Электронная библиотека » Дэвид Юм » » онлайн чтение - страница 4


  • Текст добавлен: 29 января 2022, 08:40


Автор книги: Дэвид Юм


Жанр: Философия, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 4 (всего у книги 49 страниц) [доступный отрывок для чтения: 16 страниц]

Шрифт:
- 100% +
Глава 3. О других качествах наших идейпространства и времени

Ни одно открытие не могло бы быть столь благоприятным для решения всех споров относительно идей, чем то, которое мы упомянули выше, а именно, что впечатления всегда предшествуют идеям и что всякая идея, предоставленная воображению, появляется сперва в виде соответствующего впечатления. Все эти восприятия так ясны и очевидны, что не оставляют места спорам, тогда как многие из наших идей так темны, что даже ум, их образующий, почти не может указать в точности их природу и состав. Воспользуемся же этим принципом, чтобы еще более глубоко раскрыть природу наших идей пространства и времени.

Открыв глаза и обращая взор на окружающие меня предметы, я воспринимаю много видимых тел; закрыв же глаза снова и размышляя о расстоянии между этими телами, я приобретаю идею протяжения. Так как всякая идея извлекается из некоторого впечатления, в точности сходного с ней, то впечатления, сходные с этой идеей протяжения, должны быть или какими-либо ощущениями, доставляемыми зрением, или же какими-нибудь внутренними впечатлениями, которые вызываются этими ощущениями.

Наши внутренние впечатления суть наши аффекты, эмоции, желания и отвращения; мне думается, ни про одно из этих впечатлений не станут утверждать, что оно является моделью идеи пространства. Итак, не остается ничего, кроме внешних чувств, которые могут доставить нам это первичное впечатление. Но какое же впечатление доставляют нам здесь наши чувства? Это принципиальный вопрос, [решение которого] безапелляционно решает и вопрос о природе самой идеи.

Один вид находящегося передо мной стола достаточен для того, чтобы дать мне идею протяжения. Итак, эта идея заимствована от некоторого впечатления, которое воспринимается в данный момент чувствами и воспроизводится идеей. Но мои чувства доставляют мне только впечатления известным образом расположенных цветных точек. Если мой глаз ощущает еще что-нибудь, пусть это будет мне указано; но если невозможно указать что-либо помимо отмеченного, то мы можем с уверенностью заключить, что идея протяжения не что иное, как копия этих цветных точек и способа их появления.

Предположим, что в том протяженном объекте, или в той совокупности цветных точек, от которой мы получили впервые идею протяжения, точки были пурпурного цвета; отсюда следует, что при каждом повторении указанной идеи мы не только будем располагать эти точки в том же порядке относительно друг друга, но и наделим их точно тем же цветом, с которым мы только и знакомы. Однако впоследствии, познакомившись на опыте с другими цветами: фиолетовым, зеленым, красным, белым, черным, а также с их различными композициями – и обнаружив некоторое сходство в расположении цветных точек, из которых эти цвета составлены, мы опускаем, насколько возможно, особенности цвета и образуем отвлеченную идею единственно на основании того расположения точек, или того способа их появления, в котором эти цвета согласуются. Мало того, даже в тех случаях, когда указанное сходство выходит за пределы объектов одного чувства и когда мы находим, что впечатления осязания сходны со зрительными по расположению своих частей, это не мешает абстрактной идее быть представителем тех и других впечатлений в силу их сходства. Все абстрактные идеи в действительности не что иное, как идеи частные, рассматриваемые с известной точки зрения; но, будучи присоединены к общим терминам, они могут представлять огромное разнообразие и охватывать такие объекты, которые сходны в некоторых частностях, в других же весьма отличны друг от друга.

Идея времени, будучи извлечена из последовательности наших восприятий всех родов – как идей, так и впечатлений, в том числе впечатлений рефлексии и впечатлений ощущения, – может служить для нас примером абстрактной идеи, которая охватывает еще большее разнообразие идей, чем идея пространства, и тем не менее бывает представлена в воображении некоторой единичной идеей, обладающей определенным количеством и качеством.

Если из расположения видимых и осязаемых объектов мы получаем идею пространства, то из последовательности идей и впечатлений мы образуем идею времени, время же само по себе никогда не может предстать перед нами или быть замечено нашим умом. Человек, погруженный в глубокий сон или же сильно занятый какой-нибудь одной мыслью, не ощущает времени, и сообразно с тем, чередуются ли его восприятия с большей или меньшей скоростью, одна и та же длительность кажется его воображению длиннее или короче. Один великий философ[6]6
  Локк.


[Закрыть]
заметил, что нашим восприятиям поставлены в данном отношении границы, определяемые первичной природой и организацией нашего ума, и никакое влияние внешних объектов на наши чувства не может заставить нашу мысль двигаться со скоростью большей или меньшей, нежели та, которая вмещается в этих границах. Если мы будем быстро вращать горящий уголь, он представит нашим чувствам образ огненного круга и нам не будет казаться, что между его оборотами протекает какой-нибудь промежуток времени, не будет казаться только потому, что наши восприятия не могут следовать друг за другом с той же самой скоростью, с какой движение может быть сообщено внешним объектам. При отсутствии последовательных восприятий у нас нет и представления времени, хотя бы объекты и следовали друг за другом в действительности. На основании этих, а также многих других явлений мы можем заключить, что время не может появиться в уме ни само по себе, ни в связи с постоянным и неизменным объектом, но что оно всегда открывается нами при помощи некоторой доступной восприятию последовательности изменяющихся объектов.

Чтобы подкрепить это, мы можем прибавить следующий аргумент, который мне лично кажется совершенно решающим и убедительным. Очевидно, что время, или длительность, состоит из различных частей, ибо иначе мы не могли бы представить себе более долгой или более краткой длительности. Очевидно также, что эти части не сосуществуют, ибо качество сосуществования частей принадлежит протяжению, являясь тем самым качеством, которое отличает последнее от длительности. Но так как время состоит из несосуществующих частей, то неизменяющийся объект, производя исключительно сосуществующие впечатления, не производит таких впечатлений, которые могли бы дать нам идею времени; а следовательно, эта идея должна быть извлечена из последовательности изменяющихся объектов и время при первом своем появлении не может быть отделено от подобной последовательности.

Найдя, таким образом, что время при первом своем появлении в уме всегда связано с последовательностью изменяющихся объектов и что иначе оно никак не может быть замечено нами, мы должны теперь исследовать, может ли время быть представлено нами без представления последовательности объектов и может ли оно само по себе образовать в воображении отчетливую идею.

Чтобы узнать, доступны ли разделению в идее объекты, связанные во впечатлении, нам следует только рассмотреть, отличны ли они друг от друга, а если это так, то ясно, что они могут быть представлены раздельно. Согласно объясненным выше принципам, все, что различно, может быть различено, а все, что различимо, может быть и разделено. Если же, напротив, объекты неразличны, они не могут быть и различены, а если они неразличимы, их нельзя и разделить. Но именно так и обстоит дело с временем по сравнению с нашими последовательными восприятиями.

Идея времени не извлекается из какого-либо определенного впечатления, смешанного с другими впечатлениями и ясно отличимого от них, но возникает исключительно из способа появления впечатлений в уме, не входя, однако, в число последних. Пять нот, взятых на флейте, дают нам впечатление и идею времени, хотя время не есть шестое впечатление, которое воспринималось бы слухом или каким-нибудь другим чувством. Равным образом время не есть и шестое впечатление, которое ум находит в себе при помощи рефлексии. Эти пять звуков, появившись указанным образом, не возбуждают в духе эмоций и не производят в нем какого-либо аффекта, который, после того как мы наблюдали его, мог бы породить новую идею. А именно это и необходимо для того, чтобы произвести новую идею рефлексии, и ум не может извлечь какую-либо первичную идею из всех своих идей ощущения даже после более чем тысячекратного их рассмотрения, если природа не организовала его способностей так, чтобы он чувствовал возникновение нового первичного впечатления при подобном рассмотрении. Но в данном случае он только отмечает способ появления различных звуков; способ этот он впоследствии может рассматривать независимо от именно этих определенных звуков и соединять его с любыми другими объектами. Конечно, у него должны быть идеи каких-нибудь объектов, и без подобных идей он вовсе не может прийти к какому бы то ни было представлению времени. Так как последнее не появляется в качестве отдельного первичного впечатления, оно явно не может быть чем-то иным, кроме различных идей, впечатлений или объектов, расположенных известным образом, а именно, следующих друг за другом.

Я знаю, что есть люди, утверждающие, будто идея длительности в надлежащем смысле этого слова приложима к совершенно неизменяющимся объектам, и считаю это обычным мнением как философов, так и профанов. Но для того чтобы убедиться в ложности этого мнения, нам стоит только поразмыслить над предыдущим заключением о том, что идея длительности всегда извлекается из последовательности изменяющихся объектов и никогда не может быть получена нашим умом от чего-нибудь постоянного и неизменного. Ибо отсюда неизбежно следует, что, поскольку идея длительности не может быть извлечена из такого объекта, она не может быть в подлинном и точном смысле слова и приложена к нему, а также что о каком-нибудь неизменяющемся объекте нельзя сказать, будто ему принадлежит длительность. Идеи всегда представляют (represent) те объекты или впечатления, от которых они отвлечены, и без помощи фикции никогда не могут ни представлять каких-либо других впечатлений, ни прилагаться к ним. С помощью же какой фикции мы применяем идею времени даже к тому, что неизменно, считая в соответствии с обычным мнением, что длительность есть мера не только движения, но и покоя, это мы рассмотрим впоследствии[7]7
  Глава 5.


[Закрыть]
.

Существует еще один очень веский аргумент, твердо устанавливающий излагаемую нами теорию идей пространства и времени и основанный исключительно на том простом принципе, что наши идеи пространства и времени составлены из частей, недоступных делению. Аргумент этот, мне думается, стоит рассмотреть.

Так как всякая отличимая [от других] идея может быть и отделена [от них], то давайте возьмем одну из тех простых неделимых идей, из которых составлена сложная идея протяжения, отделим ее от всех остальных, рассмотрим ее особо и вынесем таким образом суждение о ее природе и качествах.

Ясно, что это не есть идея протяжения, ибо последняя состоит из частей, а наша идея по предположению совершенно проста и неделима. Стало быть, она ничто? Но это абсолютно невозможно. Ведь сложная идея протяжения, будучи реальной, составлена из подобных [простых и неделимых] идей и если бы все они были не-сущностями, то, значит, существовало бы реальное бытие, составленное из не-сущностей, а это абсурд. Итак, я должен спросить: что такое наша идея простой и неделимой точки? Неудивительно, если мой ответ покажется до некоторой степени новым, раз сам вопрос едва ли приходил до сих пор в голову кому-нибудь. Мы привыкли спорить о природе математических точек, но редко спорим относительно природы идей о них.

Идея пространства доставляется уму двумя чувствами – зрением и осязанием, и ничто не кажется нам протяженным, если оно невидимо, неосязаемо. То сложное впечатление, которое представляет собой протяжение, состоит из нескольких более элементарных впечатлений, неделимых с помощью зрения или осязания; они могут быть названы впечатлениями атомов или корпускул, обладающих цветом и плотностью. Но это еще не все. Требуется, не только чтобы эти атомы были окрашены и осязаемы, дабы обнаружить себя нашим чувствам; необходимо также, чтобы мы сохранили идею их цвета или осязаемости, дабы представлять их в воображении. Только идея их цвета или осязаемости может сделать их представимыми для ума. При устранении идей этих чувственных качеств последние совершенно исчезают для мысли или воображения.

Но каковы части, таково и целое. Если точка не рассматривается как нечто окрашенное или осязаемое, она не может доставить нам никакой идеи, и, следовательно, идея протяжения, составленная из идей таких точек, навсегда лишена возможности существовать. Но если идея протяжения может существовать реально – а мы знаем, что так оно и есть, – то и части ее также должны существовать, а ввиду этого их следует рассматривать как окрашенные или осязаемые. Поэтому у нас только в том случае может быть идея пространства, или протяжения, когда мы рассматриваем ее как объект зрения или осязания.

С помощью того же рассуждения можно доказать, что неделимые моменты времени должны быть наполнены некоторым реальным объектом, или существованием, последовательность которого образует длительность и делает его представимым для ума.

Глава 4. Ответы на возражения

Наша теория пространства и времени состоит из двух частей, тесно связанных друг с другом. Первая часть основана на следующей цепи рассуждений. Способность ума не бесконечна, следовательно, всякая наша идея протяжения, или длительности, состоит из конечного, а не из бесконечного числа частей, или более элементарных идей, причем части эти просты и неделимы. Итак, пространство и время могут существовать согласно этой идее; а если это возможно, то очевидно, что они и в действительности существуют сообразно с ней, поскольку их бесконечная делимость совершенно невозможна и противоречива.

Вторая часть нашей теории является следствием первой. Части, на которые распадаются идеи пространства и времени, неделимы дальше; и эти неделимые части, которые сами по себе ничто, непредставимы, если они не заполнены чем-нибудь реальным и существующим. Таким образом, идеи пространства и времени не отдельные или отчетливые идеи, но лишь идеи способа, или порядка, существования объектов. Или, другими словами, невозможно представить пустое пространство, или протяжение без материи, а также время без последовательности или изменений в каком-либо реальном существовании. Тесная связь между этими частями нашей теории и есть та причина, в силу которой мы будем рассматривать совместно возражения, выставленные против обеих этих частей; начнем же мы с возражений против конечной делимости протяжения.

I. Первое из тех возражений, которые я приму во внимание, скорее способно подтвердить связь и взаимную зависимость обеих частей нашей теории, чем опровергнуть ту или другую из них. В [философских] школах часто утверждалось, что протяжение должно быть делимо in infinitum, потому что теория математических точек нелепа; а нелепа она потому, что математическая точка не есть некая сущность и, следовательно, никак не может составить реального существования в связи с другими точками. Это возражение решало бы вопрос, если бы не было среднего между бесконечной делимостью материи и математическими точками как не-сущностями. Но очевидно, что существует такое среднее, а именно наделение этих точек цветом или плотностью; нелепость же обеих крайностей служит доказательством истины и реальности этого среднего. Теория физических точек, представляющая собой другое такое среднее, слишком нелепа, чтобы нуждаться в опровержении. Реальное протяжение, каким считается физическая точка, никак не может существовать без отличных друг от друга частей, но, если только объекты различны, они могут быть различены и разделены воображением.

II. Второе возражение гласит, что если бы протяжение состояло из математических точек, то необходимо существовало бы проницание (penetration). Простой и неделимый атом, касающийся другого атома, необходимо должен проникать в последний; ведь он не может касаться этого атома своими внешними частями именно в силу предположения его полной простоты, исключающей в нем всякие части. Поэтому он должен касаться другого атома теснейшим образом, всей своей сущностью, secundum se, tota et totaliter, a это и есть истинное определение проницания. Но проницание невозможно, а следовательно, и математические точки равно невозможны.

Я отвечу на это возражение, заменив данную идею проницания другой, более правильной. Предположим, что два тела, не заключающие внутри себя пустого пространства, приблизятся друг к другу и соединятся таким образом, что тело, являющееся результатом их соединения, по своему протяжению будет не больше каждого из них в отдельности, вот что мы должны подразумевать, говоря о проницании. Но очевидно, что такое проницание не что иное, как уничтожение одного из этих тел и сохранение другого, причем мы не в состоянии различить в точности, которое из них сохраняется, а которое уничтожается. До их приближения друг к другу у нас есть идея двух тел. После приближения остается только идея одного. Ум совсем не в состоянии сохранить представление о различии двух тел одной и той же природы, существующих в одном и том же месте в одно и то же время.

Но если понимать проницание в смысле уничтожения одного тела при приближении его к другому, то я спрошу кого угодно: видите ли вы необходимость в том, чтобы какая-нибудь цветная или осязаемая точка уничтожалась, приближаясь к другой цветной или осязаемой точке? Не видите ли вы, наоборот, вполне ясно, что от соединения этих точек произойдет сложный и делимый объект, в котором могут быть различены две части, причем каждая из них сохраняет свое раздельное и обособленное существование, несмотря на свою смежность с другой частью. Пусть спрашиваемый призовет на помощь свою фантазию, представив, чтобы предупредить слияние и смешение этих точек, что они различного цвета. Синяя и красная точки, конечно, могут быть смежными друг с другом без всякого проницания или уничтожения, ибо если это невозможно, то что же станет с этими точками? Которая из них уничтожится – красная или синяя? А если оба цвета соединятся в один, то какой же новый цвет они произведут путем своего соединения?

Что главным образом дает повод к этим возражениям и в то же время делает столь трудным удовлетворительный ответ на них, так это присущая как нашему воображению, так и нашим чувствам немощь и неустойчивость, обнаруживающаяся при их применении к столь малым объектам. Поставьте на бумаге чернильное пятно и отойдите на такое расстояние, чтобы пятно это стало совершенно невидимым. Вы заметите, что по мере вашего возвращения и приближения пятно сперва будет становиться видимым через короткие промежутки, потом сделается видимым все время, далее получит только более сильную окраску без возрастания в объеме, а затем, когда оно увеличится до такой степени, что станет реально протяженным, воображению все еще будет трудно разбить его на составные части в силу трудности представить такой малый объект, как единичная точка. Эта неустойчивость влияет на большинство наших рассуждений относительно данного предмета и делает для нас почти невозможным понятным образом и в надлежащих выражениях ответить на многие вопросы, которые могут возникнуть по его поводу.

III. Многие из возражений против неделимости частей протяжения были взяты из математики, хотя на первый взгляд наука эта кажется скорее благоприятной для данной теории: противореча последней в своих доказательствах, она зато совершенно согласуется с ней в своих определениях. Таким образом, моей задачей в настоящее время должны быть защита определений и опровержение доказательств.

Поверхность определяется как длина и ширина без глубины, линия – как длина без ширины и глубины, точка – как нечто не имеющее ни длины, ни ширины, ни глубины. Все это, очевидно, совершенно непонятно при всяком ином предположении, кроме предположения о том, что протяжение составлено из неделимых точек, или атомов. Иначе как могло бы нечто существовать, не имея ни длины, ни ширины, ни глубины?

На этот аргумент было, насколько я знаю, дано два различных ответа, ни один из которых не является, на мой взгляд, удовлетворительным. Первый состоит в том, что объекты геометрии, т. е. те поверхности, линии и точки, отношения и положения которых она исследует, суть просто идеи в нашем уме и что объекты эти не только никогда не существовали, но и никогда не могут существовать в природе. Они никогда не существовали, ибо никто не станет претендовать на то, чтобы провести линию или образовать поверхность, вполне соответствующую данному определению. Они никогда не могут существовать, ибо мы из самих этих идей можем вывести доказательства их невозможности.

Но можно ли вообразить что-либо более нелепое и противоречивое, чем это рассуждение? Все, что может быть представлено посредством ясной и отчетливой идеи, необходимо заключает в себе возможность своего существования; и всякий, кто берется доказать невозможность существования чего-либо с помощью аргумента, основанного на ясной идее, в действительности утверждает, что у нас нет ясной идеи об этом, потому что у нас есть ясная идея. Напрасно искать какое-либо противоречие в том, что отчетливо представляется нашим умом. Если бы в этом заключалось какое-нибудь противоречие, оно совсем не могло бы быть представлено.

Таким образом, нет ничего среднего между допущением по крайней мере возможности неделимых точек и отрицанием их идеи; последний принцип и лежит в основании второго ответа на вышеизложенный аргумент. Было высказано мнение[8]8
  L’art de penser.


[Закрыть]
, что хотя невозможно представить длину без всякой ширины, однако с помощью абстракции без разделения мы можем рассматривать первую, не принимая в расчет второй, точно так же как мы можем думать о длине пути между двумя городами, не обращая внимания на его ширину. Длина неотделима от ширины как в природе, так и в наших мыслях; но это не исключает ни частичного их рассмотрения, ни объясненного выше различения разумом.

Опровергая этот ответ, я не стану опираться на уже в достаточной степени выясненный мною аргумент: если ум не может достигнуть минимума в своих идеях, то его способность [представления] должна была бы быть бесконечной, чтобы он мог охватить бесконечное число частей, из которых состояла бы его идея любого протяжения. Я постараюсь теперь найти новые нелепости в этом рассуждении.

Поверхность ограничивает тело, линия – поверхность, точка – линию; но я утверждаю, что, если бы идеи точки, линии или поверхности не были неделимы, мы вовсе не могли бы представить этих ограничений. Предположим, что эти идеи бесконечно делимы, и пусть затем воображение постарается остановиться на идее последней поверхности, линии или точки; оно тотчас заметит, что идея эта распадается на части; остановившись же на последней из этих частей, оно тотчас потеряет точки опоры в силу нового деления и т. д. in infinitum без малейшей возможности дойти до заключительной идеи. Все это количество делений так же мало приближает его к последнему делению, как и первая идея, им образованная. Каждая частица ускользает от схватывания благодаря новому делению, точно ртуть, которую мы пытаемся схватить. Но поскольку фактически должно существовать нечто ограничивающее идею каждого конечного количества и поскольку сама эта ограничивающая идея не может состоять из частей, или более подчиненных идей, иначе последняя из ее частей ограничивала бы собой данную идею и т. д., это и есть ясный довод в пользу того, что идеи поверхностей, линий и точек не допускают деления: идеи поверхностей – по отношению к глубине, идеи линий – по отношению к ширине и глубине, а идеи точек – по отношению ко всякому измерению.

Сила этого аргумента столь чувствовалась схоластиками, что некоторые из них утверждали, будто природа примешала к тем частицам материи, которые делимы до бесконечности, некоторое число математических точек с целью ограничения тел; другие же обходили силу этого рассуждения с помощью массы непонятных ухищрений и различений. И те и другие противники одинаково признают себя побежденными. Тот, кто прячется, столь же очевидно признает превосходство своего врага, как и тот, кто прямо сдает свое оружие.

Итак, определения математиков, по-видимому, подрывают мнимые доказательства; если у нас есть соответствующая этим определениям идея неделимых точек, линий и поверхностей, то и существование их, несомненно, возможно; если же у нас нет такой идеи, то мы вовсе не можем представить себе ограничение какой-либо фигуры, а без такого представления не может быть и геометрического доказательства.

Но я иду дальше и утверждаю, что ни одно из указанных доказательств недостаточно веско для того, чтобы установить такой принцип, каким является принцип бесконечной делимости, и это потому, что в применении к столь малым объектам доказательства эти оказываются, собственно, недоказательствами, будучи построены на неточных идеях и небезукоризненно истинных правилах. Когда геометрия решает что-либо относительно соотношений количества, мы не должны ожидать особой точности: ни одно из ее доказательств не достигает таковой; она берет измерения и соотношения фигур верно, но грубо и с некоторой вольностью. Ошибки ее никогда не бывают значительными, да она бы и вообще не ошибалась, если бы не стремилась к столь абсолютному совершенству.

Прежде всего я спрошу математиков, что они подразумевают, когда говорят, что одна линия или поверхность равна, больше или меньше другой? Пусть ответит на это любой из них независимо от того, к какой секте он принадлежит и придерживается ли он теории, согласно которой протяжение состоит из неделимых точек или же из количеств, делимых до бесконечности. Вопрос этот приведет в смущение сторонников той и другой теории.

Математиков, защищающих гипотезу неделимых точек, либо немного, либо совсем нет, а между тем они-то и могут дать самый легкий и верный ответ на указанный вопрос. Им нужно только ответить, что линии или поверхности равны, когда число точек в каждой из них равно, и что с изменением соотношения между числом точек изменяются и соотношения между линиями и поверхностями. Но, несмотря на точность, а равно и очевидность этого ответа, я все же могу утверждать, что такое мерило равенства совершенно бесполезно и что мы никогда не определяем взаимного равенства или неравенства объектов на основании подобного сравнения. Ввиду того что точки, входящие в состав любой линии или поверхности, независимо от того, воспринимаются ли они зрением или осязанием, так малы и так смешаны друг с другом, что ум совершенно не в состоянии сосчитать их число, подобное счисление никогда и не пригодится нам в качестве мерила суждения о соотношениях. Никто никогда не будет в состоянии определить с помощью точного подсчета, что в дюйме меньше точек, чем в футе, или что в футе их меньше, чем в эле или какой-нибудь большей единице меры; в силу этого мы редко и даже никогда не признаем этот подсчет мерилом равенства или неравенства.

Что же касается тех, кто воображает, что протяжение делимо in infinitum, то они совершенно не могут воспользоваться указанным ответом, т. е. определить равенство какой-нибудь линии или поверхности с помощью подсчета ее составных частей. Ведь, согласно их гипотезе, как наименьшие, так и наибольшие протяженности содержат в себе бесконечное число частей; бесконечные же числа, собственно говоря, не могут быть ни равными, ни неравными друг другу, а значит, равенство или неравенство каких угодно долей пространства вовсе не может зависеть от соотношения числа их частей. Можно, правда, сказать, что неравенство между элем и ярдом состоит в различных числах составляющих их футов, а неравенство фута и ярда – в числе составляющих их дюймов. Но так как та величина, которую мы называем дюймом в одном случае, предполагается равной той, которую мы называем дюймом в другом, и так как для ума оказывается невозможным определить это равенство путем продолжения in infinitum подобных ссылок на меньшие величины, то очевидно, что в конце концов мы должны установить некоторое мерило равенства, отличное от перечисления частей.

Некоторые[9]9
  Барроу. Математические лекции.


[Закрыть]
утверждают, что равенство лучше всего определяется как совпадение и любые две фигуры бывают равны, когда при наложении одной на другую все их части соответствуют друг другу и взаимно соприкасаются. Чтобы оценить это определение по достоинству, примем во внимание, что равенство, будучи отношением, строго говоря, не является свойством самих фигур, а происходит исключительно от сравнения, которому подвергает их ум. Таким образом, если равенство состоит в этом воображаемом сопоставлении и взаимном соприкосновении частей, то мы должны по крайней мере иметь отчетливое представление об этих частях и представлять себе их соприкосновение. Однако ясно, что при подобном представлении мы будем сводить эти части к самой малой величине, какая только может быть представлена, так как соприкосновение крупных частей еще не делает фигур равными. Но самыми малыми частями, какие мы только можем представить, являются математические точки, а следовательно, данное мерило равенства тождественно тому, которое основано на равенстве числа точек и которое мы уже определили как правильное, но бесполезное. Итак, мы должны искать какое-нибудь иное решение данного затруднения.

Многие философы отказываются указать какое бы то ни было мерило равенства и утверждают, что достаточно показать два равных объекта, чтобы дать нам верное представление об этом соотношении. Всякие определения, говорят они, бесплодны без восприятия подобных объектов; а если мы воспринимаем такие объекты, нам не нужно больше никакого определения. Я совершенно согласен с этим рассуждением и утверждаю, что единственное полезное представление о равенстве или неравенстве получается на основании общего вида отдельных объектов, рассматриваемых целиком, и на основании сравнения их.

Очевидно, что глаз, или вернее ум, часто способен с первого взгляда определить соотношения тел и решить, равны ли они друг другу, или же одно из них больше либо меньше другого, – решить, не рассматривая и не сравнивая числа их минимальных частей. Такие суждения не только обычны, но во многих случаях достоверны и безошибочны. Когда нам показывают такие меры, как ярд и фут, то ум точно так же не сомневается в том, что первый больше второго, как он не сомневается в самых ясных и самоочевидных принципах.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации