Электронная библиотека » Эдвард Шейнерман » » онлайн чтение - страница 3


  • Текст добавлен: 4 июля 2018, 10:40


Автор книги: Эдвард Шейнерман


Жанр: Прочая образовательная литература, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 3 (всего у книги 11 страниц) [доступный отрывок для чтения: 3 страниц]

Шрифт:
- 100% +
Глава 5
i
Еще одна головоломка квадратного корня

В главе 4 мы поразмышляли над «точным» значением числа √2 и пришли к выводу, что его нельзя выразить в виде соотношения двух целых чисел и, следовательно, оно иррационально. Тем не менее мы можем найти его значение с невероятной точностью.

Число √2 не относится к рациональным числам, однако нас не мучает вопрос, существует ли такое число, что x² = 2. Несмотря ни на что, √2 имеет законную прописку где-то между 1,41 и 1,42. Это пример действительного числа[54]54
  Множество всех действительных чисел обозначают ℝ.


[Закрыть]
. Оно может быть выражено так:

± XXXX, XXXXXXXXXX

Символом X помечены разные цифры. Число может быть положительным или отрицательным (знак + перед числом ставить не принято), количество цифр до запятой конечно, количество цифр после запятой бесконечно. Скажем, 1⅔ можно записать так[55]55
  См. главу 3, где подробнее рассказано о периодических десятичных дробях.


[Закрыть]
:

1,666666666666…

Такие числа, как 3/4, в десятичной системе счисления записываются с конечным числом цифр после запятой (0,75), но ничто не мешает прикрутить справа бесконечное количество нулей: 0,7500000000…

Таким образом,  – реальное число, просто иррациональное. Точнее говоря, существует такое число, что x² = 2. Точно так же существует такое число, что x² = 3, а именно И так далее… Или нет?

Всякое ли уравнение x² = a имеет решение? Если a – положительное действительное число (или ноль), тогда решение равно и ответ можно записать в виде десятичного числа сколько угодно точно. Если мы изобразим график y = x² – a (для любого квадратного уравнения он представляет собой параболу), решением будут те точки, где кривая пересекает ось абсцисс, или ось x. Иными словами, это такие значения x, при которых x² = a. На первом рисунке вы можете видеть графики y = x² – 3 и y = x² – 7. Первая парабола пересекает ось абсцисс при вторая парабола – при



Вопрос кардинально меняется, когда мы ищем такое число, что x² = –1. А существует ли оно в принципе? Если возвести в квадрат положительное число, ответом будет положительное число, скажем 5² = 5 × 5 = 25 > 0. Если возвести в квадрат отрицательное число, результат снова будет положительным числом: (–5)² = (–5) × (–5) = 25 > 0. Если возвести в квадрат ноль, получится ноль. Наше положение выглядит безнадежно.

Мы испытаем еще большее отчаянье, когда нарисуем график уравнения y = x² + 1 и увидим, что парабола нигде не пересекает ось абсцисс.



Есть искушение сдаться и объявить: «Нельзя извлекать квадратные корни из отрицательных чисел». На самом деле нам просто не хватает воображения. Да, не существует ни одного действительного числа, удовлетворяющего условию x² = –1, но, возможно, есть какие-то другие?

Мнимые числа

Решение на редкость просто. Раз нет такого действительного числа, что x² = –1, то мы просто создадим новое число, назовем его i и поставим условие i² = –1.

Конечно, в голове сразу зазвучит сигнал тревоги: «Откуда взялось это число? Выдумывать числа нельзя! Что за чепуха!»

Чтобы облегчить душу, назовем новое число мнимым[56]56
  Символ i для обозначения мнимой единицы предложил в конце XVIII века Леонард Эйлер, взяв первую букву латинского слова imaginarius – «мнимый». – Прим. пер.


[Закрыть]
. В наших глазах такое число – второго сорта: мы не кладем i кубиков сахара в чашку кофе и не боимся, что расстояние до университета окажется равным i миль[57]57
  На самом деле так называемые действительные числа ничуть не более реальны, чем мнимые. Мы не кладем в чашку кофе минус три кубика сахара и никогда не говорим, что расстояние от пункта A до пункта B равно в точности √2 Действительные числа полезны для измерения таких физических явлений, как температура или площадь. Мнимые числа полезны в других областях физики, включая квантовую механику и электронику. Все числа мнимые в том плане, что созданы нашим сознанием.


[Закрыть]
.

Мы просто решили поиграть и сами придумали правила. Хорошо, теперь давайте поразмышляем. Посмотрим, на что годно это число i. Мы знаем, что i × i = –1. А как насчет i + i? Если следовать привычным арифметическим правилам, то получится другое мнимое число: 2i. А что, если возвести это число в квадрат? Попробуем!

(2i) ² = (2i) × (2i) = 2 × i × 2 × i = 2 × 2 × i × i = 4 × (i × i) = 4 × (–1) = –4.

Другими словами, число 2i представляет собой квадратный корень из числа –4.

Теперь возведем в квадрат и посмотрим, что получится:



Таким образом, представляет собой квадратный корень из числа –2. Когда мы приютили мнимое число i в семье всех чисел, мы заполучили не просто а в придачу еще и квадратные корни из всех отрицательных действительных чисел! Любое число вида b × i, где b – это действительное число, называют мнимым числом.

Если сложить два мнимых числа, например 2i и 4i, мы получим другое мнимое число: 6i. Если мы перемножим два мнимых числа, например 3i и –2i, то получим действительное число:

3i × (–2i) = 3 × (–2) × i × i = (–6) × (–1) = 6.

Комплексные числа

Чтобы мнимые числа прижились в семье всех чисел, нужно научиться складывать, вычитать, умножать и делить мнимые и действительные числа вместе. Мы будем работать с множеством комплексных чисел. Это расширение множества действительных чисел, включающее все числа вида a + bi, где a и b – действительные числа, например 3 + 4i.

Само число i комплексное, потому что может быть представлено в виде 0 + 1i. Точно так же действительные числа могут быть представлены в виде –7 + 0i.

Складывать комплексные числа несложно, мы просто приводим подобные слагаемые:

(3 + 2i) + (4 – 3i) = (3 + 4) + (2 – 3) i = 7 – i.

Более педантично мы можем записать это так: 7 + (–1) i.

Вычитание ничуть не сложнее:

(3 + 2i) – (4 – 3i) = (3 – 4) + (2 – (–3)) i = –1 + 5i.

Очевидно, что сумма или разность двух комплексных чисел – тоже комплексное число. На языке алгебры мы можем продублировать эту фразу так (числа a, b, c, d здесь – действительные):

(a + bi) + (c + di) = (a + c) + (b + d) i;

(a + bi) – (c + di) = (a – c) + (b – d) i.

Умножение комплексных чисел дается несколько труднее. Попробуем перемножить наших друзей 3 + 2i и 4 – 3i:

(3 + 2i) × (4 – 3i) = 3 × (4 – 3i) + 2i × (4 – 3i) = (3 × 4 – 3 × 3i) + (2i × 4 – 2i × 3i) = (12 – 9i) + (8i + 6) = 18 – i.

На алгебраическом языке произведение двух комплексных чисел выражает формула:

(a + bi) × (c + di) = (ac – bd) + (ad + bc) i.

Очевидно, что при перемножении двух комплексных чисел мы получаем комплексное число.

Из всех арифметических операций деление комплексных чисел сложнее всего. Оно приводит нас к выражению (a + bi) / (c + di), поэтому сначала нам придется поговорить о взаимно обратных числах. Число x называют взаимно обратным числу y, если xy = 1. Например, дробь 1/2 взаимно обратна числу 2.

Какое комплексное число взаимно обратно 1 + 2i? Нам нужно такое число a + bi, что (1 + 2i) × (a + bi) = 1. Докажем, что этому требованию удовлетворяет число



Общая формула для комплексного числа, обратного числу a + bi, выглядит следующим образом:



В этом легко убедиться: достаточно умножить (A) на a + bi, аккуратно произвести все необходимые арифметические действия – и получить в итоге единицу.

Заметим, что оба знаменателя в (A) равны a² + b². Если вдруг эта сумма окажется равной нулю, формула потеряет смысл, потому что деление на ноль запрещено. Но такое возможно лишь в том случае, если a = 0 и b = 0. Другими словами, все комплексные числа имеют взаимно обратные, кроме числа 0 + 0i. Это подтверждает ожидания: ноль – единственное действительное число, не имеющее взаимно обратного, и среди комплексных чисел дело обстоит так же. Но обратное по отношению к любому ненулевому комплексному числу – тоже комплексное число.

Расправившись со взаимно обратными числами, мы можем наконец перейти к делению. Деление числа X на число Y дает такой же результат, как умножение числа X на число, взаимно обратное Y. Следовательно, частное двух комплексных чисел (если делитель не равен нулю) – комплексное число.

Отсюда можно сделать вывод: основные арифметические действия – сложение, вычитание, умножение и деление – прекрасно справляются с комплексными числами. Мы можем проделать эти операции над парой любых комплексных чисел (исключение составляет деление на ноль) и получить комплексное число.

Сейчас мы снова попытаемся извлечь квадратный корень. Сперва именно эта задача загнала нас в тупик. Действительные числа, так сказать, неполноценны: из каких-то квадратный корень извлекается, а из каких-то – нет. И вот мы дополняем действительные числа мнимыми, придумав новое число Мы заново осваиваем арифметические операции, и система действительных чисел разрастается до системы комплексных чисел[58]58
  Строго говоря, в системе действительных чисел должны выполняться соотношения порядка, аксиомы сложения и умножения и свойство полноты. Однако все эти выкладки, конечно, слишком сложны для научно-популярного обзора. – Прим. пер.


[Закрыть]
. Но как решить вопрос с квадратным корнем? Чему равен Нам что, опять нужно изобрести какое-то несуществующее число и создать монструозное множество «сверхкомплексных» чисел?

К счастью, множество комплексных чисел уже содержит все квадратные корни из комплексных чисел. Посмотрим, как извлечь корень из мнимой единицы, не создавая новых сущностей.

Нам нужно найти такое комплексное число a + bi, что (a + bi) ² = i. Начнем с перемножения (a + bi) и (a + bi):

(a + bi) × (a + bi) = (a² – b²) + (2ab) i.

Теперь нам нужно приравнять это выражение к i = 0 + 1 × i. В результате мы получим: a² – b² = 0 и 2ab = 1.

Первое условие тождественно тому, что a = b или a = –b.

Если a = b и 2ab = 1, то 2a² = 1.

Таким образом,

Так как a = b, мы нашли два квадратных корня из мнимой единицы:



Проверьте, так ли это, возведя оба ответа в квадрат.

Если a = –b, решение будет таким же.

Итак, затратив некоторые усилия, мы показали, что извлечение квадратного корня из комплексного числа дает комплексное число, поэтому придумывать новые числа для извлечения корней не нужно.

Основная теорема алгебры

А как насчет кубических корней? Кубический корень из числа c – это такое число x, что x³ = c. Вопрос: входит ли множество корней из комплексных чисел во множество комплексных чисел или нам нужно изобретать еще какие-нибудь новые числа[59]59
  Вот вам испытание: найдите все кубические корни из i.


[Закрыть]
?

Уравнение x³ = c может быть записано иначе: x³ – c = 0. Сформулируем вопрос в общем виде: всякое ли полиномиальное уравнение[60]60
  То есть уравнение вида c0 + c1x1 + … + cmxm = 0. – Прим. пер.


[Закрыть]
имеет решение среди комплексных чисел? Скажем, есть ли такое комплексное число x, что

3x⁵ + (2 – i) x⁴ + (4 + i) x³ + x – 2i = 0?

Принципиально важный факт в теории комплексных чисел состоит в том, что любое полиномиальное уравнение имеет комплексное решение! Об этом говорит основная теорема алгебры. На математическом языке данный тезис можно переформулировать так: поле комплексных чисел[61]61
  На языке математики поле – это такое множество, для элементов которого заданы операции сложения и умножения, обладающие набором определенных свойств (так называемые аксиомы поля). Через них можно определить вычитание и деление. Все эти операции не должны выводить за границы данного множества. – Прим. пер.


[Закрыть]
алгебраически замкнуто.

Вот как звучит это важнейшее утверждение в строгой форме.

Теорема (основная теорема алгебры). Пусть d – положительное целое число и c0, c1, c2, …, cd – комплексные числа, причем cd ≠ 0. Тогда существует такое комплексное число z, что

cdzd + cd – 1zd – 1 + … + c2z² + c1z + c0 = 0.

Поле действительных чисел незамкнуто, потому что среди действительных чисел не всегда можно найти решение полиномиального уравнения с действительными коэффициентами (например, среди действительных чисел нет такого числа a, что a × a + 1 = 0. Доказательство общей теоремы алгебры состоит в том, что решение приведенного выше полиномиального уравнение находят в общем виде.


Глава 6
π
Что такое π?

Число π завораживает человечество на протяжении многих поколений. Оно проникло в массовую культуру (например, стало названием фильма[62]62
  «π» – триллер 1998 года, режиссер Даррен Аронофски. Главный герой фильма занимается теорией чисел. – Прим. пер.


[Закрыть]
и маркой одеколона[63]63
  Имеется в виду одеколон Pi Givenchy. – Прим. пер.


[Закрыть]
). Школьники отмечают День π и соревнуются, кто запомнит больше знаков числа π после запятой[64]64
  День π отмечают 14 марта (3.14), потому что π ≈ 3,14.


[Закрыть]
.

Пи – шестнадцатая буква греческого алфавита. В математике ею обозначают отношение длины окружности к ее диаметру. Длина окружности в π раз длиннее диаметра, или C = πd. Можно записать иначе: C = 2πr, где r – радиус окружности.



Площадь окружности можно вычислить по формуле S = πr².



С помощью числа π можно определить и площадь сферы – 4πr², а также объем шара –

Эти геометрические формулы не сообщают нам величину числа π. Начнем с того, что π больше 3. Нарисуем круг с радиусом 1, впишем в него равносторонний шестиугольник, а затем поделим его на равносторонние треугольники.



Очевидно, что стороны всех треугольников равны 1. Периметр шестиугольника равен 6. Длина окружности несколько больше, чем периметр шестиугольника. Таким образом, 2π > 6, следовательно, π > 3. На рисунке мы видим, что разница между периметрами двух фигур невелика. Значит, π немногим больше 3.

Дальше мы можем поступить наоборот – описать правильный шестиугольник вокруг окружности радиусом 1. Вновь поделим шестиугольник на шесть равных треугольников. Длина любой стороны каждого треугольника будет равна (вы с легкостью поймете, почему это так, применив теорему Пифагора, о которой идет речь в главе 14; объяснение вы найдете в конце главы).



Таким образом, периметр большого шестиугольника равен Периметр окружности немного меньше. Следовательно,



Дальше мы можем снова и снова вписывать в окружность и описывать вокруг нее правильные многоугольники со все бо́льшим количеством сторон. Когда мы дойдем до правильного 100-угольника, точность наших вычислений значительно повысится:

3,1410759… < π < 3,1426266…

В пределе, увеличивая число сторон вписанных и описанных правильных многоугольников до бесконечности, мы будем получать все более точное значение интересующего нас числа:

π = 3,141592653589793238462643383279502884…

Так чему же в точности равно число π? В главе 4 мы уже выяснили, что число иррационально, то есть не может быть выражено через отношение двух целых чисел. Так же обстоит дело и с числом π. Школьников часто просят запомнить, что но это лишь приблизительное значение[65]65
  Дробь Другое соотношение ближе к истине:


[Закрыть]
.

Число π не так-то просто представить в виде ряда, но вот пара попыток:



В обоих случаях необходимо вести счет до бесконечности, но это не в наших силах. Мы можем остановиться после некоторого количества шагов и найти приблизительное значение интересующего нас числа.

Ни та ни другая формула на практике не используются. Когда мы доведем расчеты по формуле (A) до получится, что π ≈ 3,134. Когда мы доведем расчеты по формуле (B) до получится, что π ≈ 3,13159.

Число π можно вычислить быстрее и точнее с помощью гораздо более изощренных алгоритмов. Для науки и инженерного дела достаточно знать где-то 30 знаков после запятой. Исключительно ради забавы и спортивного интереса математики и программисты вычислили число π с точностью больше триллиона знаков после запятой.

Трансцендентность

Числа π и  – иррациональные, но мы можем сделать более сильное утверждение: число π – трансцендентно.

Рациональные числа выражаются через соотношение целых чисел; скажем, 5/2, – 2/3, 7/1. Иными словами, это решения уравнений вида ax + b = 0, где a и b – целые числа. Например, 5/2 – это решение уравнения 2x – 5 = 0.

Число не входит во множество рациональных чисел (см. главу 4) и не является решением линейного уравнения вида ax + b = 0, где a и b – целые числа. Зато оно является решением квадратного уравнения x² – 2 = 0.

А что насчет π? Оно иррационально и, конечно, тоже не является решением линейного уравнения с коэффициентами среди целых чисел. Может быть, оно является решением какого-нибудь квадратного уравнения с коэффициентами среди целых чисел: ax² + bx + c = 0? Придется вас разочаровать, это не так. А может, стоит повысить степень? Кубическое уравнение ax³ + bx² + cx + d = 0? Снова нет. Биквадратное? Уравнение пятой степени? Сотой? Миллионной?..

На самом деле число π не является решением полиномиального уравнения любой степени с целочисленными коэффициентами. Другими словами, нет такого уравнения

anxⁿ + an–1xⁿ–1 + … + a2x² + a1x + a0 = 0

(где любое ak представляло бы собой целое число), куда можно было бы подставить π вместо x, чтобы все сошлось. Это и означает, что число π трансцендентное.

Взаимно простые числа

Странным образом число π встречается в областях математики, не имеющих ничего общего ни с кругами в частности, ни с геометрией в целом. Например, число π мистически входит в формулу Стирлинга для вычисления приблизительного значения факториалов (см. главу 10). А сейчас мы узнаем, как наше заветное число связано с важным свойством очередного вида целых чисел – взаимно простых.

Два положительных целых числа называют взаимно простыми, если их единственный общий делитель равен 1 (при этом по отдельности они могут быть и составными).

Например, присмотримся к числам 15 и 28. У них следующие делители:



Таким образом, 15 и 28 взаимно простые.

С другой стороны, числа 21 и 35 не взаимно простые, потому что оба делятся на 7.

Сыграем в кости? Какова вероятность того, что очки, выпавшие на обоих кубиках, будут взаимно простыми?

С равной вероятностью любой из них может выпасть гранью с цифрой 1, 2, 3, 4, 5 или 6. Каким бы ни был результат на первому кубике, второй выпадет по-своему независимо от него. Там тоже 6 вариантов. Всего это дает 36 комбинаций:



Все эти варианты равновероятны. С помощью таблицы мы можем вычислить, скажем, вероятность того, что сумма чисел на гранях двух кубиков будет равна 7. Это произойдет в шести случаях: (1, 6), (2, 5), (3, 4), (4, 3), (5, 2) и (6, 1). Таким образом, вероятность такого события равна



Вернемся к нашему вопросу: какова вероятность того, что два числа, выпавшие на разных кубиках, – взаимно простые? Давайте нарисуем новую таблицу и поставим звездочку везде, где пары чисел взаимно простые, например 5 и 2 или 2 и 5, но не 4 и 6.

Мы видим, что нам подходит 23 варианта. Таким образом, вероятность равна

Теперь поиграем в двадцатигранные кости[66]66
  Если повезет, вы найдете их в магазине настольных игр. Правильный 20-гранник называется икосаэдр. См. главу 16.


[Закрыть]
! Какова вероятность того, что они выпадут гранями со взаимно простыми числами? Нам придется построить таблицу побольше! В ней будет 20 строк, 20 столбцов и 400 клеток.



Если мы педантично пересчитаем все звездочки, то придем к выводу, что вероятность составляет

Поговорим про общий случай. Какова вероятность того, что два произвольных числа от 1 до N – взаимно простые? Здесь нам уже понадобится компьютер. Рассмотрим все комбинации – (1, 1), (1, 2), (1, 3) и т. д. до (N, N) – и посчитаем, как много пар взаимно простых чисел нам повстречается. Всего придется перебрать N² вариантов[67]67
  На самом деле достаточно перебрать N(N–1) / 2 вариантов, потому что у пар (k, l) и (l, k), очевидно, будут одинаковые общие делители; ясно также, что число не может быть взаимно простым само с собой. Поэтому достаточно заполнить не весь квадрат, а треугольник выше главной диагонали. – Прим. науч. ред.


[Закрыть]
. У нас получатся такие результаты:



Чем дальше мы уходим в бесконечность, тем ближе вероятность к 0,6079. И откуда же взялось это число? Чудесным образом предел нашего ряда оказался равен:



Число π встречается не только в геометрии, оно вращается в разнообразных кругах!


Глава 7
e
Леонард Эйлер[68]68
  Леонард Эйлер (1707–1783) – математик, механик, астроном. Работал в Швейцарии, Пруссии и России. Также изучил медицину, химию, ботанику, воздухоплавание, теорию музыки, множество европейских и древних языков. – Прим. пер.


[Закрыть]

Когда твоим именем называют число, это ли не величайшая честь для математика? Швейцарец Леонард Эйлер жил в XVIII веке, и в главе 7 мы поговорим о числе Эйлера[69]69
  Эйлер не называл это число своим именем, но именно он выбрал для него букву е. Подтолкнула ли его к этому гордыня – до сих пор предмет спора историков науки. Как бы то ни было, Эйлер было довольно скромным человеком.


[Закрыть]
. Его обозначают буквой e.

Число Эйлера можно задать разными способами[70]70
  Увы, все формулы для е весьма сложны. Это не просто иррациональное число, как √2 (см. главу 4), но и трансцендентное, как π (см. главу 6).


[Закрыть]
, но стандартным считается следующий:



Этот ряд уходит в бесконечность. Восклицательными знаками обозначен факториал. Для положительного целого числа n факториал считают по такой формуле:

n! = n × (n – 1) × (n – 2) × (n – 3) × … × 2 × 1.

Например, 4! = 4 × 3 × 2 × 1 = 24. Факториал нуля равен 1. Вы можете узнать о факториале больше в главе 10.

Достаточно сделать всего несколько шагов по приведенному выше алгоритму, чтобы вычислить e c хорошей точностью. Когда мы дойдем до 1/10! сумма будет равна



Это довольно близко к более точному значению 2,718281828459045…

Число Эйлера повсеместно встречается в разных областях математики. Далее я покажу вам три совершенно разные задачи, для решения которых нужно e.

«Прибыльное» число

Банк выдает депозитный сертификат на десять лет. Когда этот срок истекает, вклад удваивается. Если ваш вклад составляет 1000 долларов, через десять лет вы получите 2000 долларов. Рост ваших инвестиций составляет 100 %. Не исключено, что для банка выгоднее выплачивать 10 % ежегодно, а не 100 % спустя десять лет.

Банк может выдать еще более привлекательный сертификат, позволяющий вам получать прибыль ежегодно и снова класть ее на депозит. Посмотрим, как это отразится на ваших финансах.

Начнем с 1000 долларов. В конце года вы получите 100 долларов. Теперь у вас 1100 долларов. На следующий год ваша прибыль возрастет. Банк выдаст вам уже не 100 долларов, а 10 % от 1100, то есть 110 долларов. Теперь у вас 1210 долларов. На третий год банк выдаст 10 % от этой суммы. Посмотрим, какую прибыль вы будете получать год от года и насколько станет увеличиваться ваш вклад:



Вначале у вас было A долларов. В первый год прибыль составила 10 %. В конце года вы получили 1,1 × A. На второй год 1,1 × 1,1 × A. Несложно увидеть, что в конце десятого года у вас на руках окажется



Это близко к нашим недавним расчетам[71]71
  Разница в 1 цент объясняется тем, что в первом случае мы каждый раз округляли прибыль до сотых.


[Закрыть]
. Таким образом, новый депозитный сертификат оказывается существенно выгоднее – денег становится больше не в 2, а почти в 2,6 раза.

А что произойдет, если банк начнет выдавать прибыль раз в три месяца, а не ежегодно? Если за год выручка составляет 10 %, то за три месяца набегает 2,5 %. В первом квартале ваша доход составит 0,025 × 1000 = 25 долларов. Общая сумма будет равна 1,025 × 1000 = 1025 долларов. В конце второго квартала вы получите уже 0,025 × 1,025 = 25,63 доллара (если округлить до сотых). Теперь у вас 1,025 × 1025 = 1050,63 доллара.

Спустя N кварталов ваша 1000 долларов увеличивается следующим образом:



Подставим N = 40 (поскольку в 10 годах 40 раз по 3 месяца) и увидим, что депозитный сертификат принес 2685,06 доллара.

В первом случае деньги удвоились. Во втором сумма выросла в 2,59 раза. В третьем – в 2,69 раза. А что произойдет, если требовать прибыль ежемесячно, сохраняя условие, что деньги можно тут же снова класть на счет? А еще лучше – ежедневно?

В случае ежемесячных выплат вы станете получать 10/12 %. Если в начале месяца у вас на руках была сумма A, в конце месяца[72]72
  В первый месяц банк выплатит нам 0,8333 % процента от первоначальной суммы, то есть 8,33 %. Теперь у нас в общей сложности $1008,33.


[Закрыть]
она вырастет:



Спустя N месяцев вы получите:



Если N = 120, ваша итоговая сумма составит 2707,04 доллара.

Число дней в високосном году больше, чем в обычном, но для упрощения вычислений давайте примем за данность, что длительность каждого года 365 дней. За день вы будете получать Спустя N дней общая сумма составит:



Если N = 3650, вы будете обладать суммой в 2717,91 доллара.

А что, если вам и этого мало? Что, если вы потребуете от банка платить вам ежечасно?.. ежеминутно?.. ежесекундно?

В году 31 556 926 секунд[73]73
  На самом деле длительность года чуть больше 365 дней, но мы упростим расчеты.


[Закрыть]
, так что спустя 10 лет у вас будет:



Это дает 2718,28 доллара.

Подытожим:



А зачем останавливаться на секундах? Пусть банк выплачивает вам деньги каждую миллисекунду или наносекунду. Впрочем, это не изменит общей суммы. Вы все равно получите те же 2718,28 доллара, потому что вынуждены округлять до центов.

В пределе вы достигнете непрерывных выплат. Если посчитать всю сумму в точности, банк должен будет отдать вам 1000 × e долларов!

Непрерывные выплаты – пример экспоненциального роста. Пусть A – начальное число (денег, микробов и т. д.). Оно вырастает со скоростью r на протяжении периода времени t. Если новое число вырастает с той же скоростью и этот рост непрерывный, то в конце мы получим:

Aert,

где e – знакомое нам число Эйлера. В нашем примере A = 1000 (первоначальный вклад), r = 0,1 (процентная ставка), t = 10 (количество лет). В конце мы имеем 2718,28 доллара.

Процесс может быть и обратным, когда нечто непрерывно убывает[74]74
  Экспоненциальная убыль встречается в природе. Пример – радиоактивный распад атомов.


[Закрыть]
. Тогда в конце мы получим Aert.

Переполох со шляпами

В одном городе был театр. Его посетители на время представления сдавали шляпы в гардероб, а потом забирали обратно.

Однажды гардеробщик – то ли он выпил лишнего, то ли просто свихнулся – стал выдавать шляпы не по номеркам, а в произвольном порядке. Вопрос: какова вероятность того, что никто не получит свою шляпу?

Сформулируем вопрос точнее. В театр пришло N зрителей. Они встают в очередь за шляпами. Сумасшедший гардеробщик выдает шляпы в произвольном порядке. Таким образом, шляпы могут быть выданы N! различными вариантами[75]75
  Восклицательный знак означает факториал. Подробнее о факториале вы можете прочесть в главе 10.


[Закрыть]
. Все они равновероятны. Это математическая формулировка выражения «в произвольном порядке».

Разберем случай N = 4. Укажем в таблице все варианты выдачи шляп и пометим стрелочкой те случаи, когда ни один из зрителей не получает свою шляпу.



В 9 случаях из 24 никто не получает свою шляпу. Таким образом, при N = 4 интересующая нас вероятность равна

Для N = 5 существует 5! = 120 различных вариантов вернуть шляпы. Из них 44 нам подходят: ни один человек не получит свою шляпу. Таким образом, вероятность будет равна В таблице вы можете видеть, как меняется вероятность по мере возрастания N.



Вероятность меняется и дальше, но на ничтожно малую величину.

Хорошенько подумав, мы можем вывести формулу зависимости вероятности того, что никто из N зрителей не получит свою шляпу, от числа N:



Например, при N = 4



Это согласуется с нашими предыдущими выкладками.

В пределе, когда N стремится к бесконечности, вероятность того, что никто не получит свою шляпу, равна



Этот ряд уходит в бесконечность. Обратите внимание, что эта формула похожа на формулу (A) для подсчета числа e. Сумма ряда (B) равна Мы снова встретили наше заветное число!

Уже при N = 10 сумма ряда будет равна



Это достаточно близко к следующему значению:


Среднее расстояние между двумя простыми числами

В главе 1 я доказал, что простых чисел бесконечно много. Вы увидели, что среди небольших целых положительных чисел простые числа встречаются достаточно часто, но, когда мы уходим в бесконечность, простые числа начинают попадаться все реже. Мы можем с некоторой точностью установить, насколько редко встречаются простые числа, если попытаемся найти среднее расстояние между ними[76]76
  Примечание для тех, кто знаком с логарифмами: для того чтобы выяснить, насколько редко встречаются простые числа, когда мы рассматриваем большие величины, можно посчитать количество простых чисел между 1 и каким-нибудь крупным числом N. Важнейший результат в теории чисел показывает, что чем больше N, тем ближе количество простых чисел между 1 и N к величине где ln N – логарифм числа N по основанию e, или натуральный логарифм N. Этот результат зафиксирован в так называемой теореме о распределении простых чисел.


[Закрыть]
.

Какие простые числа можно найти между 1 и 20?

2, 3, 5, 7, 11, 13, 17, 19.

Промежутки (разности) между этими числами следующие:

1, 2, 2, 4, 2, 4, 2.

Следовательно, среднее расстояние между ними равно:



Теперь посчитаем, сколько простых чисел между 1 и 1000. Всего их 168: начиная с 2, 3 и 5 и заканчивая 983, 991 и 997. Среднее расстояние между соседними простыми числами в этом случае составит:



Знаменатель равен 167, так как простых чисел 168, а промежутков между ними на 1 меньше. Числитель можно посчитать довольно просто. Обратите внимание, что число 3 встречается дважды с разными знаками. Та же история с числом 5. Разумеется, это верно для всех чисел, кроме первого и последнего[77]77
  Числитель в этом выражении – пример телескопического ряда, где все слагаемые взаимно уничтожаются. Представьте себе складной телескоп, состоящий из нескольких частей. Точно так же слагаемые телескопического ряда вкладываются друг в друга.


[Закрыть]
. Таким образом, нам достаточно вычесть 2 из 997. Получается, что среднее расстояние между простыми числами от 1 до 1000 равно



Это в два с лишним раза больше, чем в случае, когда мы брали числовой ряд от 1 до 20.

Введем обозначение agap(N) для среднего расстояния между простыми числами от 1 до N. Тогда наши предыдущие расчеты могут быть записаны в таком виде:



Вычислим среднее расстояние между простыми числами от 1 до N, когда N равно 100, 1000, 10 000 и так далее до 1 000 000 000. И округлим результат до тысячных:



Легко заметить: когда N становится больше в десять раз, agap(N) возрастает примерно на 2,3.

Мы можем проиллюстрировать эту закономерность на графике. Будем отмечать число N по оси абсцисс и agap(N) по оси ординат. Масштаб по оси ординат оставим обычным, а по оси абсцисс разница между делениями пусть постоянно возрастает в 10 раз (это называется логарифмическая шкала):



Обратите внимание: звездочки выстроились почти в прямую линию. Если присмотреться, левый нижний конец нашей кривой слегка загибается вверх.

Если бы звездочки на графике в точности выстроились в линию, мы получили бы следующую формулу, включающую число Эйлера:

N = ea + 1. (C)

Здесь а=agap(N) Скажем, если N = 1012, то agap(N) ≈ 26,59. Для выполнения (C) необходимо, чтобы a ≈ 26,63, и наш результат близок к этому числу.

Чудесная формула

Три главы были посвящены трем важным числам: π, i, e. Хотите верьте, хотите нет, но все они встречаются в одной формуле (которую вывел Эйлер):

eiπ + 1 = 0.

Формула поражает невероятным изяществом и простотой, однако как можно возводить число в мнимую степень?!

Мы знаем, как возвести e в целую положительную степень. Например, e³ = e × e × e. Отрицательная степень – это произведение дробей: Дробные степени могут быть выражены через квадратные корни, кубические корни и т. д.: Можно посчитать даже такую жутковатую величину, как



Но e не вписывается в эти стандарты. Нам нужен иной принцип[78]78
  Я здесь пропускаю множество этапов вывода формулы Эйлера. Я хочу просто объяснить, что значит возводить число в мнимую степень, и дать общую картину доказательства. В полном виде оно включает тригонометрические выкладки и такие сложные вычисления, которым не место в этой книге.


[Закрыть]
.

Мы знаем, что e представляет собой сумму бесконечного ряда:



Для любого x значение ex будет:



Скажем, в случае x = –1 мы получим знакомый по казусу со шляпами ряд (B):



Чтобы узнать, чему равно eiπ, подставим вместо x:



Чему равны числители дробей в этой сумме?

(iπ) ² = (iπ) × (iπ) = i² × π² = – π².

(iπ) ³ = i × i × i × π³ = –1 × i × π³ = –iπ³.

(iπ) ⁴ = i⁴ × π⁴ = π⁴.

(iπ) ⁵ = –iπ⁵.

(iπ) ⁶ = –π⁶.

(iπ) ⁷ = –iπ⁷.

(iπ) ⁸ = π⁸.

Элементы ряда поочередно оказываются то действительными, то мнимыми. Сгруппируем эти две категории элементов:



Оказывается, что выражение между первыми двумя скобками представляет собой в точности cos(π), то есть –1, а выражение между вторыми скобками равно sin(π), то есть 0. Таким образом,

eiπ = cos(π) + i sin(π) = –1 + 0i = –1.

Теперь мы понимаем, как возникла чудесная формула Эйлера.

Внимание! Это не конец книги.

Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!

Страницы книги >> Предыдущая | 1 2 3
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации