Электронная библиотека » Эрик Хагерман » » онлайн чтение - страница 5


  • Текст добавлен: 24 июля 2017, 17:40


Автор книги: Эрик Хагерман


Жанр: Зарубежная прикладная и научно-популярная литература, Зарубежная литература


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 5 (всего у книги 27 страниц) [доступный отрывок для чтения: 9 страниц]

Шрифт:
- 100% +
Первая искра

В 1995 году я занимался некоторыми исследованиями, готовя к публикации книгу A User’s Guide to the Brain («Путеводитель по нашему мозгу»), когда натолкнулся на одностраничную статью в журнале Nature, рассказывавшую о связи между физической активностью и нейротрофинами (BDNF), обнаруженной в экспериментах на мышах. Текста там меньше, чем в газетной колонке, но сказано было очень много. А именно: двигательная нагрузка приводила к росту содержания нейротрофина (того самого волшебного удобрения, подобного Miracle-Gro) в мозге подопытных животных.

Проводивший эти эксперименты Карл Котман, директор Института старения и деменции Калифорнийского университета в Ирвине, рассказывал: «Я ожидал, что движения мышей могут вызвать значительные изменения в сенсорной системе мозга – двигательной коре, мозжечке, соматосенсорной коре, возможно, даже в базальных ядрах, – поскольку все элементы сенсорной системы мозга ассоциировались с движением. Мы проявили первые пленки с рентгеноскопией мозга мышей, и, о боже, изменения выявились и в гиппокампе. Важность этого момента состояла в том, что гиппокамп – это участок мозга, который сильно поражается дегенеративной болезнью и играет большую роль в обучении человека. Я тотчас же сказал себе: “Это полностью меняет дело!”»

Такая новость стала для меня полной неожиданностью. Многие годы я был убежденным сторонником использования физических упражнений в лечении синдрома дефицита внимания / гиперактивности, а также других психологических расстройств. При этом я основывался на наблюдениях за своими пациентами, а также на известном положительном эффекте, который двигательная активность оказывала на баланс нейромедиаторов. Но здесь речь шла о другом. Показав, что нагрузка «зажигает» мастер-молекулу процесса обучения, Котман установил прямую биологическую связь между движением и мыслительными функциями мозга. Сделав это, он открыл путь к изучению фактора движения в нейрофизиологии.

Котман проводил свои эксперименты вскоре после того, как был обнаружен сам факт наличия нейротрофинов в мозге. Тогда ничто не говорило о том, что физическая активность может оказывать какое-то влияние на уровень присутствия этих белков. Его гипотеза была просто актом креативности. Котман как раз закончил большое исследование, связанное с вопросами старения, в ходе которого пытался выявить нечто общее у тех пожилых людей, мозг которых сохранился лучше других. За четыре года наблюдений он установил, что таких людей объединяли три фактора: образование, самодостаточность и двигательная активность. Первые два сюрпризом не были. Котмана больше всего заинтересовал третий фактор. «Я стал думать, что вообще происходит, – говорит ученый. – Тогда существовало представление, будто движение прямо на мозг не влияет, но во мне крепло убеждение, что это не так».

На вопрос, какие переменные влияют на здоровье мозга, большинство ученых привычно отвечали – нейротрофический фактор, потому что нейротрофины считались важнейшим условием выживания нейронов. Если бы Котман смог связать физическую активность с ростом содержания нейротрофинов в мозге, он, по крайней мере, смог бы удовлетворительно объяснить обнаруженную им роль движения в замедлении старения.

Котман разработал эксперимент для измерения уровня нейротрофинов в мозге мышей, проявлявших повышенную физическую активность. Важным условием эксперимента была добровольность соответствующего поведения, потому что если бы мышей заставляли бегать по ленте тренажера, коллеги сказали бы, что рост уровня нейротрофинов был вызван борьбой со стрессом. Хорошо, решил Котман, мы используем обычные колеса, в которых так любят бегать грызуны. Насколько новыми для своего времени были исследования Котмана, можно увидеть хотя бы из того, что изготовление соответствующего оборудования для эксперимента, которое одобрил бы университет, было настоящим мучением. Ученый должен был платить до тысячи долларов за колесо из нержавейки, устраивающее комиссию. «Я помню, как подписывал заказ на его изготовление и думал, насколько это все тяжко. У меня даже появилась надежда, что ничего не сработает», – шутит Котман. К тому же никто из докторантов не захотел участвовать в исследованиях, поэтому ученому пришлось искать помощников среди аспирантов. В конечном счете удалось договориться с аспирантом, который специализировался на вопросах физиотерапии и проявил интерес к теме исследований.

В отличие от людей, грызуны, как представляется, от природы любят движение, поэтому мыши Котмана за ночь пробегали несколько километров. Они были разделены на четыре группы: в первой бегали две ночи, во второй – четыре, в третьей – семь, а мышам из четвертой группы вообще не поставили колес. Когда в мозг грызунов ввели молекулу, прилепляющуюся к молекулам нейротрофина, и просканировали мозг, то установили, что у подвижных мышей уровень нейротрофина BDNF не только возрастает, но и повышается в арифметической зависимости от величины нагрузки. Котман увидел результаты и обнаружил, что рост уровня BDNF коснулся и гиппокампа, – и не поверил своим глазам. «Я решил: мы, видимо, сделали что-то не так». Но этот чертов гиппокамп продолжал светиться. Мы вынуждены были повторить эксперимент: слишком уж значимыми оказались результаты. В повторных опытах мы увидели то же самое».

Когда связь между нейротрофинами и физической активностью была подтверждена, стало ясно, что белки BDNF важны не только для выживания нейронов, но и для их развития (появления новых ответвлений), а значит, и для обучения. Ээро Кастрен, а также Сьюзен Паттерсон из лаборатории Кандела в Колумбийском университете обнаружили: если в мышах стимулировать долговременную потенциацию, заставляя их учиться, то уровень нейротрофинов в мозге растет. Заглянув в мозг мышей, ученые установили, что мыши без BDNF теряют способность к долговременной потенциации. И наоборот, инъекции BDNF в мозг приводили к ее усилению. Вскоре один из докторантов Котмана, нейрохирург Фернандо Гомес-Пинилья, показал, что если у мышей нейтрализовать нейротрофин, они медленнее находят выход из своей клетки. Все это убедительно свидетельствует о том, что физическая активность помогает мозгу в обучении.

«Одно из очень примечательных свойств физической активности, о котором иногда забывают, состоит в повышении скорости и эффективности обучения. Я считаю это очень важным, – говорит Котман. – Предполагается, что если вы в хорошей форме, то можете быстрее обучаться чему-то новому и эффективнее задействовать свежие навыки».

Действительно, в серии исследований возможностей человека, проведенной в 2007 году, немецкие ученые установили, что скорость запоминания иностранных слов после физических упражнений повышается на 20 %, а эффективность обучения прямо коррелирует с уровнем нейротрофинов в мозге. Одновременно было выявлено, что люди с различными генными отклонениями, лишающими их нейротрофинов, обычно испытывают различные трудности и расстройства при обучении. Без волшебного «удобрения Miracle-Gro» в виде BDNF мозг склонен закрываться от окружающего мира.

Хотя и неохотно, психиатрия восприняла идею, что физическая активность помогает улучшить состояние нашего мозга, создавая благоприятные условия для обучения. А работы Котмана подтвердили, что упражнения усиливают молекулярные механизмы обучения. Нейротрофины предоставляют нейронным синапсам так необходимые им инструменты, с помощью которых они воспринимают информацию, обрабатывают, связывают с имеющимися данными, запоминают и включают в существующий контекст. Это не значит, что пробежка сразу же превратит вас в гения. Котман подчеркивает: «Нельзя ввести себе BDNF и моментально стать умнее. В вопросах обучения человека все сложнее. Но в процессе обучения обязательно должно присутствовать “нечто”».

И вне всякого сомнения, это «нечто» играет очень важную роль.

Природа воспитания

Еще во времена нейробиолога Рамон-и-Кахаля[16]16
  Сантьяго Рамон-и-Кахаль (1852–1934) – испанский врач и гистолог, один из основоположников современной нейробиологии. Лауреат Нобелевской премии по физиологии и медицине за 1906 год. Прим. перев.


[Закрыть]
(который в 1906 году получил Нобелевскую премию за выдвижение идеи, что центральная нервная система человека состоит из отдельных нейронов, взаимодействующих между собой с помощью «полярных связей») некоторые ученые полагали, что процесс обучения включает в себя возникновение изменений в синапсах. Несмотря на одобрительные отзывы об этой теории, большинство исследователей все же не поверили в нее. Так продолжалось до 1945 года, пока психолог из Университета Макгилла Дональд Хебб[17]17
  Дональд Хебб (1904–1985) – канадский физиолог и нейропсихолог. Известен работами, приведшими к пониманию значения нейронов для процесса обучения. Его называют одним из создателей теории искусственных нейронных сетей, так как он предложил первый работающий алгоритм обучения искусственных нейронных сетей.


[Закрыть]
не наткнулся на первое подтверждение. В те дни лабораторный режим был не таким строгим, как сейчас, и ученый посчитал возможным принести домой несколько лабораторных крыс в качестве домашних животных для забавы своим детям. Идея оказалась взаимовыгодной: когда через некоторое время он вернул крыс в лабораторию, обнаружилось, что те значительно превосходят оставшихся собратьев в тестах на обучаемость. Приобретенный крысами – любимцами детей опыт внимательного и даже любовного обращения оказал явно позитивное воздействие на их способность учиться, что Хебб интерпретировал как положительные изменения в их мозге. В признанном классическом труде The Organization of Behavior: A Neuropsychological Theory («Организация поведения: нейропсихологическая теория») он описал это явление как «пластичность от использования» («синаптическая пластичность»). Его идея состояла в том, что под влиянием стимуляции, связанной с обучением, синапсы сами видоизменялись.

Теория Хебба полностью вписывается в оценку физической активности, потому что для живых существ та часто выступает как новый опыт, во всяком случае в том, что касается мозга. В 1960-х годах группа ученых из Калифорнийского университета в Беркли использовала модель эксперимента под названием «обогащение среды» для проверки теории Хебба. Исследователи не брали грызунов домой, но оборудовали их жилища большим количеством игрушек, препятствий, скрытыми кормушками и беговыми колесами. Они также объединили животных в группу, чтобы те могли общаться и играть.

Дело, к сожалению, окончилось для крыс не совсем удачно: после эксперимента их мозг был вскрыт. Исследование показало, что большое количество сенсомоторных и социальных импульсов изменило структуру и функции мозга грызунов. Они не только лучше выполняли задания на обучаемость. Мозг их оказался тяжелее, чем у тех особей, что жили в пустых клетках. Определение Хеббом пластичности не включало в себя рост мозга. «Он формулировал свою теорию, когда даже заикнуться о том, что мозг может изменяться, было все равно что нести ересь, – говорит нейрофизиолог Уильям Гриноу, который молодым аспирантом очень интересовался экспериментами в Беркли. – Особенно изменяться физически под влиянием нового опыта».

Гриноу мечтал присоединиться к исследованию влияния «обогащения среды» на мозг, но его предупредили о нежелательности таких работ. Он вспоминает: «Научный руководитель сказал: если я выберу для изучения эту тему, наверняка окажусь во Вьетнаме». Однако по мере того, как эксперименты ученых из Беркли все же повторялись, постулат, что опыт может существенно влиять на мозг, обретал все более прочную базу. В серии параллельных исследований группа ученых из Гарварда доказала обратное: что при «обеднении среды» мозг может усыхать, или сжиматься. Изучая кошек, у которых один глаз был зашит, исследователи установили, что их визуальная кора становилась меньше, чем у обычных. Все это укрепляло у ученых идею, что мозг подобен мышце и может как развиваться, так и ослабевать.

Последствия экспериментов с «обогащением среды» были очень серьезными. И дело не только в том, что они сблизили разделенные до этого биологию и психологию. Опыты ученых из Беркли привели к созданию федеральной образовательной программы «Старт ума» (Head Start), на которую выделялись существенные средства, чтобы обучать детей с отставаниями в развитии и из бедных семей в подготовительных школах. Почему ранее было возможно оставлять этих бедных мальчиков и девочек в «голых клетках» без обогащенного окружения?

Таким образом открылась новая область исследований. Нейробиологи и нейрофизиологи принялись изучать различные способы стимуляции роста мозга. Когда Гриноу получил должность преподавателя в Иллинойсском университете, он вернулся к интересующей его теме. В своих новаторских исследованиях 1970-х годов он использовал электронный микроскоп для обнаружения того, как «обогащение среды» позитивно влияло на рост новых ответвлений у нейронов. Стимуляция этого процесса за счет таких факторов «обогащения среды», как обучение новому, физические упражнения и социальные контакты, заставляла синапсы нейронов устанавливать новые связи с соседними нейронами. Одновременно синаптические окончания нейронов приобретали более толстую миелиновую оболочку, что позволяло эффективнее проводить поступающие сигналы.

Сегодня мы знаем, что для роста нервных клеток необходим нейротрофин (BDNF). Такая трансформация синапсов оказывает огромное воздействие на способность нейронных цепочек к обработке поступающей информации, что само по себе прекрасная новость. Это означает, что вы обладаете способностью к изменению своего мозга. Все, что для этого необходимо, – завязать шнурки на своих кроссовках.

Усиливая нейропластичность клеток мозга

По мере того как концепция синаптической пластичности упрочивала позиции в нейробиологии, все большее признание стала получать еще более радикальная идея. На протяжении значительной части ХХ столетия существовала научная догма, что мозг полностью «программируется» после окончательного развития в подростковом возрасте человека. Это предполагало, что все наши нейроны мы получаем при рождении. Мы в силах трансформировать синаптические связи, но нейроны можем только терять. Разумеется, мы в состоянии ускорить их разрушение, если, например, начнем рано принимать алкоголь, как пугали нас учителя биологии в восьмом классе средней школы. «Помните: алкоголь убивает нервные клетки, и они не восстанавливаются».

Но знаете что? Они восстанавливаются, причем тысячами. Ученые не могли обнаружить окончательное подтверждение этому до 1998 года, пока новая научная аппаратура по сканированию мозга не позволила заглянуть в его глубины. И открытие пришло с неожиданной стороны. Пациентам с раком мозга иногда вводятся контрастные вещества, которые показывают разрастание злокачественных клеток и позволяют следить за развитием болезни. Ученые исследовали безнадежно больных злокачественными опухолями, которые отдали свои тела науке, и обнаружили, что соответствующие маркеры буквально переполняли гиппокамп. Это стало наглядным подтверждением нейрогенеза – процесса деления и развития клеток мозга. Все происходило так же, как и в других органах человеческого тела. Так было сделано одно из величайших открытий в нейробиологии.

С тех пор повсюду – от Стокгольмского до Калифорнийского и Принстонского университетов – нейробиологи и нейрофизиологи стали предпринимать попытки понять, каким образом появляются новые нервные клетки и каковы их функции. Значение этих исследований огромно, поскольку науке и медицине хорошо известно, что главной причиной страшных деструктивных процессов в мозге человека типа болезней Паркинсона и Альцгеймера оказывается именно разрушение клеток головного мозга. Старение человека также связано с гибелью нервных клеток, и вот неожиданно мы узнали, что организм имеет свои способы противодействия этому процессу, затрагивающему некоторые участки головного мозга. Стоит выяснить, как запустить процесс нейрогенеза, и мы сможем заменять целые части нашего мозга.

А что это означает для здорового мозга? Одна из первых важных находок в отношении нейрогенеза была сделана при изучении певчих птиц – американских синичек. Оказалось, что каждую весну они разучивают новые трели, и при этом в их гиппокампе образуется множество нервных клеток. Случайное совпадение? Растущие нервные клетки и указали на их некую связь с процессами обучения у птиц. Однако получить наглядные доказательства тогда было трудно. В 1998 году нейробиолог Фред Гейдж из Института биологических исследований Солка в Ла-Холье (Сан-Диего) вместе с Петером Эрикссоном из Швеции были первыми, кто провел прорывные эксперименты. «Как и синаптическая пластичность, нейрогенез, безусловно, прочно связан с нашим окружением – в отношении и эмоций, и мыслительной деятельности, – поясняет Гейдж. – Изучать, какую же на самом деле функцию он выполняет, – чрезвычайно интересное дело».

Нейроны рождаются из стволовых клеток мозга, а затем активно развиваются, только так и получая возможность выжить. Некоторые погибают. Установлено, что «новорожденному» нужно 28 дней, чтобы встроиться в нейронную сеть мозга. При этом по отношению к ним применима теория Хебба об активности в процессе обучения: если мы не задействуем новые нейроны, то теряем их. Гейдж использовал идею «обогащенной среды», чтобы испытать ее на грызунах. «Сначала мы испробовали много приемов, – объясняет он, – но как только поместили в клетки животных беговые колеса, то, к нашему удивлению, обнаружили, что это оказало колоссальный эффект на количество образующихся нейронов. Парадоксально, но у активно бегающих крыс число гибнущих нейронов было таким же, как и у животных из контрольной группы, лишенных физической активности. Но у первой группы был гораздо обширнее пул стволовых клеток, из которых образуются нейроны. Важно, что для выживания и интеграции нейрона в сеть он должен как можно раньше задействовать свое окончание – аксон, по которому нервные импульсы идут к другим нейронам». Двигательная активность способствует генерации нейронов, а «обогащенная среда» помогает им выживать.

Первое убедительное доказательство связи между нейрогенезом и обучаемостью обнаружила одна из коллег Гейджа, Генриетта ван Прааг. В ходе экспериментов ученые использовали небольшой водоем с непрозрачной водой, помещенный в клетку грызуна. В нем прямо под поверхностью одного из углов поставили небольшую платформу. Мыши не любят воду, и цель эксперимента состояла в определении скорости запоминания животным места расположения платформы, которую оно обнаружило при предварительных заплывах. Путь к платформе был своеобразной дорогой спасения для мыши. Когда исследователи сравнили результаты, показанные «неактивными» мышами, с теми, которые демонстрировали животные, пробегавшие от четырех до пяти километров за ночь, то оказалось, что последние запоминали дорогу к безопасному месту гораздо быстрее соплеменников из первой группы. Плавали грызуны примерно с одинаковой скоростью, но если «активные» мыши направлялись к платформе по прямой, то «неактивные» долго кружили по бассейну в поисках убежища. Когда мозг подопытных животных был вскрыт, ученые обнаружили в гиппокампе «активных» вдвое больше стволовых клеток, чем у остальных. Оценивая результат этих исследований, Гейдж сказал: «Между общим количеством нервных клеток в мозге мыши и ее способностью к решению сложных задач существует прямая зависимость. Если блокировать нейрогенез у грызуна, он теряет способность к запоминанию информации».

Объектами этих исследований были мыши, но эксперимент позволил понять, что происходит со школьниками в Нейпервиллском школьном округе: занятия физкультурой вооружают их новыми мозговыми «инструментами» для обучения, а стимуляция новых нервных клеток во время занятий в классе позволяет им активно включиться в нейронную сеть, в которой они становятся ценными единицами сигнальной системы мозга. Таким образом у новых нейронов появляется цель. Создается впечатление, что они, образуясь во время физических занятий, лучше «зажигают» долговременную потенциацию мозга. Они характеризуются высокой пластичностью. Нейрофизиолог из Принстонского университета Элизабет Гульд считает, что новые нейроны быстрее включаются в мыслительную деятельность, а префронтальная кора активно задействует их также в долговременной памяти. Гульд первая показала, что в мозге приматов возникают нейроны. Это наблюдение положило дорогу к экспериментам, касающимся нейрогенеза у человека.

Она и многие другие нейрофизиологи изучают связь нейрогенеза и процессов обучения. Исследуется также и связь с физической активностью. Однако интересно, что относительно мало ученых интересуются самой двигательной активностью. Скорее, они заставляют мышей бегать потому, что этот бег «приводит к массивному нейрогенезу», как провозглашало солидное исследование под названием «Гиппокамп» (2006). Ученые стремятся дешифровать цепочку сигналов, сопутствующих нейрогенезу. Это нужно фармацевтическим компаниям для производства новых лекарств. Они мечтают о создании препарата «Анти-Альцгеймер», которые регенерировал бы нейроны для сохранения памяти. Нейробиолог из Колумбийского университета Скотт Смол, который использовал новейшие образцы компьютерного томографа для наблюдения за нейрогенезом у людей, говорит: «В гиппокампе должно находиться какое-то нейрохимическое вещество, которое реагирует на двигательную активность и отдает команду на формирование новых нервных клеток – нейронов. Если мы сможем открыть природу этих молекулярных процессов, то сумеем изобрести какие-то мудрые способы биохимического запуска нейрогенеза».

Только представьте, что произойдет, если ученые смогут поместить физическую активность в бутылочку!


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации