Текст книги "Машина, платформа, толпа. Наше цифровое будущее"
Автор книги: Эндрю Макафи
Жанр: Экономика, Бизнес-Книги
Возрастные ограничения: +16
сообщить о неприемлемом содержимом
Текущая страница: 8 (всего у книги 23 страниц) [доступный отрывок для чтения: 8 страниц]
ЧТО ОСТАНЕТСЯ ДЕЛАТЬ ЛЮДЯМ В МИРЕ, ПОЛНОМ РОБОТОВ?
Как разумы и тела людей будут работать в тандеме с машинами? Есть два основных пути. Во-первых, поскольку машины осваивают все больше занятий в физическом мире, нам остается все меньше работы, и мы можем использовать свой мозг так, как уже описывалось и еще будет описываться в этой книге. Именно это и происходит в сельском хозяйстве, самой древней отрасли человеческого труда.
Работа на земле для выращивания урожая издавна считалась одним из самых трудоемких занятий. Сейчас оно, скорее всего, еще и одно из самых наукоемких. Брайан Скотт, фермер из Индианы, автор блога «Фермерская жизнь» (The Farmer’s Life), пишет: «Как вы думаете, когда мой дед работал на жатках и комбайнах… мог ли он вообразить, что… современные машины будут ездить самостоятельно с помощью сигналов GPS, создавая при этом бумажные карты разных вещей вроде урожайности или влажности зерна? Потрясающе!»[260]260
Brian Scott, “55 Years of Agricultural Evolution,” Farmer’s Life (blog), November 9, 2015, http://thefarmerslife.com/55-years-of-agricultural-evolution-in-john-deere-combines.
[Закрыть] Аналогичным образом рабочим на большинстве современных фабрик не нужно быть физически крепкими и сильными, им достаточно уметь обращаться со словами и числами, разбираться в поиске неисправностей и работать в команде.
Во-вторых, люди могут работать с роботами и их родственниками буквально бок о бок. И снова здесь нет ничего нового; на заводах люди давно окружены машинами и часто трудятся рядом с ними. Наш острый ум, чуткое восприятие, ловкие руки и устойчивые ноги все еще превосходят то, что есть у машин, а все вместе они представляют очень ценную комбинацию. Энди больше всего нравится демонстрация этого, увиденная им на знаменитом мотоциклетном заводе Ducati в итальянской Болонье. Двигатели Ducati весьма сложны[261]261
Значительная часть этой сложности приходится на устройство механизмов, открывающих и закрывающих клапаны.
[Закрыть], и Энди было любопытно увидеть, насколько сильно в их сборке задействована автоматизация. Оказалось, что она практически не задействована.
Каждый двигатель собирается одним человеком, который идет вдоль медленно двигающегося конвейера. По мере того как лента проходит мимо частей двигателя, которые нужны на соответствующем этапе сборки, рабочий берет их, ставит на нужное место, закрепляет и при необходимости регулирует. Сборка двигателя Ducati требует подвижности, способности манипулировать объектами в ограниченном пространстве и сильно развитого чувства осязания. Руководство компании сочло, что никакая автоматизация не обеспечивает подобного, поэтому сборкой двигателя занимаются люди.
Аналогичные способности требуются на складах многих торговых предприятий, особенно таких, как Amazon, где продаются товары всех форм, размеров и консистенций. Компания Amazon пока еще[262]262
По крайней мере, на момент написания этой книги. Нам известно, что они предприняли несколько попыток, но ни одна не соответствовала их требованиям.
[Закрыть] не нашла и не разработала «руки» с цифровым приводом или другие захваты, которые могли бы надежно брать товары с полки и класть их в коробку. Поэтому было придумано остроумное решение: подвозить полки к человеку, который берет нужные товары и упаковывает их для отправки. Стеллажи с полками по огромным распределительным центрам компании перевозят оранжевые роботы высотой по колено, первоначально созданные бостонской компанией Kiva Systems (Amazon купила ее в 2012 году[263]263
John Letzing, “Amazon Adds That Robotic Touch,” Wall Street Journal, March 20, 2012, http://www.wsj.com/articles/SB10001424052702304724404577291903244796214.
[Закрыть]). Эти роботы влезают под стеллаж, поднимают его и подвозят к человеку. Когда он берет нужные предметы, робот со стеллажом уезжает, а его место занимает другой. Такая схема позволяет людям использовать зрение и ловкость там, где у них есть преимущество перед машинами, и избегать физического напряжения и потерь времени от перемещения между полками.
Насколько долго мы сможем сохранять свое преимущество перед роботами и дронами? На этот вопрос трудно ответить с уверенностью, особенно из-за того, что пять элементов продолжают прогрессировать по отдельности и совместно. Похоже, что органы восприятия, руки и ноги человека представляют собой комбинацию, которую машинам будет трудно превзойти как минимум еще несколько лет. Роботы достигли впечатляющего прогресса, но они все еще значительно медленнее нас, когда пробуют делать «человеческие» вещи. В конце концов, наш мозг и организм прошли миллионы лет эволюции, и получившиеся модели хорошо справляются с проблемами, которые ставит перед нами физический мир. Когда Гилл Прэтт был руководителем проектов в DARPA (Управлении перспективных исследовательских проектов Министерства обороны США), он курировал конкурс роботов 2015 года[264]264
John Dzieza, “Behind the Scenes at the Final DARPA Robotics Challenge,” Verge, June 12, 2015, http://www.theverge.com/2015/6/12/8768871/darpa-robotics-challenge-2015-winners.
[Закрыть]. Роботы-участники двигались в таком неспешном темпе, что он сравнил себя со зрителем, наблюдающим турнир по гольфу. Тем не менее Прэтт заметил существенное улучшение по сравнению с первым конкурсом, проведенным в 2012 году. По словам Прэтта, смотреть на роботов тогда было все равно что наблюдать за ростом травы.
Как показывают примеры, приведенные в этой части книги, прогресс уже позволяет нам строить машины, выходящие за пределы вселенной битов и взаимодействующие с людьми и вещами в мире атомов. Благодаря тому же прогрессу мы совершили еще один шаг: теперь мы способны упорядочивать атомы, то есть создавать вещи ранее невозможными способами. Это хорошо видно на примере, пожалуй, самых распространенных рукотворных предметов – пластиковых деталей.
Мировое производство пластмасс в 2015 году составляло 250 миллионов тонн[265]265
PlasticsEurope, “Plastics– the Facts 2014/2015: An Analysis of European Plastics Production, Demand and Waste Data,” 2015, https://www.plasticseurope.org/application/files/5515/1689/9220/2014plastics_the_facts_PubFeb2015.pdf.
[Закрыть], и в каждом современном автомобиле имеется больше двух тысяч пластиковых деталей разных форм и размеров. Чтобы производить большую их часть, сначала требуется изготовить матрицу, или форму, – металлическую конструкцию, в которую горячий пластик впрыскивается, впрессовывается или вводится иным способом. Контуры и полости этой матрицы определяют итоговую форму детали.
Необходимость в ней имеет три важных следствия. Во-первых, крайне важно сделать ее правильно, поскольку она послужит шаблоном для тысяч или миллионов деталей. Матрицы должны быть прочными, долговечными и очень точно изготовленными, и такое сочетание делает их дорогими. Во-вторых, необходимость в матрице накладывает ограничения на вид деталей. Например, в одной форме легко изготовить простую пластиковую шестерню, однако невозможно получить набор сцепленных шестерен, готовых к вращению. Более сложные детали в целом требуют более продвинутых матриц. Некоторые из них невероятно сложные, так как они должны обеспечить попадание всего пластика в форму и полное и равномерное заполнение пространства. В-третьих, крайне важна термодинамика матрицы – способ, которым она нагревается и охлаждается при работе с каждой деталью. Ясно, что лучше не вынимать детали, когда они еще горячие и могут деформироваться, но такая же плохая идея – дать форме охладиться больше необходимого. К тому же разные ее части охлаждаются с различной скоростью. Поэтому проектировщики и инженеры должны учитывать целый ряд факторов, чтобы обеспечить и высокое качество деталей, и высокую производительность матриц.
Примерно тридцать лет назад одна группа технологов задалась вопросом: а зачем вообще иметь форму?[266]266
PlasticsEurope, “Automotive: The World Moves with Plastics,” 2013, https://www.plasticseurope.org/en/resources/publications/104-automotive-world-moves-plastics-brochure.
[Закрыть] Их вдохновляли лазерные принтеры, которые используют в работе лазер, плавящий очень тонкий слой чернил на листе бумаги по желаемому шаблону текста или изображения.
Но зачем останавливаться на одном слое? Почему бы не повторять процесс снова и снова, создавая не двумерное изображение, а трехмерную конструкцию? Это требует времени, поскольку каждый слой очень тонок, тем не менее изготовление вещей таким способом открывает массу перспектив. Начнем с того, что сложность конструкции может быть произвольной, как отмечает специалист по трехмерной печати Луана Йорио[267]267
Thomas L. Friedman, “When Complexity Is Free,” New York Times, September 14, 2013, http://www.nytimes.com/2013/09/15/opinion/sunday/friedman-when-complexity-is-free.html.
[Закрыть]. Другими словами, сделать деталь высокой сложности не дороже, чем самую простую, поскольку обе представляют собой стопки очень тонких слоев. Например, узел из сцепленных шестерен создается так же легко, как и любой отдельный трехмерный компонент.
Новаторы использовали методы трехмерной печати и для изготовления металлических деталей, которые получаются из расплавленных лазером тонких слоев порошкового металла, осаждающихся один за другим на лежащую ниже конструкцию, состоящую из предыдущих слоев. Этот процесс обеспечивает еще одно весьма важное свойство: твердость становится произвольной. Обрабатывать очень твердые металлы вроде титана трудно и дорого, однако наплавлять их слой за слоем не сложнее, чем более мягкие типа алюминия. Требуется всего лишь отрегулировать мощность лазера.
Когда и сложность, и твердость становятся контролируемыми факторами, устраняются некоторые давние ограничения. Например, теперь несложно изготавливать формы для пластиковых деталей, которые можно охлаждать гораздо быстрее. Компания DTM Solutions из Остина добилась этого, создав с помощью трехмерной печати в формах из металлического сплава множество маленьких тонких каналов, проходящих сложным образом. Традиционными методами подобное сделать нельзя. Горячий пластик не течет сквозь эти тонкие каналы, а охлаждающие жидкости текут, потому происходит быстрое охлаждение после формовки каждой новой детали. В результате они изготавливаются на 20-35 процентов быстрее[268]268
Guillaume Vansteenkiste, “Training: Laser Melting and Conformal Cooling,” PEP Centre Technique de la Plasturgie, по состоянию на 30 января 2017 года, http://www.alplastics.net/Portals/0/Files/Summer%20school%20presentations/ALPlastics_Conformal_Cooling.pdf.
[Закрыть] и имеют лучшее качество[269]269
Eos, “[Tooling],” по состоянию на 30 января 2017 года, https://www.eos.info/tooling.
[Закрыть].
В этом месте скептик может спросить, не поем ли мы хвалу инновациям, которые наводнят мир дешевыми пластиковыми деталями, забивающими свалки и засоряющими океаны. Мы смотрим на вещи иначе, хотя и согласны с тем, что избыточное потребление и недостаточная утилизация пластмасс – это плохо, все же преимущества 3D-печати крайне полезны.
Рассмотрим пример с трехмерной моделью опухоли[270]270
Yu Zhao et al., “Three-Dimensional Printing of Hela Cells for Cervical Tumor Model in vitro,” Biofabrication 6, no. 3 (April 11, 2014), http://iopscience.iop.org/article/10.1088/1758-5082/6/3/035001.
[Закрыть]. До появления 3D-печати у хирургов просто не было реального способа составить точное представление о разрастании злокачественной ткани, к чему они давно стремились. Они не могли потратить деньги и время на создание традиционной формы: это экономически оправдано только в случае, когда вы собираетесь изготавливать много копий детали.
А если вам нужно сделать только одну модель или образец? Или деталь сломалась, и вам срочно требуется запасная? Или вы нуждаетесь в небольшом наборе деталей, каждая из которых совсем немного отличается от остальных? В этих случаях традиционные методы изготовления большей частью бесполезны. В то же время трехмерная печать для них подходит идеально. Самым важным преимуществом трехмерной печати является, видимо, то, что она удешевляет эксперименты и индивидуализацию. На путь от идеи или потребности до готовой полезной вещи больше не нужны длительные дорогостоящие этапы вроде изготовления формы и прочих традиционных технологий производства.
Карл Басс, бывший CEO компании Autodesk, занимающейся программным обеспечением для конструкторов и инженеров, считает трехмерную печать лишь частью картины. Он говорил нам: «Я думаю, что технология послойной печати – это подмножество по-настоящему трансформируемых производств, которые состоят в использовании недорогих микропроцессоров для точного контроля машинного оборудования»[271]271
Карл Басс, интервью, данное авторам летом 2015 г.
[Закрыть]. Суть мысли Басса заключается в том, что сенсоры и код используются сейчас не только для точного размещения очень тонких слоев материала друг поверх друга; они также применяются практически в любой промышленной технологии – от разрезания листов стекла и керамической плитки до сгибания и прокатки всех видов металла.
Машины, которые делают эту работу – преобразование атомов в те итоговые формы, что нам нужны, – сейчас совершенствуются благодаря закону Мура. Возможно, они не становятся одновременно лучше и дешевле с такой же скоростью, как процессоры и микросхемы, но их прогресс тоже впечатляет. По сравнению со своими эквивалентами двадцатилетней давности они дешевле, но при этом способны на большее, а качество их работы выше. Такой прогресс делает их доступными для разных новаторов – обладателей хобби, домашних изобретателей, студентов, инженеров и предпринимателей – и дает возможность заняться исследованиями любому желающему. Мы уверены, что инновации, которые удешевляют инструменты высокого качества, приведут к появлению еще больших инноваций в ближайшем будущем.
Резюме• Многие бизнес-процессы постепенно виртуализируются: они переходят на цифровые каналы и уменьшают количество задействованных людей. Часто единственным человеком остается клиент.
• Некоторые люди по-прежнему предпочитают межличностное взаимодействие, однако, по нашему мнению, виртуализация является долговременной тенденцией, которая в целом будет расширяться по мере освоения машинами новых способностей.
• В робототехнике происходит своего рода кембрийский взрыв из-за того, что машины научились видеть, а также вследствие других форм цифрового прогресса. Самые разные автоматы – роботы, дроны, беспилотные автомобили и прочие – становятся дешевле, доступнее, функциональнее, разнообразнее, причем все это происходит одновременно.
• Движущими силами кембрийского взрыва в робототехнике мы считаем пять факторов: данные, алгоритмы, сети, облачные технологии и экспоненциальное улучшение аппаратного обеспечения.
• Роботы и их родственники будут все чаще применяться там, где работа бездумная, грязная, опасная и дорогостоящая.
• Люди все еще более сноровисты и маневренны, чем самые совершенные роботы, и, видимо, ситуация останется такой еще некоторое время. Наши умения в сочетании с тонкостью восприятия и способностью решать проблемы означают, что во многих случаях мы будем работать с роботами бок о бок.
• Трехмерная печать важна сама по себе, но одновременно она является и примером более широкой тенденции – вторжения цифровых инструментов в сферу традиционных производственных процессов. Это пример инновации, которая ведет к росту других инноваций.
Вопросы1. Если ваши бизнес-процессы требуют широкого взаимодействия между людьми, почему это так? Потому ли, что ваши клиенты (сотрудники, поставщики, партнеры) ценят межчеловеческое общение, или потому, что у вас нет такой же эффективной цифровой альтернативы?
2. Какие аспекты работы в вашей отрасли с наибольшей вероятностью будут виртуализированы в следующие три – пять лет? Какие из ваших клиентов при наличии выбора предпочли бы более виртуализированное взаимодействие?
3. Какие аспекты работы вашей организации наиболее бездумные, грязные, опасные или дорогостоящие? Рассматривали ли вы в последнее время роботов или другие средства автоматизации, способные помочь вам справиться с этими задачами?
4. Как в вашей организации физический труд (если он есть) делится между людьми и машинами? А интеллектуальный труд или обработка информации? И что насчет работы, которая в основном является межличностной?
5. Как вы извлекаете выгоду из новых технологий изготовления вещей в своих исследованиях или при разработке новых образцов?
Глава 5. Когда без человека не обойтись
Есть три правила написания романов. К сожалению, их никто не знает.
Предположительно Сомерсет Моэм
«Какие способности останутся исключительно человеческими в этой гонке технологий?» – вот самый частый вопрос о разуме и машине, который мы слышим. Когда цифровой инструментарий оспаривает человеческое превосходство в рутинной обработке информации, распознавании образов, языке, интуиции, суждениях, прогнозах, физической ловкости и во многих других сферах, есть ли хоть какие-нибудь области, где мы точно навсегда останемся лучшими?
Мечтают ли андроиды о творческих взлетах?[272]272Отсылка к названию романа Филипа Дика «Снятся ли андроидам электроовцы?». Прим. перев.
[Закрыть]
Самый распространенный ответ на вопрос, поставленный в предыдущем абзаце, – творчество. Множество, если не большинство, людей, с которыми мы общались, говорили, что в человеческой способности предлагать новые идеи есть что-то абсолютное и неописуемое. Нам кажется, что в этом много верного; по сути, нечто подобное мы говорили в книге «Вторая эра машин». Однако недавние разработки в области промышленного дизайна свидетельствуют, что машины становятся успешными в самостоятельном создании впечатляющих идей.
Можно с уверенностью сказать, что большинство людей никогда не думали о теплообменниках, – о них много думают те специалисты, которые проектируют холодильники, печи, двигатели и другое оборудование. Задача теплообменника – передавать тепло от одной среды (жидкости или газа) к другой, не позволяя средам контактировать. Батарея отопления в спальне – теплообменник; она передает окружающему воздуху тепло от проходящей внутри воды или пара. Аналогично действует и кондиционер.
Создать новый теплообменник нелегко. Он должен выполнять свою основную задачу и притом быть эффективным, безопасным, прочным и дешевым. Чтобы выполнить все эти требования, проектировщик должен знать необходимые рабочие характеристики, термодинамику и гидродинамику, свойства материалов, методы и стоимость производства и прочее. На практике, разумеется, многие проектировщики опираются на огромное количество полезных сведений, полученных при разработке предыдущих успешных теплообменников; они вносят изменения в уже существующий проект, чтобы выполнить требования для новой ситуации.
Но что если бы проектировщик теплообменника обладал всеми требуемыми знаниями, но не имел накопленного опыта? Иными словами, что если предположить, что проектировщик точно знает все требуемые параметры (размеры теплообменника, его стоимость, срок службы, передачу энергии и все остальное) и является первоклассным экспертом во всех необходимых научных и технических дисциплинах, но никогда не работал над теплообменниками и даже не подозревал, что такая вещь в принципе может оказаться полезной. Что придумал бы такой проектировщик?
Рисунок 1 показывает пример. Как вы, вероятно, уже догадались, он был спроектирован компьютером.
Рис. 1
Теплообменник, спроектированный программой для генеративного дизайна (схема предоставлена компанией Autodesk)
ТАКОЙ ЕСТЕСТВЕННЫЙ ИСКУССТВЕННЫЙ ДИЗАЙН
Теплообменник, изображенный на рис. 1, продукт генеративного дизайна – процесса, в котором программное обеспечение используется не для того, чтобы помочь дизайнеру-человеку создать чертеж, выполнить вычисления и изучить баланс плюсов и минусов, а для самостоятельной, стопроцентно автоматической работы, при которой выдается один или несколько готовых проектов, удовлетворяющих всем требованиям.
Эта деталь была изготовлена с помощью трехмерной печати. По сути, традиционными методами ее изготовить невозможно. Теперь же, когда 3D-принтеры стали реальностью, программы генеративного дизайна больше не связаны по рукам старыми методами производства и могут предлагать намного более широкий диапазон форм. Кстати, в отличие от большинства, если не всех, проектировщиков-людей, программное обеспечение не склоняется сознательно или неосознанно к существующим методам, поэтому ведет исследования свободнее.
Обладает ли программа генеративного дизайна творческими способностями? Это сложный вопрос, поскольку творчество служит ярким примером того, что пионер в области искусственного интеллекта Марвин Минский называл словом-чемоданом. Он писал: «Большинство слов, которые мы употребляем для описания разума, например “сознание”, “обучение” или “память”, похожи на чемоданы, поскольку в них вложена масса различных значений»[273]273
John Brockman, “Consciousness Is a Big Suitcase: A Talk with Marvin Minsky,” Edge, February 26, 1998, https://www.edge.org/conversation/marvin_minsky-consciousness-is-a-big-suitcase.
[Закрыть]. Именно это мы наблюдаем в различных определениях творчества. Так, Оксфордский словарь английского языка утверждает, что творчество – это «использование воображения или оригинальных идей, особенно для создания художественных произведений».
Теплообменник, созданный программой генеративного дизайна, на деле не соответствует этому определению, поскольку не был продуктом чьего-то воображения и не представляет собой художественное произведение. Однако словарь Уэбстера дает несколько иное определение творчества: это «способность создавать новые вещи или придумывать новые идеи». При таком определении, по нашему мнению, программа генеративного дизайна бесспорно творческая.
Люди не играли никакой роли в проектировании детали, изображенной на рис. 1, но их участие было необходимо, для того чтобы сообщить программе генеративного дизайна, какая именно нужна деталь. Люди задали программе начальные условия, определив, что должна уметь делать деталь. Им нужно было понимать, где ее предполагается использовать, в каких внешних условиях, какую энергию она должна передавать и тому подобное. Короче говоря, эти люди располагали массой знаний и умений в соответствующих областях – возможно, почти таким же объемом, какой нужен настоящим проектировщикам теплообменников для разработки проекта.
ГОНИ БЫСТРЕЕ, ТВОРИ СТРАННЕЕ
А если хоть часть соответствующих знаний тоже можно было создавать автоматически? Если к сочетанию программы для генеративного дизайна и трехмерной печати можно было бы добавить дополнительные инструменты, чтобы творческие цифровые технологии продвинулись дальше? Чтобы выяснить это, в 2013 году в Лос-Анджелесе представители Autodesk объединились с группой автомобильных дизайнеров и водителей-каскадеров[274]274
Daniel Terdiman, “Inside the Hack Rod, the World’s First AI-Designed Car,” Fast Company, December 1, 2015, по состоянию на 30 января 2017 года, https://www.fastcompany.com/3054028/inside-the-hack-rod-the-worlds-first-ai-designed-car.
[Закрыть]. Они поставили цель разработать автоматизированную систему, которая могла бы с нуля проектировать гоночные шасси и самостоятельно определять, как они должны функционировать, – иными словами, задавать его характеристики.
Для этого команда сначала построила урезанную модель традиционного гоночного автомобиля – фактически только шасси, трансмиссию, двигатель, сиденье и колеса. Затем специалисты покрыли шасси датчиками, измеряющими нужные параметры: напряжение, деформацию, температуру, смещение и все прочие вещи, к которым должно быть приспособлено шасси. Как мы уже говорили в предыдущей главе, цифровые датчики сейчас одновременно малы, дешевы и производительны, поэтому команда смогла без больших затрат получить огромное количество точных данных от шасси, оснащенного измерительными приборами.
Автомобиль с датчиками отвезли в пустыню Мохаве, где шофер-испытатель водил его на предельных режимах, разгоняясь и тормозя максимально жестко (но без крушений), а датчики машины в это время собирали информацию. К концу заезда у команды имелось 20 миллионов замеров для конструкции автомобиля и сил, действующих на него. Все эти данные были загружены в Project Dreamcatcher – систему генеративного дизайна, разработанную Autodesk, – а потом использованы для трехмерного моделирования шасси. Рисунок 2 показывает то, что выдала программа. Нам кажется, что шасси для гоночного автомобиля тут можно опознать с большим трудом. Скорее это похоже на череп мамонта или кита, или, возможно, на микроскопический панцирь диатомовой водоросли, состоящий из диоксида кремния[275]275
Диатомовые водоросли, или диатомеи – группа одноклеточных водорослей, встречающихся по всему миру. Обладают своеобразным панцирем из двуокиси кремния (кремнезема). Прим. ред.
[Закрыть].
Рис. 2
Модель шасси гоночного автомобиля (схема предоставлена компанией Autodesk)
Это не простое совпадение. Кости, экзоскелеты и прочие природные конструкции победили в ходе древней безжалостной эволюционной конкуренции – битвы в буквальном смысле не на жизнь, а на смерть. Эволюция создала изумительные проекты, одновременно жизнеспособные, выносливые, энергетически эффективные, изощренные, сильные и стройные. Поэтому мы не должны удивляться тому, что программа генеративного дизайна, которая получила задание спроектировать оптимальную конструкцию, удовлетворяющую какому-либо набору функциональных требований, выдает нечто, выглядящее так, как будто оно создано природой.
Вы обратили внимание на еще одну необычную черту? Шасси асимметрично, его правая и левая стороны не являются зеркальным отражением друг друга. Это вполне разумно. Гоночный автомобиль чаще ездит по кругу в одном направлении[276]276
Например, на овальных треках в автогонках серии NASCAR машины всегда ездят против часовой стрелки, делая только левые повороты. Прим. перев.
[Закрыть], чем в другом, поэтому на обе стороны шасси действуют различные силы. Дизайнеры-люди знали об этом давно, но их творения редко бывали настолько асимметричными (если вообще бывали), как проект, созданный программой генеративного дизайна.
Примеры вроде гоночного шасси убеждают нас, что цифровое творчество – это больше, чем просто подражание и инкрементализм[277]277
Инкрементализм – метод работы посредством добавления в проект многочисленных мелких изменений, а не нескольких больших. Прим. перев.
[Закрыть]. Компьютеры способны на нечто большее, чем просто расширение и комбинирование уже сделанного людьми. Мы оптимистично смотрим на то, что может происходить нечто противоположное. Когда компьютеры вооружаются накопленным человеком научным и техническим знанием и получают эксплуатационные требования для какой-либо ситуации (или достаточное количество данных, чтобы выяснить их самостоятельно), они предлагают новые решения, которые людям не пришли бы в голову.
КОМПЬЮТЕР КРИЧИТ: «ЭВРИКА!»
Машины-проектировщики не имеют слепых пятен и предрассудков, которые, видимо, неизбежно накапливаются вместе с опытом у людей. Доступные сегодня вычислительные мощности позволяют машинам-проектировщикам быстро и недорого исследовать множество решений – больше, чем может придумать целое здание, полное людей. Цифровые творцы уже существуют.
Типичный пример творчества в духе «Эврика!» в науке – это появление новой теории, которую со временем подкрепляют результаты экспериментов. Хорошо продуманное исследование, проведенное специалистами по вычислительной биологии в Медицинском колледже Бейлора и аналитиками из IBM, показало, что технология искусственного интеллекта IBM Watson могла бы применяться для создания полезных научных гипотез[278]278
Scott Spangler et al., “Automated Hypothesis Generation Based on Mining Scientific Literature,” in Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (New York: ACM, 2014), 1877–86, http://scholar.harvard.edu/files/alacoste/files/p1877-spangler.pdf.
[Закрыть]. Группа искала киназы[279]279
Киназы – ферменты, играющие важную роль в энергообмене клеток.
[Закрыть] – активаторы белка p53; он интересен тем, что сдерживает развитие рака. Исследователи заставили Watson прочитать[280]280
Watson не понимает, по крайней мере пока, язык так, как это делают люди, но находит закономерности и связи в письменном тексте, которые может включать в свою базу данных.
[Закрыть] 70 тысяч опубликованных научных работ по этой теме[281]281
IBM, “IBM Watson Ushers In a New Era of Data-Driven Discoveries,” August 28, 2014, https://www-03.ibm.com/press/us/en/pressrelease/44697.wss.
[Закрыть], а затем попросили спрогнозировать киназы, которые будут включать и выключать деятельность белка p53. Watson назвал семь возможных вариантов.
Откуда нам знать, хороши они или плохи? Нам это известно, потому что исследователи дали системе только работы, опубликованные до 2003 года. Это означает, что ученые могли использовать десять лет научного прогресса между 2003 и 2013 годами, чтобы определить, какие из гипотез Watson были исследованы и подтверждены. В реальности оказалось, что все семь киназ, предложенных компьютером, активируют p53. Результаты особенно впечатляют, если учесть, что за последние тридцать лет наука в данной области открывала примерно по одной активирующей p53 киназе в год. Это не какая-то частная проблема.
НО ВЕДЬ ИСКУССТВО – ЭТО НЕЧТО ДРУГОЕ, РАЗВЕ НЕТ?
Цифровое творчество добралось и до искусства. Программа Саймона Колтона The Painting Fool пишет картины без вмешательства человека[282]282
The Painting Fool, “About Me…” по состоянию на 30 января 2017 года, http://www.thepaintingfool.com/about/index.html.
[Закрыть], Патрик Трессет изготовил несколько манипуляторов, которые пишут портреты живых моделей[283]283
PatrickTresset.com, по состоянию на 30 января 2017 года, http://patricktresset.com/new.
[Закрыть], а программа Emily Howell, разработанная профессором музыки Дэвидом Коупом, сочиняет мелодии в разных стилях[284]284
“Emily Howell,” по состоянию на 30 января 2017 года, http://artsites.ucsc.edu/faculty/cope/Emily-howell.htm.
[Закрыть].
Мы часто слышим, что цифровые художники, композиторы и другие «творческие личности» не так талантливы, как люди тех же профессий, и что творения машин по-прежнему определенно не столь глубоки, как человеческие. Коуп заметил интересное явление. Райан Блитштайн в журнале Pacific Standard в 2010 году рассказывает о его работе так: «На концерте в Санта-Круз в программе не было указано, что Эмили Хоуэлл не человек, и один профессор химии, страстный любитель музыки, описывал в зале исполнение композиции Хоуэлл как одно из самых трогательных переживаний в своей жизни. Спустя шесть месяцев тот же человек посетил лекцию Коупа о программе Emily Howell и прослушал в записи тот же самый концерт. Коуп вспоминает, что профессор сказал ему: «Вы знаете, это прелестная музыка, но я могу не раздумывая с абсолютной уверенностью сказать, что она сочинена компьютером. В этом произведении нет сердца, нет души, нет глубины»[285]285
Ryan Blitstein, “Triumph of the Cyborg Composer,” Pacific Standard, February 22, 2010, https://psmag.com/triumph-of-the-cyborg-composer-620e5aead47e#.tkinbzy0l.
[Закрыть].
Вероятно, мы не слишком удивимся тому, что компьютер-композитор может создать музыку, которую люди сочтут чарующей или красивой. Эстетичность – то, что мы находим красивым, или то, что нравится нашему вкусу и ощущениям, – сложная вещь, понять ее трудно (особенно потому, что она меняется со временем и различна для разных групп и культур), но все-таки возможно. Люди вывели некоторые из таких правил и принципов – например, частое использование «золотого сечения», примерно равного 1,618:1, для расположения элементов на картинах или других художественных произведениях – и постоянно обнаруживают новые (хотя некоторые могут долгое время ускользать от внимания).
Это знание встраивается в технологии и используется в ряде отраслей. Стартап Grid предлагает людям и компаниям весьма индивидуализированные сайты, которые отражают их вкусы. Сайты соответствуют принципам веб-дизайна, при этом люди в их создании не участвуют. IBM отправила свою технологию Watson на кухню, где машина придумывает целые кулинарные книги полезных рецептов, в которых собраны новые сочетания ингредиентов и пряностей, известных людям[286]286
Журналисту Марку Уилсону из Fast Company понравился придуманный компьютером соус для барбекю «Бенгальский ореховый» (Mark Wilson, “I Tasted BBQ Sauce Made by IBM’s Watson, and Loved It,” Fast Company, May 23, 2014, https://www.fastcodesign.com/3027687/i-tasted-bbq-sauce-made-by-ibms-watson-and-loved-it), а вот «Австрийское шоколадное буррито» Уилсон назвал худшим из всего, что пробовал в жизни (Mark Wilson, “IBM’s Watson Designed the Worst Burrito I’ve Ever Had,” Fast Company, April 20, 2015, https://www.fastcodesign.com/3045147/ibms-watson-designed-the-worst-burrito-ive-ever-had).
[Закрыть]. Шанхайская башня – это 128-этажный современный небоскреб в центре района Пудун[287]287
Skyscraper Center, “Shanghai Tower,” по состоянию на 30 января 2017 года, http://skyscrapercenter.com/building/shanghai-tower/56.
[Закрыть]. Технология эффективного использования энергии сокращает выбросы (в пересчете на углекислый газ) на 34 тысячи тонн в год[288]288
Gensler Design Update, “Sustainability Matters,” по состоянию на 30 января 2017 года, http://du.gensler.com/vol6/shanghai-tower/#/sustainability-matters.
[Закрыть], а экономия применения материалов уменьшила себестоимость строительства на 58 миллионов долларов[289]289
Gensler Design Update, “Why This Shape?” по состоянию на 30 января 2017 года, http://du.gensler.com/vol6/shanghai-tower/#/why-this-shape.
[Закрыть]. При этом многим людям скрученная форма блестящего небоскреба кажется вполне красивой. Она, а также внутренняя конструкция здания были спроектированы компьютером. Конечно, впоследствии их совершенствовали и оттачивали группы архитекторов, но исходной точкой в их работе было здание, спроектированное машиной, а это весьма далеко от чистого листа бумаги.
Внимание! Это не конец книги.
Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?