Электронная библиотека » Джонатан Бэлкомб » » онлайн чтение - страница 4

Текст книги "Что знает рыба"


  • Текст добавлен: 21 апреля 2022, 18:32


Автор книги: Джонатан Бэлкомб


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +18

сообщить о неприемлемом содержимом

Текущая страница: 4 (всего у книги 16 страниц) [доступный отрывок для чтения: 5 страниц]

Шрифт:
- 100% +

Клетки, высвобождающие феромоны, расположены в коже и настолько легко разрушаются, что разрываются и выпускают это вещество, если рыбу положить на мокрую бумагу. Это очень сильное вещество[171]171
  Reebs. Fish Behavior.


[Закрыть]
: тысячной доли миллиграмма измельченной кожи достаточно, чтобы вызвать реакцию испуга у другой рыбы в аквариуме объемом 16,8 литра. Это все равно, что раскрошить кусочек зефира на 20 миллионов частей, бросить одну часть (если вы еще сумеете ее разглядеть) в полную воды раковину, а затем попробовать ощутить сладкий вкус. Феромоны, очевидно, возникли в процессе эволюции достаточно давно[172]172
  R. Jan F. Smith. Alarm Signals in Fishes // Reviews in Fish Biology and Fisheries 2, 1992. P. 33–63; Wolfgang Pfeiffer. The Distribution of Fright Reaction and Alarm Substance Cells in Fishes // Copeia 1977, no. 4 (1977). P. 653–665.


[Закрыть]
, потому что они вырабатываются у представителей разных семейств костных рыб.

Будучи легкодоступным сигналом, феромон действует наподобие пожарной сигнализации, и им могут пользоваться другие рыбы, оказавшиеся рядом, в том числе представители иных видов, которые также способны его распознавать. Подходящий пример – черные толстоголовы[173]173
  Pimephales promelas – рыба семейства карповых, родом из Северной Америки. – Прим. перев.


[Закрыть]
. Почуяв запах фекалий щук[174]174
  Grant E. Brown, Douglas P. Chivers, and R. Jan F. Smith. Fathead Minnows Avoid Conspecific and Heterospecific Alarm Pheromones in the Faeces of Northern Pike // Journal of Fish Biology 47, no. 3 (1995). P. 387–393.; Effects of Diet on Localized Defecation by Northern Pike, Esox lucius // Journal of Chemical Ecology 22, no. 3 (1996). P. 467–475.


[Закрыть]
, которые ранее поедали других черных толстоголовов или ручьевых колюшек (оба этих вида вырабатывают в коже «вещество страха»), они немедленно бросаются в укромные места или сбиваются в плотные стаи. Но если щуки питались только меченосцами, которые не вырабатывают феромон, толстоголовы не проявляют никаких признаков страха. Таким образом, толстоголовы реагируют не на запах щуки. Вместо этого они обнаруживают и реагируют на феромон жертв щуки. Вероятно, именно из-за обонятельных способностей рыб вроде толстоголовов щуки стараются не опорожнять кишечник в своих охотничьих угодьях[175]175
  Brown, Chivers, and Smith. Localized Defecation by Pike: A Response to Labelling by Cyprinid Alarm Pheromone? // Behavioral Ecology and Sociobiology 36 (1995). P. 105–110.


[Закрыть]
.

Реакция на schreckstoff иллюстрирует умение рыб улавливать самые незначительные сигналы из растворенных в воде химических веществ. Но феромон – это не единственный способ обнаружить врага рыбы по запаху. Есть и старый добрый способ – простое распознание запаха хищника. Молодые лимонные акулы реагируют на запах американских крокодилов, которые иногда охотятся на них[176]176
  Robert E. Hueter et al. Sensory Biology of Elasmobranchs // Biology of Sharks and Their Relatives. Jeffrey C. Carrier, John A. Musick, and Michael R. Heithaus (eds.). Boca Raton, FL: CRC Press, 2004.


[Закрыть]
. Если же вы – атлантический лосось, то ваша реакция на хищника зависит от того, что он съел. В исследовании, проведенном в Университете в Суонси, Уэльс, молодым лососям, никогда не встречавшимся с хищником, предложили воду, содержащую следы экскрементов одного из их естественных врагов – европейской выдры. Лососи демонстрировали ответную реакцию страха, только если выдра пообедала лососем. В таких случаях они уплывали из области запаха, затем неподвижно замирали, а их дыхание учащалось. Лососи, подвергшиеся воздействию чистой воды или экскрементов выдр, кормленных не лососем, не проявляли беспокойства. Ученые пришли к заключению, что атлантические лососи явно не обладают врожденной способностью распознавать выдр как угрозу: они воспринимают животное как опасность, только если лосось входит в его меню. Этот способ обнаружения хищника работает хорошо, потому что не требует изучения запахов различных хищников. Вместо этого можно просто научиться распознавать тех, кто поедал твоих сородичей[177]177
  Laura Jayne Roberts and Carlos Garcia de Leaniz. Something Smells Fishy: Predator-Naïve Salmon Use Diet Cues, Not Kairomones, to Recognize a Sympatric Mammalian Predator // Animal Behaviour 82, no. 4 (2011). P. 619–625.


[Закрыть]
.

Если у избегания хищников и найдется соперник в игре на выживание, то один из вариантов – поиск брачного партнера. Было обнаружено, что запахи играют важную роль в сексуальной привлекательности у человека; точно так же половые феромоны возбуждают рыб. Прежде всего они помогают рыбам выяснить, кто еще находится в состоянии готовности к нересту. Рыбы обладают способностью ощущать очень слабые сексуальные сигналы и выгодно пользоваться этим. Эксперименты, проводившиеся с 1950-х годов, показали, что самцы бычка Bathygobius soporator начинают свои брачные демонстрации, если в их аквариум добавить воду из другого аквариума, в котором содержится готовая к размножению самка этого вида[178]178
  W. N. Tavolga. Visual, Chemical and Sound Stimuli as Cues in the Sex Discriminatory Behaviour of the Gobiid Fish Bathygobius soporator // Zoologica 41 (1956). P. 49–64.


[Закрыть]
. Более поздние исследования показывают, что самки могут быть не менее восприимчивыми или активными в брачных играх. Самки одного из видов меченосцев (Xiphophorus birchmanni) из Мексики умеют отличать друг от друга запахи хорошо питающихся и живущих впроголодь самцов своего вида – 5–7-сантиметровых жителей быстрых тропических рек[179]179
  Heidi S. Fisher and Gil G. Rosenthal. Female Swordtail Fish Use Chemical Cues to Select Well-Fed Mates // Animal Behaviour 72 (2006). P. 721–725.


[Закрыть]
, – и вы, вероятно, можете догадаться, кого из них они предпочитают: при прочих равных условиях хорошо откормленная рыба накопила больше ресурсов, что делает ее лучшим донором спермы. Самки меченосцев не различают запах хорошо питающихся и голодных самок, и это дает основание предполагать, что они реагируют на мужские половые феромоны, а не просто на выделения, связанные с пищей.

Пока что мы исследовали системы органов чувств рыб по отдельности, но они не должны работать отдельно друг от друга. Самцы глубоководных удильщиков иллюстрируют взаимодействие органов чувств[180]180
  Theodore W. Pietsch. Oceanic Anglerfishes: Extraordinary Diversity in the Deep Sea. Berkeley, CA: University of California Press, 2009.


[Закрыть]
. Они обладают самыми большими ноздрями относительно размеров головы среди всех животных на Земле, если верить Тэду Питчу, ведущему мировому специалисту по рыбам-удильщикам. Его книга «Океанские удильщики» (Oceanic Anglerfishes) – удивительно подробный и щедро иллюстрированный источник всего, что в настоящее время известно об этих причудливых рыбах.

У самца удильщика развито не только обоняние[181]181
  Ibid.


[Закрыть]
; зрение ему под стать, и Питч полагает, что эти два чувства, обоняние и зрение, работают в тандеме, чтобы помочь самцам разыскивать самок в темных глубинах. Самка выделяет видоспецифичный феромон, и прекрасное обоняние самца помогает направить его в сторону соответствующего его виду аромата. Это важная задача, потому что существует не менее 162 известных видов удильщиков, бороздящих самый большой в мире биотоп, и вряд ли кто пожелает спариваться с представителем другого вида. Когда самец удильщика подбирается достаточно близко к самке, он может убедиться, что она принадлежит к его виду, по особенностям света, который она испускает при помощи светящихся бактерий, живущих в том числе в ее нитевидной приманке. Можно даже представить себе время в далеком прошлом, когда бог глубоководных удильщиков провозгласил: «Да будет свет!» – и из процесса обнаружения брачного партнера исчезла львиная доля блужданий наугад. Последнее замечание, касающееся обонятельного поведения рыб: консервативно настроенная научная общественность в своей массе полагала, что выделение рыбами химических веществ для общения происходит пассивно и не находится под сознательным контролем, поскольку они лишены наружных запаховых желез или поведения, связанного с оставлением запаховых меток. Это довольно шаткое предположение. Взгляните на проведенное в 2011 году учеными исследование наших приятелей – меченосцев[182]182
  Gil G. Rosenthal et al. Tactical Release of a Sexually-Selected Pheromone in a Swordtail Fish // PLoS ONE 6, no. 2 (2011). P. e16994. doi:10.1371/journal. pone.0016994.


[Закрыть]
. В их биотопах, отличающихся быстрым течением, самцы используют как минимум две тактики, чтобы заставить самок уловить их феромоны: (1) испускают мочу чаще, когда ощущают внимание со стороны самок, и (2) во время ухаживания располагаются чуть выше по течению относительно самки.

Как бы то ни было, это подразумевает, что в дополнение к возможности определить готовность самца к размножению по запаху, самки меченосцев могут также ощутить его на вкус. А что еще могла бы продегустировать рыба?

Рыбы с хорошим вкусом

У рыб вкус используется главным образом для распознавания пищи. Как и у всех прочих крупных групп позвоночных – земноводных, пресмыкающихся, птиц и млекопитающих, – важнейшими органами вкуса являются вкусовые почки[183]183
  Автор ссылается на обзор, соавтором которого выступил один из крупнейших специалистов по физиологии вкуса у рыб, профессор МГУ А. О. Касумян.


[Закрыть]
[184]184
  Превосходный обзор вкусовых предпочтений у рыб можно найти здесь: Kasumyan and Døving. Taste Preferences in Fish.


[Закрыть]
. Также рыбы демонстрируют самые разнообразные типы зубов (всего их восемь)[185]185
  Согласно одной из нескольких возможных классификаций.


[Закрыть]
, среди которых резцы для откусывания, клыки для прокалывания, коренные зубы для размола, уплощенные треугольные зубы для резания и зубы, слившиеся в клювы для соскребания морских водорослей с кораллов.

Как и у нас, у рыб есть языки и вкусовые рецепторы, связанные со специализированными нервами, которые передают сигналы о вкусе в мозг. Неудивительно, что значительная часть вкусовых почек у рыб располагается во рту и в глотке. Но из-за того что рыбы в прямом смысле погружены в среду, которую они обоняют и пробуют на вкус[186]186
  McFarland. Oxford Companion to Animal Behavior; Sosin and Clark. Through the Fish’s Eye.


[Закрыть]
, у многих из них также есть вкусовые почки на других частях тела, чаще всего на губах и рыле. Также вкусовых почек у рыб больше, чем у многих других животных. Например, на теле 30-сантиметрового канального сомика, в том числе на плавниках, около 680 000 вкусовых почек[187]187
  Thomas E. Finger et al. Postlarval Growth of the Peripheral Gustatory System in the Channel Catfish, Ictalurus punctatus // The Journal of Comparative Neurology 314, no. 1 (1991). P. 55–66.


[Закрыть]
 – это примерно в 100 раз больше, чем у человека. Эти и другие рыбы мутных вод прокладывают себе путь на окружающей местности на вкус[188]188
  Здесь можно упомянуть и ориентирование по запаху. Собственно, кроме зрения, большинство других систем в мутной воде работают.


[Закрыть]
. (Как я ни старался, я не смог представить себе, какие ощущения я испытывал бы, если бы все мое тело могло работать как язык, но практически уверен, что захотел бы наличия кнопки «выключить».) Пещерные рыбы также получают выгоду от обилия вкусовых почек, которые обеспечивают им высокоточную систему распознавания вкусов, помогающую обнаруживать пищу в темноте[189]189
  Yoshiyuki Yamamoto. Cavefish // Current Biology 14, no. 22 (2004). P. R943.


[Закрыть]
. Многие из рыб, кормящихся на дне, в том числе сомы, осетры и карпы, обладают усами – тонкими чувствительными выростами, которые обычно расположены вокруг рта и служат органами вкуса[190]190
  Norman and Greenwood. History of Fishes.


[Закрыть]
.

Если вам все же интересно, для чего рыбам нужно чувство вкуса, то, в общем, для того же, что и нам. У рыб есть свои предпочтения в пище, которые могут отличаться у разных видов и даже у разных особей. Рыбе может потребоваться какое-то время, чтобы определить съедобность пищи; если вы наблюдали за рыбами в аквариумах, то могли видеть, как они иногда по нескольку раз хватают кусочек пищи в рот, выплевывают его и снова схватывают, и только потом либо глотают его, либо отвергают. Общие вкусовые предпочтения в рамках одного вида рыб и внутри различных популяций одного и того же вида в целом меняются не так сильно, как в случае этнических или других групп у людей. Но это же самое может не оказаться справедливым для индивидуальных предпочтений. В нашем случае просто подумайте о брюссельской капусте, о предпочтении острого или нежного вкуса, о головокружительном множестве вариаций на тему чашки кофе в наши дни. Исследования радужной форели и карпа установили, что привередливые едоки среди них – не редкость.

Реакция рыб на неприятные вкусы напоминает нашу собственную. Точно так же, как мы быстро выплевываем еду (настолько изящно, насколько это возможно, если все происходит в общественном месте), если вдруг откусили кусок плода или мяса, неожиданно оказавшийся гнилым, европейский морской язык выражает свое отвращение к пище, решительно разворачиваясь и быстро уплывая от нее прочь, и при этом трясет головой в разные стороны. Стефан Рибс, автор книги «Поведение рыб в аквариуме и в природе» (Fish Behavior in the Aquarium and in the Wild), описывает реакцию рыбы на вкус головастиков жабы (особенно неприятный), когда она попробовала их в своей родной обстановке: «Стоит сказать, что лишь очень голодный большеротый окунь, не имея иного выбора, унизится до того, чтобы есть головастиков жабы. Но если реакция других рыб, которые по ошибке берут головастиков в рот, ничем не примечательна, то он яростно трясет головой, и вы почти можете увидеть гримасу отвращения на его морде – включение головастиков в меню оказывается не таким уж приятным кулинарным опытом для рыбы»[191]191
  Reebs. Fish Behavior. P. 86.


[Закрыть]
.

Жизнь в относительно плотной водной среде не только накладывает некоторые ограничения, но и предоставляет рыбам возможность ощущать то, что недоступно обитающим на суше животным. Можете ли вы представить себе разговор с соседом с использованием электрических импульсов? В следующей части книги мы выйдем за рамки основных чувств и познакомимся с несколько менее привычными нам способами, которые используют рыбы, чтобы ощущать свое окружение.

Навигация и осязание

Для жаждущей плоти довольно малейшего контакта, чтобы возникло электричество.

Уоллес Стегнер[192]192
  Wallace Stegner. Angle of Repose. N. Y.: Doubleday, 1971.


[Закрыть]

Рыбы, как правило, должны оставаться в движении, чтобы удовлетворять свои потребности, и оказываться в определенных местах в определенное время, если собираются и дальше успешно продолжать жить и производить на свет еще больше рыб. Как и мы сами, в разное время дня часть рыб возвращается в одни и те же места вроде кормовых участков, укрытий, мест для сна и станций очистки. В определенное время года они возвращаются в места брачных игр, на нерестилища и гнездовые участки. Проживая в сложной объемной среде обитания, рыбы сталкиваются с пространственной обстановкой, заставляющей мозг работать.

Рыбы – превосходные навигаторы; они используют самые разнообразные методы прокладки пути следования как на малых, так и на больших дистанциях. Слепые пещерные рыбы живут в относительно маленьких пещерных биотопах, но большинство их обитает в полной темноте, поэтому для них особенно важно наличие хороших навигационных способностей. Эти маленькие рыбки могут запоминать последовательный порядок чередования ориентиров на пути к месту назначения, ощущая завихрения воды, отражающейся от подводных препятствий. Меч-рыбы, рыбы-попугаи и лосось нерка пользуются солнечным компасом, соотнося направление своего движения с углом к солнцу[193]193
  Helfman et al. Diversity of Fishes. 2009.


[Закрыть]
. Однако другие рыбы могут производить счисление пути[194]194
  Victoria A. Braithwaite and Theresa Burt De Perera. Short-Range Orientation in Fish: How Fish Map Space // Marine and Freshwater Behaviour and Physiology 39, no. 1 (2006). P. 37–47.


[Закрыть]
 – они совершают многочисленные исследовательские вылазки по извилистым маршрутам из исходной точки, а затем возвращаются домой по прямой.

Навигационные достижения лососей уже вошли в легенду. Способность к возвращению на нерест в родные ручьи после нескольких лет в открытом океане возводит этих анадромных (то есть живущих большую часть времени в море и мигрирующих на нерест в пресные воды) рыб в число обладателей одной из самых лучших встроенных систем глобального позиционирования в природе. Насколько нам известно, для полноценной работы эта система задействует по крайней мере два, а то и три сенсорных инструмента: геомагнитное чувство, обоняние и, возможно, зрение.

Подобно акулам, угрям и тунцам, эти рыбы, путешествующие на большие расстояния, ориентируются по магнитному полю Земли. У некоторых рыб существуют специальные магниторецепторные клетки, содержащие микроскопические кристаллы магнетита и действующие как стрелки компаса. Выделяя клетки обонятельного эпителия радужной форели (Oncorhynchus mykiss) (очень близких родственников лососей) и помещая их во вращающееся магнитное поле, команда исследователей из Германии, Франции и Малайзии обнаружила, что поворачиваются сами клетки[195]195
  Stephan H. K. Eder et al. Magnetic Characterization of Isolated Candidate Vertebrate Magnetoreceptor Cells // Proceedings of the National Academy of Sciences of the United States of America 109 (2012). P. 12022–12027.


[Закрыть]
. Частицы магнетита прочно прикреплены к оболочке клетки, и, постоянно выстраиваясь вдоль линий магнитного поля, эти частицы порождают крутящий момент на мембране клетки, когда лосось изменяет направление движения. Этот крутящий момент должен передаваться на те или иные чувствительные к напряжению преобразователи, потому что свидетельства указывают на то, что лососи могут его ощущать.

Также лососи пользуются своим потрясающим обонянием. Двигаясь вниз по течению в сторону океана, молодые лососи «записывают» химические показатели воды по пути следования. Годы спустя они вновь проделывают свой путь[196]196
  Andrew H. Dittman and Thomas P. Quinn. Homing in Pacific Salmon: Mechanisms and Ecological Basis // Journal of Experimental Biology 199 (1996). P. 83–91.


[Закрыть]
, следуя за отличительной «запаховой меткой» родной реки[197]197
  В отечественной науке используется выражение «запах родной реки». О том, что именно становится ориентиром для обоняния лососей, до сих пор продолжаются дискуссии.


[Закрыть]
, словно идут по своему следу в обратном направлении. Лишенные обоняния лососи, ноздри которых биологи заткнули в целях эксперимента, чтобы лишить их способности ощущать запахи, оказались в случайных реках, тогда как рыбы, не подвергшиеся надругательству, вернулись на нерест в родные речки[198]198
  В основе миграций рыб лежит сложный комплекс различных явлений. Одним из крупнейших специалистов в этой области является академик Д. С. Павлов.


[Закрыть]
.

В менее остром эксперименте та же самая исследовательская команда во главе с покойным ныне Артуром Хаслером из Висконсинского университета разделила группу молодых кижучей на две подгруппы, каждая из которых подвергалась воздействию одного из двух различных, безвредных, но пахучих химических соединений – морфолина и фенилэтилового спирта (ФЭС)[199]199
  Arthur D. Hasler and Allan T. Scholz. Olfactory Imprinting and Homing in Salmon: Investigations into the Mechanism of the Homing Process. Berlin: Springer-Verlag, 1983.


[Закрыть]
. По окончании периода воздействия лососи из обеих групп были выпущены вместе прямо в озеро Мичиган. Полтора года спустя, во время нерестовой миграции лососей исследователи капнули морфолин в одну реку, а ФЭС – в другую, расположенную на расстоянии 8 километров от первой. Почти все вновь пойманные лососи в реке с запахом морфолина были из «морфолиновой группы», и почти все их сородичи из «группы ФЭС» направились во вторую реку.

Может ли лосось также пользоваться зрением[200]200
  Hiroshi Ueda et al. Lacustrine Sockeye Salmon Return Straight to Their Natal Area from Open Water Using Both Visual and Olfactory Cues // Chemical Senses 23 (1998). P. 207–212.


[Закрыть]
, чтобы помочь себе ориентироваться? Японская команда исследователей стремилась выяснить это в ходе исследования, включавшего выпуск в океан и повторный отлов нерки. Ученые ослепили перед выпуском некоторое количество рыб, вводя в их глаза углеродистый краситель и кукурузное масло. В ходе повторного отлова через пять дней оказалось, что в родной реке было поймано лишь 25 % этих лососей по сравнению с 40 % в случае рыб из контрольной группы. Авторы предположили, что эти рыбы все же пользуются зрением, чтобы добраться до входа в родную реку, но я нахожу данный результат неубедительным. Я подозреваю, что боль, страдание и последующая дезориентация, вызванные ослеплением лосося при введении чужеродных веществ, могли бы объяснить их меньший успех в поиске дороги домой. Чтобы лучше проконтролировать это, следовало бы ввести некоторым лососям сходное количество раствора, который не вызывает слепоту. Но я этого не рекомендую.

Датчики давления

Рыбы не только способны самостоятельно прокладывать свой путь; у них есть и другая система ориентации, которая позволяет им точно отслеживать движения соседей. Подобно стайным птицам, которые пользуются зрением и легко запускаемыми рефлексами для координации направления полета со своими соседями, большие стаи рыб могут менять направление движения на первый взгляд как единое целое, словно подчиняясь некоторому внутреннему знанию о решении всех остальных особей. Неясно, кто запускает все это и не начинается ли цепная реакция со случайной особи, делающей первое движение[201]201
  Для рыб характерна эквипотенциальная стая, то есть стая без выраженного доминирования отдельных членов. В таких стаях нет лидера, по крайней мере постоянного.


[Закрыть]
.

Некоторые натуралисты прошлого приписывали это поведение форме телепатии, но анализ последовательности движений, зафиксированной методом замедленной съемки, дает нам весьма прозаичное объяснение: мельчайшие задержки в распространении движения по стае показывают, что рыбы реагируют на движения друг друга. Их сенсорные системы работают с такой малой задержкой по времени, что создается впечатление, будто они все меняют направление как единое целое.

В дневное время острое зрение помогает стайным рыбам двигаться синхронно, как птицы. Но в отличие от птиц (или от людей, которые решатся попробовать) они продолжают двигаться как единое целое даже в темноте. Как же им это удается? Это происходит благодаря так называемой боковой линии, образованной специализированными чешуями, которые тянутся вдоль боков рыб. Боковая линия обычно заметна как тонкая темная линия, потому что в каждой чешуйке имеется углубление, создающее тень[202]202
  Norman and Greenwood. History of Fishes.


[Закрыть]
. Углубление наполнено нейромастами – группами чувствительных клеток, каждая из которых снабжена похожим на волосок выростом, заключенным в крохотную гелевую капсулу[203]203
  Боковая линия устроена сложнее, причем у разных видов рыб по-разному. Нейромасты состоят из волосковых клеток, сходных с теми, что расположены во внутреннем ухе. Волоски погружены в желеобразную среду – купулу. У большинства костистых рыб нейромасты располагаются на дне особого канала, который проходит вдоль тела сквозь чешую. С поверхностью тела нейромасты сообщаются через тонкие отверстия в чешуе. Часто каналов боковой линии бывает несколько. Вся эта система иннервируется нервами боковой линии.


[Закрыть]
. Изменения давления и турбулентности воды, в том числе волны, образующиеся при движении самой рыбы и отраженные от окружающих объектов, приводят к отклонениям волосков нейромастов, которые вызывают появление нервных импульсов, поступающих в мозг рыбы. Поэтому боковая линия действует подобно системе гидролокаторов и особенно полезна ночью и в мутных водах.

Благодаря боковой линии рыбы, плавающие близко друг к другу, фактически находятся в физическом контакте[204]204
  Myrberg and Fuiman. Sensory World of Coral Reef Fishes.


[Закрыть]
; передача сигналов между ними сопоставима с передачей визуальной информации[205]205
  В отличие от зрения боковая линия работает только на коротких расстояниях. По устройству рецепторов обнаруживается больше сходства со слухом.


[Закрыть]
и вызывает формирование гидродинамических образов. Именно способность формировать последние позволяет слепым пещерным рыбам обнаруживать неподвижные объекты вроде камней и кораллов по искажению обычно симметричного фонового потока, который окружает рыбу в открытой воде. Слепые пещерные рыбы способны создавать когнитивные карты[206]206
  T. Burt de Perera. Fish Can Encode Order in Their Spatial Map // Proceedings of the Royal Society B: Biological Sciences 271 (2004). P. 2131–2134. doi:10.1098/rspb.2004.2867.


[Закрыть]
 – это навык, очень полезный для плавания существ, лишенных приспособлений для зрительной ориентации.

В настоящее время известно, что латерализация[207]207
  Л а т е р а л и з а ц и я – явление разделения психических и иных функций по полушариям мозга. – Прим. перев.


[Закрыть]
мозговых функций широко распространена среди рыб, и эти умные маленькие рыбки также используют свою боковую линию несимметрично, сталкиваясь с незнакомыми предметами. Когда в аквариуме у середины одной из стенок поместили новый пластмассовый ориентир, слепые пещерные рыбы предпочитали проплывать мимо него, задействуя боковую линию на правой стороне тела. Это предпочтение исчезло через несколько часов, когда рыбы познакомились с новым ориентиром и потому чувствовали себя комфортно. Поскольку зрительная система и боковая линия работают у рыб независимо[208]208
  T. Burt de Perera and V. A. Braithwaite. Laterality in a Non-Visual Sensory Modality – The Lateral Line of Fish // Current Biology 15, no. 7 (2005). P. R241–R242.


[Закрыть]
, данный результат позволяет предположить, что латерализация мозга – давно устоявшееся явление. Уже было известно, что рыбы, обладающие зрением, склонны использовать правый глаз в стрессовой ситуации, например при изучении нового (и потому вызывающего страх) объекта.

Как и большинство биологических конструкций, боковая линия несет следы неизбежных компромиссов. Поток воды, возникающий при плавании, воздействует на нейромасты, и этот «фоновый шум» притупляет способность рыбы реагировать на окружающие движения. Эксперименты показывают, что плавающие рыбы отреагируют на движения находящегося неподалеку хищника лишь с половинной вероятностью по сравнению с теми, что стояли на месте[209]209
  Brian Palmer. Special Sensors Allow Fish to Dart Away from Potential Theats at the Last Moment // Washington Post, November 26, 2012. URL: www.washingtonpost.com/national/healthscience/special-sensors-allow-fish-to-dart-away-from-potential-theats-at-the-last-moment/2012/11/26/574d0960–3254–11e2-bb9b-288a310849ee_story.html


[Закрыть]
. При этом рыба способна обнаруживать искажения фронтальной волны, образующейся перед ее собственным носом, когда она плывет вперед, и таким образом не врезаться в объекты, ставшие для нее невидимыми из-за темноты или прозрачности (как стенка аквариума). К сожалению для рыб, эта система плохо пригодна для обнаружения присутствия рыболовной сети.

Электрифицированные

Наличие органа чувств, позволяющего вам избегать столкновения со стеной в темноте, весьма полезно, но представьте себе, что вы умеете обнаруживать присутствие чего-либо по другую сторону стены, когда не можете этого увидеть или услышать. Добро пожаловать в мир электрорецепции.

Электрорецепция – это способность животных воспринимать электрические сигналы окружающей среды. Она почти уникальна для рыб; единственные известные исключения – однопроходные млекопитающие (утконосы и ехидны), тараканы и пчелы[210]210
  Список видов животных, обладающих электрорецепцией, постоянно расширяется. В частности, это явление известно у круглоротых, у целого ряда хрящевых и костных рыб (около 350 видов), у некоторых хвостатых земноводных (например, у гигантской саламандры и аксолотля) и даже у нескольких млекопитающих: утконос, ехидна и один из видов дельфинов (Sotalia guianensis).


[Закрыть]
. Чувствительность к электричеству распространена у акул и скатов[211]211
  Mark E. Nelson. Electric Fish // Current Biology 21, no. 14 (2011). P. R528–R529.


[Закрыть]
. Среди костистых рыб (их 30 000 с лишним видов) более трехсот видов буквально получают заряд жизни, и он, скорее всего, должен быть достаточно ценным в плане адаптивности, потому что эта особенность независимо появлялась у рыб в процессе эволюции по меньшей мере восемь раз. Ее широкое распространение в водных биотопах связано с высокой электропроводностью воды по сравнению с воздухом.

Электрорецепция – это способность к восприятию информации электрической природы. Вероятно, все пластиножаберные рыбы обладают способностью к электрорецепции; они могут обнаруживать электрические раздражители, но не генерируют электричество самостоятельно. Они воспринимают его при помощи сети заполненных гелем пор и каналов, стратегическим образом распределенных по голове. В каналах находятся так называемые ампулы Лоренцини[212]212
  R. Douglas Fields. The Shark’s Electric Sense // Scientific American 297 (2007). P. 74–81.


[Закрыть]
, названные в честь Стефано Лоренцини – итальянского врача, который впервые описал их в 1678 году. Отметив скопление черных пятнышек, которые окружают рыло у акул, словно щетина на небритом лице, Лоренцини удалил кожу и обнаружил трубчатые каналы, к которым подходят нервы. Некоторые из этих каналов были толщиной с нити спагетти.

Роль ампул Лоренцини в электрорецепции оставалась недостаточно изученной до 1960 года[213]213
  R. W. Murray. Electrical Sensitivity of the Ampullae of Lorenzini // Nature 187 (1960). P. 957. doi:10.1038/187957a0.


[Закрыть]
. Они обнаруживают малейшие изменения электрических полей, вызываемые нервными импульсами других организмов, хорошо распространяющимися в воде. Чувствительность этой системы такова, что простого биения сердца рыбы, прячущейся под 15-сантиметровым слоем песка, может быть достаточно, чтобы выдать ее присутствие голодной акуле или сому[214]214
  Helfman et al. Diversity of Fishes. 1997.


[Закрыть]
.

Некоторые костные рыбы активно производят собственные электрические разряды. Без сомнения, вы слышали об электрических угрях. Эти речные жители из Южной Америки могут вырастать до двух с небольшим метров и весить до 20 кг. Они получили свое название за удлиненную форму и не являются настоящими угрями, но принадлежат к семейству гимнотовых. Низковольтные разряды помогают этим рыбам искать дорогу в их мутных биотопах путем распознавания электрических полей, которые отражаются от твердых объектов. Но больше они известны способностью испускать оглушающие добычу электрические разряды напряжением до 600 вольт и больше[215]215
  В книге Н. И. Тарасова «Море живет» (изд. 1949) приводится такой любопытный факт: «Подсчитано, что десять тысяч угрей могли бы дать энергию для движения электропоезда, но только в течение нескольких минут, после чего поезду пришлось бы стоять сутки в ожидании, пока угри восстановят свои силы». – Прим. перев.


[Закрыть]
. Электрические органы располагаются в объединенных в столбики клетках в толще мускулатуры тела. В сложенных столбиком клетках батареи электричество может накапливаться, пока в нем нет необходимости, а затем, если угорь решит им воспользоваться, испускается одномоментно. Это встроенное электрошоковое оружие может использоваться для оглушения или умерщвления добычи, а также для отпугивания нежелательных пришельцев[216]216
  Вы можете спросить, как же этим так называемым сильноэлектрическим рыбам удается избежать нанесения электрошока самим себе. У них есть слои жировой ткани*, которые помогают изолироваться от удара их собственного оружия. Тем не менее иногда и они подергиваются в ответ на собственные удары. – Прим. автора.
  * Nelson. Electric Fish.


[Закрыть]
.

Сила напряжения разрядов электрических угрей и некоторых других рыб вроде электрических скатов снискала им название сильноэлектрических рыб. Но с моей точки зрения, самый интересный способ применения электричества остается за слабоэлектрическими рыбами, которые используют его для более мирной цели – общения с другими особями своего вида. Большинство этих рыб принадлежит к двум группам: к разнообразным рыбам-слоникам из Африки, получившим свое название за удлиненные, направленные книзу рыла, и к ножетелкам из Южной Америки, названным так за похожую на нож форму тела. Как и многие рыбы, владеющие технологиями невидимости, они населяют мутные воды, которые, вероятно, послужили поводом для адаптации – выработки новых невизуальных способов общения. Они общаются при помощи высокочастотных разрядов электрического органа (РЭО) – до 1000 импульсов в секунду, или до 1 килогерца (кГц); это более чем вдвое превышает частоту импульсов у электрического угря[217]217
  Сейчас уже известны рыбы, у которых частота разрядов достигает 2 кГц.


[Закрыть]
.

Они очень умело интерпретируют эти сигналы. Иллюстрация к этому – вид рыб-слоников, который живет в реках и прибрежных бассейнах Западной и Центральной Африки. Когда биологи Штефан Пайнтнер и Бернд Крамер из Института зоологии в Регенсбургском университете (Германия) предложили им искусственные РЭО, рыбы продемонстрировали «поразительную» способность различать разницу во времени импульса вплоть до миллионной доли секунды[218]218
  Paintner and Bernd Kramer. Electrosensory Basis for Individual Recognition in a Weakly Electric, Mormyrid Fish, Pollimyrus adspersus (Günther, 1866) // Behavioral Ecology & Sociobiology 55 (2003). P. 197–208. doi:10.1007/s00265–003–0690–4.


[Закрыть]
. Это составляет конкуренцию эхолокации летучих мышей в качестве самой быстрой формы связи в животном мире.

Изменяя темп, продолжительность, амплитуду и частоту своих РЭО, рыбы-слоники могут обмениваться информацией, касающейся вида, пола, размера, возраста, местоположения, расстояния и готовности к размножению. РЭО также говорят о социальном статусе[219]219
  Nelson. Electric Fish.


[Закрыть]
и эмоциях, в том числе об агрессивности, подчинении и привлечении брачного партнера, для которого сигналы складываются в брачные «песни», что позволяет исполнить серенаду для потенциального спутника жизни при помощи экзотичной композиции из щебетания, скрежета или скрипов. (Когда вы общаетесь со своим объектом страсти при помощи электричества, выражение «между ними проскочила искра» приобретает дополнительный смысл.) Рыбы-слоники могут идентифицировать других особей по их РЭО-подписям, которые отличаются друг от друга и, вероятно, остаются постоянными с течением времени.

Доминирующие особи могут изгонять нарушителей со своей территории, когда обнаруживают их РЭО[220]220
  Andreas Scheffel and Bernd Kramer. Intra– and Interspecific Communication among Sympatric Mormyrids in the Upper Zambezi River // Communication in Fishes. Ladich et al. (eds.). P. 733–751.


[Закрыть]
; это, вероятно, объясняет, почему рыбы зачастую почтительно заглушают свои РЭО, проплывая через территорию соседа. Пары или группы рыб также координируют свои РЭО, создавая «эхо» и запевая «дуэтом». Самцы чередуют импульсы РЭО с другими самцами, тогда как самки синхронизируют их с оцениваемыми самцами.

Если поблизости обменивается сигналами другая группа рыб-слоников или ножетелок, могут возникнуть помехи. Рыбы преодолевают их, используя так называемый прием ухода от помех[221]221
  Theodore H. Bullock, Robert H. Hamstra Jr., and Henning Scheich. The Jamming Avoidance Response of High Frequency Electric Fish // Journal of Comparative Physiology 77, no. 1 (1972). P. 1–22.


[Закрыть]
: если частоты разрядов двух рыб слишком близки и сложно отличить их друг от друга, они исправляют ситуацию, усиливая различия в сигналах. Рыбы в социальной группе поддерживают отличие от сигнала соседей порядка 10–15 Гц[222]222
  A. S. Feng. Electric Organs and Electroreceptors // Comparative Animal Physiology. 4th ed. C. L. Prosser (ed.). N. Y.: John Wiley and Sons, 1991. P. 217–234.


[Закрыть]
, и это гарантирует, что каждая особь обладает персонифицированной частотой разрядов.

Записи сигналов генерирующих РЭО рыб-слоников на Верхней Замбези позволяют предположить, что они используют свои сигналы и для сотрудничества. РЭО, вырабатываемые рыбами, которым угрожает сидящий в засаде хищник, стимулируют соседей присоединиться к тому, что можно назвать системой раннего обнаружения опасности. Если охотничьи успехи хищников будут невелики, это принесет пользу всем рыбам по соседству. Сигналы, которыми обмениваются знакомые друг с другом соседи, могут гарантировать, что все в порядке, и тем самым позволяют избежать необходимости в дорогостоящей защите территории. Такие «заклятые друзья» также становятся партнерами по стае[223]223
  Scheffel and Kramer. Intra– and Interspecific Communication.


[Закрыть]
, когда ощущается нехватка пищи.

Если все это кажется вам слишком сложным для рыбы, придется потратить некоторое время и пересмотреть свое восприятие рыбьего интеллекта. Имейте в виду, что у рыб-слоников самый крупный мозжечок среди всех рыб[224]224
  Размер мозжечка никак не связан с уровнем интеллекта.


[Закрыть]
, и он в большей мере связан с электрокоммуникацией[225]225
  Helfman et al. Diversity of Fishes. 1997.


[Закрыть]
.

Использование электричества для обмена информацией имеет свою цену. Обладающие способностями к электрорецепции хищники могут перехватить сигнал. Это происходит у нильских клариевых сомов, охотящихся стаями во время впечатляющих ежегодных миграций в верховья реки Окаванго в Южной Африке. Значительную часть их рациона в это время составляет вид рыб-слоников, называемый бульдогами[226]226
  Речь идет о Marcusenius altisambesi, который в английском языке носит именно такое обиходное название. На сайте http://fishbase.org для этой рыбы указывается следующее: «Половой диморфизм в форме волн РЭО наблюдается “летом” в виде сильно увеличенной продолжительности РЭО у половозрелых самцов длиной больше стандартных 12,5 сантиметра, но для образцов из Окаванго диморфизм не подтвержден». – Прим. перев.


[Закрыть]
. Сомы распознают местоположение несчастных бульдогов, подслушивая их РЭО. Но здесь все обстоит еще хитрее. Исследования в неволе установили, что РЭО самок бульдогов слишком короткие, чтобы их могли обнаружить сомы, тогда как РЭО самцов – в десять раз длиннее, и сомы могут легко распознавать их. Распределение по размерам бульдогов, обнаруженных в животах у сомов, показывает, что съедаются главным образом самцы. В ходе эволюционной гонки вооружений[227]227
  Ibid.


[Закрыть]
, когда нужно избежать возможности стать чьим-то обедом, можно ожидать от самцов бульдогов укорачивания их РЭО[228]228
  Исследования электрокоммуникации слабоэлектрических рыб уже много лет плодотворно проводятся в Институте проблем экологии и эволюции им. А. Н. Северцова, в группе, которой руководит д. б. н. В. Д. Барон.


[Закрыть]
.

Удовольствие от прикосновения

Если боковая линия и разряды электрических органов чужды нашим сенсорным системам, то осязание конечно же нет. В ходе обсуждения этого знакомого чувства у рыб я хочу объединить его с другим видом ощущений, которое мы часто выводим из прикосновения и редко рассматриваем как часть жизни рыб. Я говорю о чувстве удовольствия.

В своей поэме «Рыба» Д. Г. Лоуренс писал:

 
                       Признаюсь, они кишат в компаниях.
                       Они собираются в молчаливые стаи,
                       Не обмениваясь ни словом, ни жестом,
                       Ни даже злостью.
                       Но вечно вместе, вечно разделены,
                       Каждый сам по себе, наедине с волной,
                       И вместе со всеми, на одной волне.
                       Магнетизм не дает им разбежаться.
 

Мне нравятся эти строки, и мне ясно, что имел в виду Лоуренс: для человека, дышащего воздухом, рыбы, навсегда заключенные в своей более тяжелой и вязкой среде, выглядят ужасно одинокими.


Страницы книги >> Предыдущая | 1 2 3 4 5 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации