Электронная библиотека » Елена Гора » » онлайн чтение - страница 11

Текст книги "Экология человека"


  • Текст добавлен: 28 октября 2013, 19:56


Автор книги: Елена Гора


Жанр: Прочая образовательная литература, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 11 (всего у книги 43 страниц) [доступный отрывок для чтения: 12 страниц]

Шрифт:
- 100% +
3.2. Этапы адаптации

Начальный этап развития рассматриваемого состояния связан со стресс-реакцией, обозначенной Гансом Селье как общий адаптационный синдром, основной смысл которого состоит в мобилизации энергетических и структурных ресурсов организма.

Важно при этом отметить, что стресс не только мобилизует резервные возможности организма, но и играет действенную роль в формировании специфических реакций различных органов за счет усиления их функций, эффективно реагирующих на конкретные факторы среды. Стресс-реакция может быть ведущей в развитии экстремального состояния, и особенно в тех случаях, когда действующие на организм факторы носят чрезвычайный характер, а специфические механизмы срочной и долговременной адаптации не формируются.

На начальных этапах пребывания организма в экстремальных условиях приспособление к ним осуществляется за счет компенсаторных механизмов как первичных рефлекторных реакций, направленных на устранение или ослабление гомеостатических сдвигов, вызванных жесткими параметрами среды. Обладая высокой эффективностью, такие реакции могут поддерживать необходимый уровень гомеостаза до развития устойчивых форм адаптации. Однако уже в этой ситуации организм находится в состоянии напряжения, которое может перейти в декомпенсацию с последующим развитием патологических процессов.

И наконец, формирование механизмов долгосрочной адаптации к жестким факторам среды «не страхует» организм от развития экстремального состояния, особенно в условиях пролонгированного действия факторов, изменений их интенсивности и истощения физиологических резервов организма.

Следовательно, экстремальное состояние может развиваться на фоне различных форм адаптационных процессов как следствие исчерпания их возможностей и неспособности реализовать жесткие требования, предъявляемые организму факторами внешней среды.

Физиологической мерой воздействия условий окружающей среды является возможность адаптации организма к этим условиям. Если существует множество разнообразных по своим свойствам экстремальных раздражителей во внешней среде, значит, существует и множество разнообразных путей, механизмов их влияния на живые системы.

Физиологические механизмы реакций человеческого организма на экстремальные условия среды традиционно исследуют в трех направлениях. Как правило, оценивают:

– функциональное состояние;

– физиологические резервы организма;

– индивидуальные тенденции развития адаптационного процесса.

Названные аспекты являются основой для диагностики и прогнозирования функциональных возможностей организма, его работоспособности и отбора лиц для работы в экстремальных условиях. В результате такого отбора из группы людей выделяются кандидаты, которые при прочих равных условиях способны обеспечить наибольшую эффективность в выполнении стоящих перед ними задач, сохранить здоровье и надлежащий уровень работоспособности, а также безопасность производства окружающей сферы деятельности. Поэтому важным прогностическим критерием, оценивающим качество проведенного отбора, является высокий показатель степени допустимого риска в напряжении функциональных систем организма, выступающий как один из критериев надежности функционирования системы в целом. К сожалению, до сих пор среди исследователей нет единого мнения, какие критерии можно использовать при прогнозировании функционального состояния организма. Предлагаются разные группы критериев надежности функционирования организма.

1. В. П. Грибняк и др. из более чем 25 показателей, характеризующих состояние сердечно-сосудистой, дыхательной систем и системы крови, отобрали 10 особенно информативных. Наибольшая прогностическая значимость была выявлена по показателям, отражающим упруговязкие свойства стенок сосудов эластического типа, уровня среднединамического АД и механической мощности сердца, щелочного резерва крови и концентрации гемоглобина, объема легочной вентиляции и др.

Но для целей массового отбора и динамического прогноза состояний человека в необычных условиях среды наиболее оптимальными все-таки являются критерии на основе сердечно-сосудистой системы. При этом ведущее место занимают критерии, разрабатываемые на основе изучения сердечного ритма. По-видимому, особую роль здесь играет тот факт, что сама частота пульса несет большую и объективную информацию о состоянии организма. Важно отметить, что изучение частоты сердечных сокращений стало обширным полигоном применения математических методов, дающих возможность получать прогностическую информацию о физиологических процессах. Значительное количество работ в этом плане указывает на перспективность данного направления.

При оценке и прогнозировании функционального состояния организма некоторые исследователи рекомендуют использовать показатели функциональной асимметрии полушарий мозга. Изучение особенностей мозговой нейродинамики медленного волнового диапазона, так называемых сверхмедленных колебаний, открывает новые возможности для оценки и прогнозирования функционального состояния человека.

Поиск простых общедоступных методов прогнозирования функционального состояния организма – важная проблема медико-биологической прогностики. При этом имеет значение не только простота проведения исследований, но и применимость методов при массовой диспансеризации и донозологической диагностике с характеристикой информативности используемых методик, объективно отражающих функциональное состояние организма. Конечной целью исследований должна быть разработка таблиц, номограмм или компьютерных программ, которые позволят в короткое время вычислять физиологические резервы, прогнозировать уровень работоспособности и на основе этого строить оценку состояния организма при перемещении его в экстремальные условия среды.

2. Н. И. Моисеева и А. С. Сурков предложили 10 критериев, позволяющих оценить физиологические резервы организма:

– индивидуальные пределы физиологических напряжений;

– стабильность функциональных ответов организма на тестовые воздействия;

– оценка пропорциональных отношений и взаимосвязанных признаков;

– конституциональные;

– основанные на оценке числа и резистентности эритроцитов;

– оценка функциональных возможностей ЦНС по динамике медленного электрического потенциала;

– оценка пластичности нейродинамических процессов;

– биоритмологические;

– энергетических возможностей организма;

– прогнозирование функциональных возможностей ЦНС человека-оператора, основанное на оценке объективности и продуктивности познавательной деятельности.

С. И. Сороко показал, что способность человека к адаптации в экстремальных условиях внешней среды определяется адаптивной пластичностью и устойчивостью нейродинамических процессов, отражающих свойства центральных механизмов саморегуляции, их возможностью к направленным перестройкам функций соответственно потребностям организма в данных конкретных условиях. Автор полагает, что указанные свойства нервной системы в большинстве своем генетически детерминированы, что пластичность и устойчивость нейродинамических процессов относятся к основным индивидуально-типологическим свойствам нервной системы человека и могут быть одним из прогностических критериев адаптоспособности человека к экстремальным условиям внешней среды.

Эколого-физиологические аспекты индивидуально-типологических различий адаптации, с использованием физиологических (нервных, соматических, вегетативных), психологических и социометрических показателей, изучались Н. Н. Василевским (1991). Им предложено несколько вариантов индивидуально-типологических различий по критерию адаптивности: низко-, средне– и высокоадаптивные варианты.

Основными типологическими критериями являлись: пластичность биоритма функций, соотношение между специфическими и неспецифическими компонентами адаптационных реакций, работоспособность, заболеваемость и др., что позволило определить дополнительные подтипы, раскрывающие важные особенности реагирования на экстремальные факторы.

Пластичность функций является фундаментальным параметром, гибким элементом функциональных систем, определяющим кратко– и долгосрочные перестройки функций. Она рассматривается как механизм адекватных перестроек функций в процессе контакта с адаптогенными факторами.

3.3. Психофизиологическая адаптация

При значительном количестве работ в области авиационной, космической, морской и полярной психологии в них пока нет достаточно четкой характеристики экстремальных условий с позиций психического восприятия, а также исследований психогенного их воздействия. До сих пор не существует единой теории, которая бы охватывала особенности психической деятельности в конкретных формах необычных условий существования (космический и авиационный полет, плавание на подводной лодке, нахождение в полярной зоне). Отсутствие такой теории заметно тормозит решение задач, поставленных практикой освоения новых пространств.

Стержневой проблемой экстремальных условий является адаптация. Психическая адаптация в экстремальных условиях происходит поэтапно. Анализ этих этапов позволил выявить следующее. Независимо от того, предстоит ли человеку пройти испытание нервно-психической устойчивости в условиях сурдокамеры, или выполнить парашютный прыжок, или осуществить полет в космос и т. д., – во всех случаях четко выделяется «подготовительный этап». На этом этапе человек собирает сведения, позволяющие составить представление об экстремальных условиях, уясняет задачи, которые ему предстоит решать в этих условиях, овладевает профессиональными навыками, «вживается» в ролевые функции, отрабатывает навыки, обеспечивающие совместную операторскую деятельность, и устанавливает систему отношений с другими участниками группы.

Чем ближе наступление заранее известных экстремальных условий, тем сильнее психическая напряженность, выражающаяся в тягостных переживаниях, в субъективном замедлении течения времени, в нарушениях сна и вегетативных изменениях (этап стартового психического напряжения). В числе причин нарастания психической напряженности при приближении к указанному барьеру четко прослеживаются информационная неопределенность, предвидение возможных аварийных ситуаций и умственное проигрывание соответствующих действий при их возникновении.

При преодолении барьера, отделяющего обычные условия жизни от измененных, возникают положительные эмоциональные переживания, сопровождающиеся повышенной двигательной активностью. В появлении этих состояний участвуют как психологические, так и физиологические механизмы. При этом устраняется информационная неопределенность, и человек оказывается избыточно информированным.

На рубеже преодолеваемого психологического барьера человек находится в состоянии психического напряжения, обусловливаемого необходимостью волевым усилием подавлять эмоции. Преодоление психологического барьера, особенно сопряженного с угрозой для жизни, влечет за собой состояние эмоционального разрешения, в основе которого лежит снятие тормозящего влияния коры на подкорку и индуцирование в ней возбуждения. При каждом повторном преодолении психологического барьера эмоциональные реакции сглаживаются и стенизируются. Это обусловливается достаточно полной информационной обеспеченностью.

Исследования отечественных физиологов и психологов показали, что успешная психическая деятельность обеспечивается не отдельными корковыми образованиями и нижележащими подкорковыми структурами, а функциональными объединениями (ансамблями).

На этапах острых психических реакций «входа» и «выхода» при воздействии измененной афферентации возникают дереализационные феномены, сопровождающиеся выраженными эмоциональными реакциями. Нарушается также координация движения. В основе этих нарушений лежит рассогласование функциональных систем психофизиологической организации человека, сложившихся в процессе онтогенеза или длительного пребывания в измененных условиях существования.

Этап острых психических реакций входа сменяется этапом психической адаптации, показателем которого служит устойчивая система взаимоотношений в изолированной группе. Одной из особенностей этапа психической адаптации является формирование новых функциональных систем в центральной нервной системе, позволяющих адекватно отражать реальную действительность в необычных условиях жизни. Другой особенностью этого этапа является актуализация необходимых потребностей и выработка защитных механизмов, обеспечивающих реакции на воздействие психогенных факторов.

При жестком и длительном воздействии психогенных факторов, а также при отсутствии мер профилактики, этап психической адаптации сменяется этапом неустойчивой психической деятельности. На этом этапе появляется ряд необычных психических состояний, характеризуемых эмоциональной лабильностью и нарушениями ритма сна и бодрствования. Необычные психические феномены, оставаясь в границах психологической нормы, в то же время расцениваются как препатологические. С другой стороны, необычные психические состояния, возникающие на этапе неустойчивой деятельности, позволяют раскрыть особенности протекания психических процессов на границе между психической нормой и психопатологией.

3.4. Гравитация

Вся эволюция животного мира на Земле является историей активного преодоления организмом силы тяжести. «Тяжесть – самое неизбежное и постоянное поле, от которого ни одно существо никогда на Земле не освобождается», – справедливо заметил А. А. Ухтомский. К настоящему времени накоплено значительное количество фактов, свидетельствующих о тесной зависимости живых организмов от действия гравитационных сил. Все многообразие возникающих при этом эффектов может быть сведено к трем группам:

1) эффекты, связанные с влиянием гравитационных сил на процессы онтогенеза;

2) эффекты, связанные с влиянием гравитационных сил на процессы филогенеза, в частности на развитие антигравитационных функций и структур организма;

3) влияние гравитационных сил на конечные размеры и массу тела организмов.

Считается, что жизнь на Земле зародилась в водной среде. Это означает, что на первых этапах развития жизни действие силы тяжести на живые организмы было не столь значительным, как после перехода живых существ к земноводному и наземному образу жизни. Влияние силы тяжести на живые организмы в дальнейшей эволюции увеличивалось параллельно изменению положения тела животных в пространстве от горизонтального к полувертикальному и стало максимальным при прямохождении. Особенно усилилось влияние силы тяжести на внутренние среды организма (гидростатический эффект). У наземных позвоночных сформировались мощный скелет и мышечная система, обеспечивающие опору, а также позную и двигательную активность в гравитационном поле Земли. Сильно развились и дифференцировались гравирецепторные системы (отолитовый аппарат, проприоцепторы, интероцепторы). Повышенные энергетические потребности, связанные с преодолением относительно возраставшего в ходе эволюции влияния силы тяжести на организм, усилили гемопоэтическую функцию костного мозга, вызвали перестройку сердечно-сосудистой и дыхательной систем. Сила тяжести наложила отпечаток на обмен веществ животных организмов, став существенным фактором их развития.

Физиологические механизмы, обеспечивающие активную ориентацию животного организма в гравитационном поле Земли путем нивелирования и компенсации механических эффектов силы тяжести, объединяют в функциональную систему антигравитации. В нее входят скелетно-мышечная и циркуляторная системы. Антигравитационная функция скелетно-мышечной системы направлена на поддержание тела в пространстве, а циркуляторной – на компенсацию гидростатических эффектов.

3.4.1. Механизмы действия ускорений (перегрузок)

Длительно действующие ускорения. Одним из важных динамических факторов при космических полетах, воздействующих на организм человека, является ускорение. Как известно, ускорение возникает при изменении скорости или направления движения тела; при этом независимо от причины появления ускорения результирующая сила всегда имеет прямолинейное направление.

Ускорение (а) – это изменение скорости за единицу времени. Размерность ускорения обычно выражают в м/с2 или в кратном отношении к скорости свободно падающего на Землю тела за одну секунду: g = 9,81 м/с2 (от лат. gravitcis – тяжесть). Например, ускорение, равное 35 м/с2, может быть обозначено как 3,5 g (35 м/с2: 9,81 м/с2).

При космических полетах ускорения возникают в период выведения корабля на орбиту, торможения его скорости при спуске на Землю, а также при совершении маневров (изменение направления движения) во время самого полета.

До последнего времени нет общепризнанной системы классификации ускорений. В медицинской литературе чаще всего можно встретить деление ускорения на четыре основных вида:

– прямолинейные;

– радиальные;

– угловые;

– ускорения Кориолиса.

• Прямолинейные ускорения возникают при увеличении или уменьшении скорости движения, но без изменения ее направления. При увеличении скорости ускорение нередко обозначают как положительное, при уменьшении скорости – как отрицательное. Последнее обстоятельство иногда служит поводом к возникновению недоразумений, так как часто терминами «положительное» или «отрицательное ускорение» обозначают не изменение скорости, а направление действия ускорений по отношению к голове и тазу. Прямолинейные ускорения наблюдаются при езде на современном транспорте (автомобиль, поезд и т. д.), взлете, посадке, а также изменении скорости самолета, при парашютных прыжках, и особенно значительные по величине и времени действия при выведении на орбиту и торможении космических кораблей.

Величина прямолинейного ускорения может быть вычислена по следующей формуле:

(3.1)


где а – ускорение; Vt – конечная скорость движения, м/с; V0 – начальная скорость движения, м/с; t – время изменения скорости движения, с.

При полетах на космических кораблях линейные ускорения могут достигать значительных величин и длительного времени действия. Поэтому, естественно, возникает необходимость проведения специальных мероприятий, направленных на предупреждение неблагоприятных для здоровья последствий.

• Радиальные, или центростремительные ускорения возникают при изменении движения тела. Наиболее ярким примером этого могут служить ускорения, возникающие при воспроизведении виражей на самолете, пикировании, вращении на центрифуге и пр. В настоящее время подобные ускорения в реальных космических полетах, по существу, не встречаются. Правда, создание новых космических кораблей большой маневренности может внести в это положение определенные коррективы.

Тем не менее значительное место в общей системе подготовки занимают ознакомительно-тренировочные вращения на центрифуге.

Математически радиальное ускорение (j) может быть выражено следующим образом: j = V2/R, где V – скорость движения вращаемого тела; R – радиус вращения.

Для практических целей вычисления радиальных ускорений при работе на центрифуге, как правило, применяется следующая формула:

(3.2)

j = 4π2Rn2,

где R – радиус центрифуги; n – число оборотов в секунду.

Центрифуга является наиболее удобным стендом, на котором можно воспроизводить ускорения, соответствующие самым разнообразным профилям полетов. Современные центрифуги имеют радиус вращения от 8 до 16 м, а электронно-счетные установки позволяют программировать графики ускорений и автоматизировать обработку многочисленной физиологической информации, поступающей от объекта исследования.

Радио– и телевизионная связь создает условия для постоянного наблюдения и контроля врача-экспериментатора за испытуемым.

• Угловое ускорение Е (рад/с) наблюдается при неравномерном движении тела по окружности, т. е. при увеличении или уменьшении угловой скорости. Угловое ускорение наблюдается при разгоне и торможении центрифуги, особенно при быстром нарастании градиента ускорения.

Складывается оно из двоякого рода сил:

– направленной по касательной к окружности вращения (тангенциальное ускорение);

– направленной к оси вращения (нормальное ускорение).

Если угловое ускорение носит равномерный характер, то соотношение между обозначенными видами может быть выражено следующими формулами:

(3.3)

jt= ER

(3.4)

jn = (Et)2R,

где jtтангенциальное ускорение; jnнормальное ускорение; R – радиус вращения; t – время, за которое произошло изменение угловой скорости; Е – угловое ускорение.

Неравномерное угловое ускорение может быть рассчитано только для каждой конкретной точки кривой отдельно, так как тангенциальное и нормальное ускорения, из которых оно складывается, в этом случае постоянно изменяются по величине.

• Ускорения Кориолиса возникают при изменении радиуса вращения, а также в случае присоединения к движению в одной плоскости движения в другой плоскости.

Этот вид ускорений нередко встречается при полетах на самолетах и космических кораблях.

Ускорение Кориолиса может быть рассчитано по следующей формуле:

(3.5)

jk= 2WV sin α,

где W – угловая скорость движения тела вокруг оси; V – скорость движения тела в другой плоскости; α – угол с основной осью вращения, при котором во время дополнительного движения тела возникает ускорение.

Линейные и радиальные ускорения в зависимости от времени

действия делятся на ударные (длятся доли секунды) и длительные (от секунды и более), а в зависимости от направления – на продольные и поперечно направленные; последние, в свою очередь, и далее подразделяют на группы.

Классификация ускорений. Терминология и классификация ускорений были предложены аэрокосмическим медицинским комитетом в США по проблемам ускорения при консультативной группе по научно-исследовательской работе. На рисунке 3.1 и в таблице 3.1



Рис. 3.1. Эквиваленты терминологии ускорений


Таблица 3.1. Терминология ускорений


1Anterior (лат.) – передняя (в данном случае) поверхность тела.

2Posterior (лат.) – задняя поверхность тела, спина.

A-P – Anterior-Posterior; С-A – Posterior-Anterior (таблица дана с сокращениями).

представлена терминология, в основу которой положено направление ускорения массы (колонка А) и инерция органов, тканей и жидкостей организма на ускорение (колонка Б). Следовательно, действие перегрузок реально не столько для самого движущегося тела, сколько для его связей.

Буква g используется как единица для выражения инерционной результирующей к ускорению всего тела, умноженной на величину ускорения силы тяжести: g0 = 980,665 см/с2.

Направление сил инерции всегда противоположно направлению ускорения. В медицине и биологии часто употребляют термин «перегрузка». Перегрузки не имеют размерности и выражаются относительными единицами, по существу, показывающими, во сколько раз увеличился вес тела при данном ускорении по сравнению с обычной земной гравитацией.

Математически это может быть выражено следующим образом: n = Рдс, где n – величина перегрузки (ед.); Рд – вес динамический; Рс – вес статический.

В зависимости от направления действия перегрузок по отношению к вертикальной оси тела их делят на продольные и поперечные. При направлении вектора перегрузки от головы к ногам говорят о положительных, а при направлении от ног к голове – об отрицательных перегрузках. Кроме того, различают поперечные (спина – грудь и грудь – спина), а также боковые (бок – бок) перегрузки. Направление вектора перегрузки имеет существенное значение для организма, и при описании физиологических реакций его всегда нужно учитывать.

Реакции организма на перегрузки. Реакция человека на воздействие перегрузок определяется рядом факторов, среди которых существенное значение принадлежит величине, времени действия, скорости нарастания и направлению вектора перегрузки по отношению к туловищу, а также исходному функциональному состоянию организма, зависящему от многих условий внешней и внутренней среды.

Изменения в организме могут проявляться от едва уловимых функциональных сдвигов до крайне тяжелых состояний, сопровождающихся резкими расстройствами деятельности органов дыхания, сердечно-сосудистой, нервной и других систем, что может привести не только к потере сознания, но иногда и к грубым анатомическим повреждениям тела.

Общее состояние человека при действии перегрузок характеризуется появлением чувства тяжести во всем теле, болевых ощущений за грудиной или в области живота, вначале затруднением, а в дальнейшем и полным отсутствием возможности движений. Происходит смещение мягких тканей и ряда внутренних органов в направлении действия перегрузки. Наблюдаются расстройства зрения, характер и степень выраженности которых определяются не только величиной перегрузки, но и направлением ее действия по отношению к туловищу.

В зависимости от плотности внутренних органов (удельного веса), места их положения, эластичности связей с окружающими тканями характер происходящих нарушений может быть различным. Понятно, что наиболее подвижны кровь и тканевая жидкость. Поэтому нарушениям гемодинамики принадлежит одно из ведущих мест в генезе физиологических сдвигов при перегрузках. Однако определенное значение имеют и такие факторы, как смещение внутренних органов и их деформация, обусловливающие не только нарушение функции этих органов, но также и усиленную афферентацию в центральную нервную систему, что нередко приводит к расстройству ее функции.

Нервная система

Изучение функционального состояния центральной нервной системы, особенно ее высших отделов под действием перегрузок, приобрело особую актуальность в связи с необходимостью оценки работоспособности пилотов. Первые исследования в этом направлении были проведены в реальных полетах В. А. Винокуровым и др. Авторами были получены данные, свидетельствовавшие об увеличении латентного периода ответных реакций на подаваемый раздражитель. В дальнейшем эти результаты были не только подтверждены, но и углублены в опытах, проведенных на центрифуге Г. Л. Комендантовым и др. Позднее А. А. Бронштейн и В. И. Загрядский, применив метод условных двигательных реакций, в опытах на здоровых испытуемых убедительно доказали, что перегрузки средней величины вызывают растормаживание следовых рефлексов и небольшое торможение наличных, а перегрузки большой величины – выраженное торможение условных рефлексов.

Весьма интересен установленный ими факт, что при повторных воздействиях происходит некоторая адаптация организма к перегрузкам. Это положение было подтверждено и в ряде других работ. Отсюда вытекает важный в практическом отношении вывод о целесообразности проведения ознакомительно-тренировочных вращений. Правда, не решен еще вопрос о режимах подобного рода тренировок: величинах перегрузок, числе вращений в каждом сеансе, интервалах между отдельными сеансами и т. п.

По наблюдениям ряда авторов, восстановление высшей нервной деятельности по показателям условных рефлексов происходит волнообразно: при средних величинах перегрузок этот срок не превышает 5 мин.

Определенный интерес представляют исследования характера и механизмов изменений высшей нервной деятельности, происходящих при действии перегрузок. Они позволили установить, что изменения со стороны условных рефлексов наблюдаются уже при перегрузке величиной 1–3 единицы. При этом прежде всего страдает процесс внутреннего торможения, возникают фазовые явления, а при больших перегрузках – полное торможение условных рефлексов. Б. М. Савин и З. К. Сулимо-Самуйло, анализируя полученные данные, пришли к заключению, что в начале действия перегрузки наблюдается повышение возбудимости коры головного мозга.

Это положение нашло подтверждение в электрофизиологических исследованиях, в которых отмечалось появление фазовых состояний, а также в физиологических исследованиях, в которых использовались в качестве анализаторов функционального состояния корковых клеток фармакологические средства.

• В первой фазе, которая наступала сразу же после начала действия перегрузок, наблюдалось значительное увеличение числа быстрых потенциалов с одновременным уменьшением их амплитуды – реакция десинхронизации ЭЭГ.

• Вторая фаза характеризовалась появлением медленных волн – реакция синхронизации ЭЭГ.

• Третья фаза наступала только при перегрузках выше 6 единиц (признак декомпенсации сердечной деятельности и дыхания, еще большее увеличение синхронизации биоэлектрической активности коры).

Сопоставление изменений высшей нервной деятельности и показателей сердечно-сосудистой системы позволило высказать мысль о том, что нарушения условных рефлексов определяются не столько гемодинамическими расстройствами в головном мозге, сколько необычными по своему характеру, величине и сочетанию потоками афферентных импульсов, поступающих в центральную нервную систему от различных органов и тканей.

Таким образом, под воздействием уже небольших величин перегрузок наступают выраженные функциональные сдвиги со стороны центральной нервной системы, которые выявляются как методом условных рефлексов, так и отведением биоэлектрической активности головного мозга. Естественно, что наблюдаемые изменения со стороны функции центральной нервной системы сопровождаются снижением не только физической, но и умственной работоспособности членов экипажа летательных аппаратов.

Дыхательная система

Влияние перегрузок на функцию внешнего дыхания определяется не только величиной и временем действия перегрузок, но и ее направлением по отношению к вертикальной оси человеческого тела. При этом наиболее глубокие расстройства наблюдаются при строго поперечном направлении вектора перегрузки, когда механические силы, действующие на грудь и живот, затрудняют осуществление дыхательных экскурсий грудной клетки и передней стенки живота.

Наиболее общим в реакции дыхания с увеличением перегрузки является его учащение.

Так, по данным П. К. Исакова, частота дыхания и легочная вентиляция при действии положительных перегрузок претерпевают значительные изменения. При перегрузках величиной 5–6 единиц в ряде случаев легочная вентиляция увеличивается в 2–3 раза по сравнению с исходной.

С прекращением действия перегрузки наступает сравнительно быстрое восстановление показателей внешнего дыхания до исходного уровня.

При поперечно направленных перегрузках нарушения дыхания нередко имеют ведущее значение в общей симптоматике наблюдаемых расстройств организма. Поэтому в дальнейшем основное внимание уделяется описанию характера нарушений дыхания при поперечных перегрузках. Исследованиями А. Р. Котовской и др. установлено, что при поперечно направленных перегрузках в 7-10 единиц частота дыхания у испытуемых лиц увеличивалась в 1,5–2 раза; по наблюдениям И. Черниак и др; при 8 единицах – в 2 раза, а при 12 единицах – в 3 раза.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации