличило общую эффективность организма и его способность к выживанию.

Например, в больших организмах лишь небольшое число клеток занимается считыванием сигналов из окружающей среды и реагированием на них. Эту роль взяли на себя группы специализированных клеток, образующие ткани и органы нервной системы. Функция нервной системы – воспринимать окружение и координировать поведение всех остальных клеток большого сообщества.

Распределение труда между клетками сообщества принесло дополнительные преимущества с точки зрения выживаемости. Благодаря ему большее количество клеток смогло осуществлять свою жизнедеятельность, тратя меньшее количество ресурсов. Вспомните старинную пословицу: «Вдвоем тратишь столько же, сколько в одиночку». Или сравните стоимость постройки отдельного трехкомнатного дома – и трехкомнатной квартиры в многоэтажном доме на сотню квартир. Чтобы выжить, каждая клетка должна затратить определенное количество энергии. Количество энергии, запасенное отдельными членами сообщества, с одной стороны, способствует выживанию, с другой – повышает качество жизни.

Возьмем для примера американский капитализм: здесь Генри Форд увидел тактические преимущества дифференцированного общественного труда и применил этот принцип на сборочных линиях своих автомобильных заводов. До Форда на сборку одного автомобиля уходил недельный труд небольшой бригады разносторонне обученных рабочих. Форд же поставил дело так, что каждый рабочий отвечал за одну конкретную операцию. Он разместил вереницей большое количество таких узкоспециализированных рабочих и обеспечил подачу изготовляемого изделия от одного к другому. Эффективность этого метода оказалась такой высокой, что вместо недели на сборку одного автомобиля у него уходило 90 минут.

Увы, мы почему-то предпочли «забыть» о необходимом для эволюции сотрудничестве, когда Чарльз Дарвин провозгласил совершенно иную теорию возникновения жизни. Сто пятьдесят лет тому назад он пришел к выводу, что живые существа вовлечены в непрекращающуюся «борьбу за существование». Для Дарвина борьба и насилие – не только часть человеческой (животной) природы, но и основные «движущие силы» эволюционного процесса. В заключительной главе своей книги «О происхождении видов путем естественного отбора, или Сохранение благоприятствуемых пород в борьбе за жизнь» Дарвин писал о неизбежной «борьбе за существование» и о том, что источником эволюции явились «борьба в природе, голод и смерть». Прибавьте сюда его представление, что эволюция происходит случайным образом, и вы получите мир теннисоновских «кровавых зубов и когтей» – череду бессмысленных битв за выживание[10]10
  Альфред Теннисон – английский поэт, так описавший битву за выживание в природе. – Прим. перев.


[Закрыть]
.

Эволюция без окровавленных когтей

Безусловно, Дарвин является самым известным эволюционистом, но впервые эволюция как научный факт была установлена французским биологом Жаном-Батистом Ламарком. Даже Эрнст Майр, ведущий архитектор «неодарвинизма» – усовершенствованной дарвинов ской теории, берущей на вооружение молекулярную генетику XX века, признает приоритет Ламарка. В своем классическом труде 1970 г. «Эволюция и разнообразие жизни» Майр писал: «Мне представляется, что у Ламарка гораздо больше прав претендовать на звание “основоположника теории эволюции”, каковым его и в самом деле почитает ряд французских историков… Он был первым, кто посвятил целую книгу изложению теории органической эволюции. Он первым представил всю систему животного мира как продукт эволюции».

Но Ламарк примечателен не только тем, что изложил свою теорию за пятьдесят лет до Дарвина. Он вдобавок предложил значительно менее жестокий вариант механизма эволюции. По теории Ламарка, в ее основе лежало «информативное» взаимодействие организмов со своим окружением, которое давало возможность различным формам жизни выживать и развиваться в динамичном мире. Ламарк полагал, что организмы адаптируются к условиям меняющегося окружения и передают по наследству приобретенные ими признаки. Интересно, что гипотеза Ламарка о механизмах эволюции согласуется с описанными выше современными представлениями клеточных биологов о том, как иммунная система приспосабливается к окружающей среде.

На теорию Ламарка тут же ополчилась церковь. Представление о том, что человек развился из низших форм жизни, было отвергнуто как еретическое. Ученые того времени также отвернулись от Ламарка – будучи креационистами, они попросту высмеяли его теории. Забвению ламарковской теории способствовал и немецкий биолог Август Вейсман. Он решил проверить, действительно ли организмы передают по наследству признаки, приобретенные в результате взаимодействия с окружающей средой, и удалял хвосты мужской и женской особям мышей, а затем скрещивал их. Вейсман полагал, что если теория Ламарка верна, то родительские особи должны передать свою «бесхвостость» последующим поколениям. Первое поколение мышей родилось с хвостами. Продолжив эксперимент, Вейсман получил еще 21 поколение мышей, но ни одна особь не родилась бесхвостой. Это привело его к выводу, что представления Ламарка о наследовании были ложны.

Но эксперимент Вейсмана не был настоящей проверкой теории Ламарка. Автор биографии Ламарка Л. Йорданова считает, что такие эволюционные изменения должны происходить в течение «чрезвычайно продолжительных периодов времени». В 1984 г. она написала, что теория Ламарка «опиралась на ряд положений», среди которых были «…законы, управляющие живыми существами, которые в течение чрезвычайно продолжительных периодов времени привели к возникновению все более их сложных форм». Пятилетний эксперимент Вейсмана был явно недостаточен для проверки этой теории. Еще более существенным изъяном этого эксперимента является то, что Ламарк никогда не утверждал, что любое изменение, претерпеваемое организмом, должно укореняться таким образом. Ламарк говорил, что организмы «ухватывают» те или иные признаки (например, наличие хвоста), когда они необходимы им для выживания. Быть может, по мнению Вейсмана, мышам хвосты и не нужны, но ведь никто и никогда не спрашивал мнения мышей на этот счет!

Несмотря на явные недостатки, исследование бесхвостых мышей способствовало подрыву репутации Ламарка. Фактически его теория была по большей части проигнорирована или даже демонизировалась. В своей книге «Эволюция эволюциониста» специалист по вопросам эволюции Конрад Уоддингтон из Корнельского университета писал: «Ламарк – одна из наиболее выдающихся фигур в истории биологии, чье имя стало едва ли не ругательным. Большинство ученых обречены на то, что их вклад в науку утратит свое значение, но очень мало найдется тех, чьи работы даже спустя два столетия отвергаются с таким негодованием, которое заставляет иного скептика заподозрить, что мы имеем здесь дело с чем-то вроде угрызений совести. Говоря откровенно, мне кажется, что Ламарка осудили отчасти несправедливо».

Уоддингтон написал эти пророческие слова много лет назад. Сегодня теории Ламарка подвергаются переоценке под давлением большого количества свидетельств новой науки, которые заставляют предположить: тот, кого мы традиционно хулим, не так уж и ошибался, а тот, кого мы привыкли превозносить, был не так уж непогрешим. Одним из признаков пробуждающейся «гласности» может служить заголовок статьи в престижном журнале Science[11]11
  Science («Наука») и Nature («Природа») – самые авторитетные научные журналы. – Прим. перев.


[Закрыть]
: «Не был ли Ламарк в чем-то прав?».

Одна из причин, по которой ряд ученых сегодня пересматривают свое отношение к Ламарку, состоит в том, что специалисты в области эволюции все чаще обращают внимание на огромную роль сотрудничества в поддержании жизни в биосфере. Ученым давно известно о симбиотических отношениях в природе. В своей книге «Чего не видел Дарвин» (Darwin’s Blind Spot) британский медик Фрэнк Райан описывает целый ряд ситуаций такого типа. Например, морских рачков, которые собирают пищу, когда рыбка гоби охраняет их от хищников, или рака-отшельника, несущего на своей раковине розовую анемону. «Рыбы и осьминоги были бы не прочь полакомиться раком-отшельником, но как только они к нему приближаются, анемона выбрасывает им навстречу свои ярко окрашенные щупальца, усеянные микроскопическими ядовитыми жалами, и заставляет горе-охотников поискать себе добычу где-нибудь в другом месте». Отношения эти выгодны и агрессивной анемоне: она питается объедками со стола рака-отшельника.

Однако сегодняшние представления о сотрудничестве в природе идут гораздо дальше этих легко наблюдаемых явлений. «Биологи начинают все больше приходить к пониманию, что живые организмы эволюционировали совместно с различными структурами микроорганизмов, необходимых им для поддержания здоровья и дальнейшего развития, и продолжают вести с ними совместное существование» – говорится в недавней статье из журнала Science, озаглавленной «“Маленькая” помощь наших маленьких друзей». Изучение подобных отношений представляет собой сегодня быстро развивающееся направление, получившее название «системной биологии».

По иронии судьбы, в последние десятилетия мы приучились вести войну против микроорганизмов всеми доступными средствами – от антибактериального мыла до антибиотиков. Но такой чересчур прямолинейный подход не учитывает тот факт, что многие бактерии необходимы для нашего здоровья. Классический пример того, как люди пользуются помощью микроорганизмов, – это бактерии в нашей пищеварительной системе, без которых мы попросту не смогли бы жить. Бактерии в желудочно-кишечном тракте помогают человеку переваривать пищу и делают возможным всасывание необходимых витаминов. Именно из-за такого сотрудничества безоглядное применение антибиотиков недопустимо. Антибиотики – это неразборчивые убийцы, они губят полезные бактерии точно так же, как и вредные.

Недавние исследования в области генетики обнаружили еще один механизм межвидового сотрудничества. Как выяснилось, живые организмы в полном смысле слова объединяют свои клеточные сообщества в одно целое, обмениваясь генами. Раньше считалось, что гены передаются исключительно потомкам конкретного организма в процессе продолжения рода. Сегодня же ученые пришли к выводу, что передача генов происходит не только между отдельными представителями одного и того же вида, но и между различными видами. Распространение генетической информации при помощи трансфера генов ускоряет эволюцию, так как теперь организмы могут воспользоваться опытом, «приобретенным» другими организмами. С учетом такого обмена генами организмы больше нельзя рассматривать как изолированные сущности – между видами не существует непроницаемых стен. Руководитель программы Министерства энергетики США по изучению генома микроорганизмов Дэниел Дрелл сказал в интервью журналу Science: «…теперь нам не так-то просто сказать, что такое вид».

В таком обмене информацией нет ничего неожиданного. Это обычный в природе метод увеличения жизнеспособности био сферы. Как мы уже говорили, гены – это физические носители памяти о приобретенном организмом опыте. Обнаруженный недавно обмен генами между различными особями распространяет эту память, способствуя выживанию всех организмов, составляющих сообщество живого. С другой стороны, такой внутри– и межвидовой генный обмен наглядно свидетельствует об опасностях генной инженерии. Например, игры с генами помидора могут отразиться не только на этом самом помидоре, но и непредсказуемым образом затронуть всю биосферу. Одно из недавних исследований показывает, что когда человек переваривает генетически модифицированную пищу, искусственно созданные гены попадают внутрь его кишечника и меняют характер присутствующей в нем полезной микрофлоры. Аналогичным образом трансфер генов между генетически модифицированными сельскохозяйственными культурами и соседствующими с ними природными видами приводит к созданию сверхустойчивых особей – «суперсорняков». Внедряя генетически модифицированные организмы в окружающую среду, генные инженеры никогда не принимали во внимание трансфер генов как реальность. Сегодня мы начинаем пожинать катастрофические плоды этой недальновидности, когда искусственно сконструированные гены распространяются бесконтрольно и изменяют природные организмы.

Новая Биология отбрасывает прочь пораженческий дух генетической и родительской предопределенности.

Специалисты по генетической эволюции предупреждают, что если мы не усвоим уроки, следующие из общности нашей генетической судьбы, – уроки, которые говорят о важности сотрудничества всех биологических видов, – то поставим под угрозу существование человечества. Нам необходимо перейти от дарвиновской теории, где ведущая роль принадлежит индивидууму, к теории, подчеркивающей значение сообществ. Британский ученый Тимоти Лентон приводит свидетельства, что эволюция в большей степени определяется межвидовым взаимодействием, нежели взаимодействием отдельных особей одного и того же вида. При таком рассмотрении эволюция становится вопросом выживания самых приспособленных групп, а не индивидуумов. В 1998 г. Лентон писал в журнале Nature, что «…нам необходимо принимать во внимание всю совокупность организмов и их материальное окружение, чтобы понять, какие из признаков склонны сохраняться и доминировать», а не сосредоточиваться на индивидуумах и их роли в эволюции.

Лентон говорит о своей приверженности предложенной Джеймсом Лавлоком теории Геи, согласно которой Земля и все обитающие на ней виды представляют собой единый организм. Сторонники данной гипотезы доказывают, что вмешательство в равновесие этого суперорганизма, будь то посредством уничтожения тропических лесов, разрушения озонового слоя или изменения организмов путем генной инженерии, может составлять угрозу для его (а значит, и нашего собственного!) благополучия.

Результаты недавних исследований, профинансированных британским Национальным советом по изучению природной среды, свидетельствуют о небеспочвенности этих опасений. В истории нашей планеты насчитывается пять массовых вымираний живых организмов, и все они были вызваны внеземными причинами, например столкновением Земли с кометой. Автор одного из недавних исследований заключает, что «мир природы переживает сегодня шестой, наиболее масштабный случай массового вымирания за свою историю». Однако причина на этот раз отнюдь не внеземная. Как пишет один из авторов процитированного выше исследования Джереми Томас: «Насколько мы можем судить, причиной теперь является один-единственный живой организм – человек».


Страницы книги >> Предыдущая | 1 2 3 4 5 6 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации