Автор книги: Евгений Кунин
Жанр: Биология, Наука и Образование
Возрастные ограничения: +16
сообщить о неприемлемом содержимом
Текущая страница: 34 (всего у книги 41 страниц)
Таким образом, гипотеза АХЭ снимает парадоксы происхождения репликации и трансляции предположением о том, что оба этих процесса, в их примитивных формах, не произошли в результате биологической эволюции, а возникли случайно, как связанная система, в соответствии с антропным принципом.
Гипотеза АХЭ, несомненно, должна показаться большинству эволюционных биологов нелепой и возмутительной, поскольку она уклоняется от поисков «механизмов» доклеточной эволюции. Тем не менее существуют смягчающие обстоятельства. Во-первых, постулируемая возможность возникновения сопряженной репликационно-трансляционной системы не требует никаких неизвестных процессов. Напротив, для нее необходимы только хорошо известные, обычные реакции, такие как полимеризация нуклеотидов и аминокислот и фосфорилирование/дефосфорилирование нуклеотидов; при этом нужны только распространенные в химии и биохимии взаимодействия. Как уже отмечалось в этой главе, элементарные реакции, необходимые для трансляции (активация аминокислот, аминоацилирование РНК и транспептидация), легко моделируются с помощью рибозимов, в противоположность репликации РНК, которой, как известно, трудно достичь в отсутствие белков. Во-вторых, исключая разве что полную неадекватность нынешнего понимания условий на первичной Земле, любые мыслимые сценарии эволюции жизни обязательно требуют сочетания маловероятных условий и событий до начала биологической эволюции. Список таких событий включает в себя абиогенный синтез довольно сложных и не очень устойчивых органических молекул, таких как нуклеотиды, накопление этих молекул в соответствующих ячейках до высоких концентраций и их полимеризацию с получением полинуклеотидов достаточного размера и разнообразия. Таким образом, независимо от космологических соображений, некоторые формы антропной причинности представляются неизбежным аспектом эволюции жизни (см. рис. 12-6).
Я привел сценарий АХЭ, чтобы показать, что диапазон сложности, открытой для антропной причинности, может быть гораздо шире, чем предполагалось ранее, настолько, что первичная репликационно-трансляционная система могла возникнуть без биологического отбора. Случайное происхождение изощренной системы, способной исполнять сложные биологические функции, может показаться бессмыслицей. Я полагаю, однако, что это всего лишь семантическая ловушка. До наступления биологической эволюции не может быть «функции», только сложность, а модель МММ гарантирует возникновение любого уровня сложности (это гарантированно произойдет «где-то» в бесконечной Вселенной, но антропный принцип прямо помещает эти события на Землю).
Все эти соображения провоцируют довольно-таки кошмарный вопрос: имеет ли какое-либо значение в бесконечно избыточном мире МММ биологическая эволюция вообще и дарвиновский отбор в частности? Разве не возникнет система любой, даже наивысшей, сложности просто случайно? Ответ: да, но этот вопрос упускает важное обстоятельство. В модели МММ случайное появление бесконечного числа сложных биот неизбежно, но несравнимо реже, чем развитие по сценарию АХЭ, которое включает в себя переход от случайности к биологической эволюции после стадии прорывной системы (см. рис. 12-6). Начало биологической эволюции канализирует исторический процесс, сокращая многочисленные траектории, которые возможны в принципе, до относительно малого числа стабильных и более вероятных – тех, что совместимы с дарвиновским режимом эволюции сложных систем (см. рис. 12-7). Этот переход приводит к гораздо большей скорости эволюционных изменений, чем та, что достигается случаем, и, как только возникает возможность для биологической эволюции, антропная причинно-следственная связь отходит на второй план в истории жизни. Конечно, «второй план» не означает потери важности: непредвиденные случайности имеют решающее значение, особенно на переходных этапах эволюции (см. обсуждение ранее в этой книге, особенно в гл. 7). Таким образом, в любой реконструкции происхождения жизни и ранней эволюции порог должен быть связан с самой нижней точкой, то есть минимально сложной системой, способной к биологической эволюции.
Рис. 12-7. Отсечение эволюционных траекторий на пороге биологической эволюции: а – только химическая эволюция; б – возникновение биологической эволюции.
Сильная форма гипотезы АХЭ, согласно которой прорывным этапом в истории жизни была примитивная совместная репликационно-трансляционная система (см. рис. 12-6), в принципе легко опровержима. Такая система должна рассматриваться как верхняя граница сложности для прорывного этапа. Как только возможность биологической эволюции при более низком уровне сложности, таком как мир РНК, будет убедительно продемонстрирована, а путь от мира РНК к системе трансляции очерчен либо опытным путем, либо в убедительной модели, сильная форма гипотезы АХЭ будет опровергнута. Демонстрация самостоятельного возникновения жизни на нескольких планетах в нашей Вселенной будет иметь тот же результат. В приложении приведен грубый, но, хочется надеяться, поучительный расчет верхней границы вероятности возникновения совместной репликационно-трансляционной системы в наблюдаемой части Вселенной; эта вероятность, несомненно, исчезающе мала. Противоположное предсказание состоит в том, что любые формы жизни, которые могут быть обнаружены на Марсе, или, возможно, Европе (спутнике Юпитера, на котором была обнаружена жидкая вода), или даже на любой экзопланете в ходе будущих планетарных исследований, будут иметь общее с земной жизнью происхождение. Любая из этих находок опровергнет сильную гипотезу АХЭ, но не сделает модель МММ незначимой для нашего понимания происхождения жизни. Действительно, любое такое открытие (важное само по себе) просто понизит порог биологической эволюции в масштабе рис. 12-7.
Самым простым и сильным опровержением гипотезы АХЭ будет опровержение самой МММ[135]135
Интересно и важно отметить, что, в то время как готовился русский перевод этой книги, анализ наблюдений радиоастрономического зонда «Планк» выявил гетерогенность реликтового микроволнового излучения, которая предсказывается теорией инфляции (Planck Collaboration: P. A. R. Ade, N. Aghanim, C. Armitage-Caplan, M. Arnaud, M. Ashdown, F. Atrio-Barandela, J. Aumont, C. Baccigalupi, A. J. Banday, R. B. Barreiro, M. Bartelmann, J. G. Bartlett, E. Battaner, K. Benabed, A. Benoot, A. Benoit-Lèvy, J.-P. Bernard, M. Bersanelli, P. Bielewicz, J. Bobin, J. J. Bock, A. Bonaldi, J. R. Bond, J. Borrill, F. R. Bouchet, F. Boulanger, J. W. Bowyer, M. Bridges, M. Bucher, C. Burigana, R. C. Butler, B. Cappellini, J.-F. Cardoso, R. Carr, M. Casale, A. Catalano, A. Challinor, A. Chamballu, R.-R. Chary, X. Chen, L.-Y Chiang, H. C. Chiang, P. R. Christensen, S. Church, D. L. Clements, S. Colombi, L. P. L. Colombo, F. Couchot, A. Coulais, B. P. Crill, A. Curto, F. Cuttaia, L. Danese, R. D. Davies, R. J. Davis, P. de Bernardis, A. de Rosa, G. de Zotti, et al. (218 additional authors not shown). Planck 2013 results. I. Overview of products and scientific results. arXiv:1303.5062 [astro-ph. CO]; Planck Collaboration. Planck 2013 results. XXII. Constraints on inflation arXiv:1303.5082 [astro-ph.CO]). И хотя это предварительные данные, от которых далеко до прямой поддержки МММ, вероятность того, что рассуждения в этом разделе книги вообще ни на чем не основаны, по-видимому, сильно упала.
[Закрыть]. Тем не менее здесь требуется важное разъяснение. Для обоснованности представленных здесь концептуальных рамок не требуется верная во всех деталях МММ. Только два общих положения существенны: (1) пространственно бесконечная вселенная, такая, как любая островная вселенная в МММ; мультивселенная, хоть и является неотъемлемой частью теории вечной инфляции, не требуется в качестве аргумента; (2) конечность числа различных макроскопических историй. Даже сильная форма гипотезы АХЭ, представленная здесь, не будет опровергнута, если некоторые конкретные детали МММ окажутся неправильными, но только если одно из этих общих предположений окажется неверным.
Краткий обзор и перспектива
Проблема происхождения жизни является не только одной из самых трудных задач во всей науке, но и одной из важнейших. Исследование происхождения жизни превратилось в активно развивающуюся область междисциплинарных исследований, хотя некоторые ученые часто смотрят на нее со скептицизмом и даже с насмешкой. Такое отношение вполне понятно и в каком-то смысле может быть оправдано, учитывая «постыдный», редко упоминаемый секрет: несмотря на многие интересные результаты, если судить только по простым критериям достижения конечной цели или даже приближения к ней, исследование происхождения жизни, можно сказать, терпит фиаско – мы все еще не имеем даже правдоподобной и непротиворечивой модели, не говоря уже об обоснованном сценарии возникновения жизни на Земле. Конечно, это связано не с отсутствием экспериментальных и теоретических усилий[136]136
Хотя и это не стоит сбрасывать со счета, поскольку ситуация с фондированием фундаментальных исследований, не имеющих немедленного практического выхода, мягко говоря, не улучшается.
[Закрыть], а с чрезвычайной имманентной трудностью и сложностью проблемы. Для возникновения жизни необходима последовательность чрезвычайно маловероятных событий, от синтеза и накопления нуклеотидов до появления трансляции; при перемножении их вероятностей окончательный результат кажется почти что чудом.
Не все так мрачно: важные указания на возможные пути возникновения жизни все же были обнаружены. Некоторые особенности природной среды, которые существуют до сих пор, такие как сети неорганических ячеек в гидротермальных источниках, вероятно, существовали и 4 миллиарда лет назад и могли быть подходящим инкубатором для всех ранних шагов эволюции жизни, начиная с синтеза и концентрирования мономеров до происхождения трансляции. Гипотеза мира РНК, серьезно поддерживаемая, пусть и не напрямую, внушительным объемом данных по каталитической активности рибозимов, является привлекательным, и, видимо, единственным мыслимым выходом из парадоксальных ситуаций, связанных с происхождением трансляции.
Тем не менее трудности остаются огромными. Несмотря на все усилия, мы в настоящее время не имеем связной и убедительной модели, описывающей путь от простых органических молекул к первой форме жизни. Хуже всего, что мощные механизмы биологической эволюции не были доступны ни на одной стадии, предшествующей появлению репликаторных систем. Учитывая все эти принципиальные трудности, кажется разумным серьезно рассматривать радикально альтернативные гипотезы возникновения жизни. Космологическая модель вечной инфляции и связанная с ней гипотеза МММ может предложить решение загадки происхождения жизни, потому что в бесконечной мультивселенной с конечным числом различных макроскопических историй (так что каждая повторяется бесконечное число раз) случайное появление даже очень сложных систем не только возможно, но и неизбежно. Таким образом, интервал на шкале организационной сложности, в котором может лежать переход от антропной селекции к биологической эволюции, резко расширяется. В частности, можно представить, что прорывным шагом к наступлению биологической эволюции было случайное появление примитивной сопряженной системы репликации и трансляции. То, что это крайне редкое событие произошло на Земле и привело к возникновению жизни такой, как она нам известна, может быть обосновано одной лишь антропной причинностью. Согласно этой модели, мир РНК как таковой, с его разнообразным населением реплицирующихся молекул РНК, но без трансляции, никогда не был этапом ранней эволюции жизни на Земле. Однако этот сценарий ни в коем случае не отменяет центральной роли РНК в становлении биологической эволюции и ранней эволюции жизни. В самом деле, модель АХЭ включает в себя сложный ансамбль нереплицирующихся молекул РНК, возникший по воле случая, положившего начало биологической эволюции.
Учитывая огромную сложность и трудность проблемы происхождения жизни и отсутствие биологических механизмов эволюции (отбора и дрейфа) на любом этапе, предшествовавшем довольно сложным репликаторным системам, я полагаю, что возможность возникновения жизни на основе сочетания чрезвычайно маловероятных событий, которое теория МММ делает неизбежным, не должна сбрасываться со счетов. Эта возможность кажется в высшей степени нелогичной, но мы слишком хорошо знаем, что интуиция – плохой путеводитель по временным и пространственным масштабам, лежащим далеко за пределами человеческого опыта. Кроме того, модель АХЭ – не досужие домыслы. Напротив, это вполне опровержимая гипотеза, и опровержение, случись оно в форме демонстрации возможности развития трансляции в мире РНК или открытия независимо возникшей жизни в нашей Вселенной, будет по-настоящему переломным достижением.
Рекомендуемая дополнительная литература
Aravind L., R. Mazumder, S. Vasudevan, and E. V. Koonin. (2002) Trends in Protein Evolution Inferred from Sequence and Structure Analysis. Current Opinion in Structural Biology 12: 392–399.
В статье приводятся аргументы в пользу того, что основные белковые укладки достигли существенного разнообразия еще до появления системы трансляции современного типа. Реконструкция эволюции укладки Россмана, присутствующей в АРСазах класса I, используется, чтобы показать, что основанные большей частью на РНК системы трансляции должны быть достаточно эффективны для белковой эволюции.
Crick F. H. (1968) The Origin of the Genetic Code. Journal of Molecular Biology 38: 367–379.
Блестящая пророческая статья, остающаяся актуальной более чем через 40 лет после опубликования. В ней Крик очерчивает идею мира РНК (без использования этого термина) и возможные сценарии эволюции генетического кода, до сих пор определяющие данную область исследований.
Koonin E. V. (2007) The Cosmological Model of Eternal Inflation and the Transition from Chance to Biological Evolution in the History of Life. Biology Direct 2: 15.
В статье вопрос о происхождении жизни помещается в контекст инфляционной космологии, согласно которой каждое физически возможное макроскопическое состояние существует в бесконечном числе экземпляров в бесконечной вселенной. Согласно этой концепции, крайне маловероятные события, такие как случайное появление полной совместной системы репликации и трансляции, не могут быть исключены как возможные шаги добиологической эволюции.
Koonin E. V., and W. Martin. (2005). On the Origin of Genomes and Cells Within Inorganic Compartments. Trends in Genetics 21: 647–654.
В статье развивается единый сценарий доклеточной эволюции генетических элементов, ансамблей «эгоистичных кооператоров» и все увеличивающихся геномов в неорганических ячейках.
Martin W., J. Baross, D. Kelley, and M. J. Russell. (2008) Hydrothermal Vents and the Origin of Life. Nature Reviews Microbiology 6: 805–814.
Обзор условий в гидротермальных источниках и свойств сетей неорганических ячеек, делающих их пригодными в качестве инкубаторов жизни.
Martin W., and M. J. Russell. (2003) On the Origins of Cells: A Hypothesis for the Evolutionary Transitions from Abiotic Geochemistry to Chemoautotrophic Prokaryotes, and from Prokaryotes to Nucleated Cells. Philosophical Transactions of the Royal Society London B Biological Sciences 358: 59–83.
Основополагающая статья, где идея о том, что ранние стадии эволюции жизни могли быть ограничены сетями неорганических ячеек в гидротермальных источниках, впервые помещена в биологический контекст.
Robertson M. P., and G. F. Joyce. (2012) The Origins of the RNA World. Cold Spring Harbor Perspectives in Biology 4:a003608.
Обзорная статья, описывающая концепцию мира РНК и активность рибозимов, важных для происхождения репликаторных систем. Авторы признают трудности, с которыми сталкивается гипотеза мира РНК, и делают предположение, что класс репликаторных систем иной, пока неизвестной природы мог предшествовать РНК.
Russell M. J. (2007) The Alkaline Solution to the Emergence of Life: Energy, Entropy, and Early Evolution. Acta Biotheoretica 55: 133–179.
Подробная статья, где обосновывается представление о том, что «проточные реакторы» гидротермальных источников обладают низкой энтропией и способствуют образованию сложных формаций, таких как репликаторные системы, и, в конечном счете, клеток.
Vetsigian K., C. Woese, and N. Goldenfeld. (2006) Collective Evolution and the Genetic Code. Proceedings of the National Academy of Sciences USA. 103: 10,696—10,701.
Убедительная аргументация, подтвержденная математическим моделированием, в пользу того, что универсальность генетического кода обусловлена решающей ролью ГПГ на ранних стадиях эволюции жизни.
Wolf Y. I., and E. V. Koonin. (2007) On the Origin of the Translation System and the Genetic Code in the RNA World by Means of Natural Selection, Exaptation, and Subfunctionalization. Biology Direct 2: 14.
Развернутый гипотетический сценарий возникновения системы трансляции путем экзаптации древних рибозимов, стимулируемых аминокислотами и пептидами.
Дополнение
Mulkidjanian AY, Bychkov AY, Dibrova DV, Galperin MY, Koonin EV. Origin of first cells at terrestrial, anoxic geothermal fields. Proc Natl Acad Sci USA. 2012 Apr 3;109(14):E821-30.
В статье рассматриваются разнообразные данные, поддерживающие сценарий происхождения клеток в окрестностях наземных геотермальных источников.
Глава 13. Постсовременное состояние эволюционной биологии
В предыдущих двенадцати главах мы рассмотрели многообразие аспектов эволюции жизни. Подобное рассмотрение, конечно, никоим образом не может быть всеобъемлющим, но это и не было моей целью. Так или иначе, информация, представленная в предыдущих главах, достаточна (и необходима) для выражения сути этой книги: за 50 лет, прошедших со времени утверждения СТЭ в науке, эволюционная биология кардинальным образом изменилась и вошла в новую эпоху – эпоху «постмодерна».
Согласно синтетической теории эволюции, эволюция жизни – это процесс активной адаптации популяций к изменяющимся условиям среды. Теперь стало очевидным, что, хотя подобная адаптация и является, несомненно, существеннейшим компонентом эволюционного процесса, в количественном отношении она не доминирует. И хотя я полностью сознаю, что любая попытка предложить широкое обобщающее определение приводит к чрезмерному упрощению, вместе с тем предлагаю следующее.
Эволюция жизни – это преимущественно стохастический процесс, основанный на исторической случайности, ограниченный прежде всего разнообразными условиями поддержания основ биологической организации и модулируемый механизмом адаптации.
Ограничения, формирующие ход эволюции, имеет смысл рассматривать максимально широко. Они включают все виды предупреждения и устранения повреждений и локальной оптимизации, такие как снижение уровня ошибок во всех информационных процессах и расход энергии, а также непрерывную «гонку вооружений» между паразитами и хозяевами, которая стимулирует эволюцию различных адаптаций, благодаря эффекту Красной Королевы. В этой заключительной главе кратко излагаются разнообразные аспекты постсовременного состояния эволюционной биологии и рассматриваются осуществимость и возможные очертания постсовременной теории эволюции. В табл. 13-1 представлена постсовременная переоценка нескольких фундаментальных положений концепции Дарвина и СТЭ.
Таблица 13-1. Постсовременная переоценка некоторых центральных положений дарвиновской и синтетической теорий эволюции.
Плюрализм паттернов и процессов эволюции: смена концепций отбора, вариации и древа жизни
Роль и статус отбораДвоякий смысл слова «постмодерн» в предисловии к этой книге, возможно, не ускользнул от внимательного читателя. Что бы мы ни думали о постмодернистской философии (см. прил. I), ее мировоззрение, безусловно, подчеркивает богатство и чрезвычайное разнообразие процессов и закономерностей, составляющих реальность. Сложность этих разнообразных тенденций такова, что, по мнению некоторых философов постмодернистского толка, ни одно серьезное обобщение не имеет права на существование. В сегодняшней эволюционной биологии разнообразие процессов и закономерностей является, пожалуй, главной темой, и, коль скоро мы принялись говорить парадоксами, можно сказать, что главной темой является отсутствие всеобъемлющей главной темы.
Центр внимания, лежавший в СТЭ на естественном отборе, действующем на случайные генетические изменения, сместился ко множеству взаимодополняющих фундаментальных эволюционных процессов и моделей (см. рис. 13-1). В новой эволюционной биологии естественный отбор является лишь одним из процессов, формирующих эволюционирующий геном, и, видимо, не доминирует количественно. Эволюцию в значительной степени определяют нейтральные процессы, такие как генетические дрейф и тяга.
Развивая тему плюрализма, заметим, что относительный вклад адаптивных и нейтральных процессов отнюдь не постоянен по всей широте спектра форм жизни. Как очень точно сформулировал Майкл Линч (естественно, перефразируя Добржанского), «ничто в эволюции не имеет смысла, кроме как в свете популяционной генетики» (Lynch, 2007b). Действительно, динамика популяций – или, проще говоря, эффективный размер популяции, в краткосрочной и долгосрочной перспективе – является ключевым фактором, определяющим давление отбора. Эффективный размер популяции может отличаться на порядки даже у близкородственных организмов, поэтому различия в интенсивности отбора весьма велики (например, у насекомых и у млекопитающих). Эти различия определяют различные эволюционные режимы: при высоком Ne эволюция определяется в первую очередь (или даже исключительно) отбором; при низких же Ne на первое место выходит дрейф. В реальном процессе эволюции (почти) все линии спуска проходят через несколько «бутылочных горлышек», где доминирующей силой эволюции становится случайный дрейф; отсюда следует неизбежный и большой вклад случайности в эволюцию всех живых организмов.
Рис. 13-1. Множественные процессы, порождающие геномное разнообразие, влияющие на его закрепление в эволюции и формирующие эволюцию генома в целом.
В эволюции фенотипов роль отбора, возможно, еще больше, чем в эволюции геномов. Однако достижения системной биологии существенно расширили концепцию фенотипа. Наряду с традиционными признаками организмов, мы теперь изучаем и эволюцию молекулярных фенотипических признаков, таких как экспрессия гена и изобилие белка; молекулярная эволюция фенотипических признаков, как оказывается, включает в себя заметную нейтральную составляющую. Более того, храповик конструктивной нейтральной эволюции, по-видимому, приводит в действие неадаптивную эволюцию сложных фенотипических признаков, выглядящих, с традиционной (нео) – дарвинистской точки зрения, типичными адаптациями.
Даже когда отбор и адаптация несомненно участвуют в процессе, проявление этих факторов эволюции часто (возможно даже, в большинстве случаев) довольно сильно отличается от (нео)дарвиновской идеи «улучшения». Весьма часто адаптации имеют отношение к сохранению целостности клеточной организации, предотвращению сбоев и контролю за повреждениями. В некотором смысле сказанное выше есть тривиальная констатация факта, если мы учтем разнообразие и сложность молекулярных машин, предназначенных для контроля качества каждого из основных процессов передачи информации, примерами которых являются системы репарации ДНК и деградации белков и молекулярные шапероны. Кроме того, важным, чтобы не сказать главным движущим началом эволюции белок-кодирующих генов представляется отбор на устойчивость к ошибкам укладки. В многоклеточных организмах значение отбора для предотвращения сбоев очевидно проявляется на уровне клеток и тканей, примером чего служит сложнейшая система апоптоза, запрограммированной клеточной гибели.
В ретроспективе все эти выводы могут показаться совершенно очевидными, если учесть, как развиты, сложны и в том или ином смысле оптимизированы клетки или даже отдельные белки и РНК. Как только эти сложные системы возникли – а эволюционные реконструкции ясно показывают, что они присутствовали в течение подавляющей части истории жизни, более 3,5 миллиарда лет, – контроль качества и предотвращение повреждений действительно стали основными «задачами» эволюции, невзирая на важность появления время от времени новых адаптаций. Признание этого факта возлагает огромную нагрузку на ранние, доклеточные стадии эволюции, когда изменения были быстрыми, а роль положительного отбора, наряду с конструктивной нейтральной эволюцией, должна была быть куда значительнее, чем в течение последующих 3,5 миллиарда лет. В некотором смысле почти все «действительно интересное» в эволюции жизни произошло на сравнительно короткой ранней стадии, предшествующей установлению основ клеточной организации (см. гл. 11 и 12, а также более подробно ниже в данной главе). Конечно, существуют и заметные исключения, такие как появление эукариотических клеток или многоклеточных эукариотических организмов, но нет никаких сомнений, что большинство фундаментальных эволюционных инноваций «втиснуто» в короткий отрезок первых 5 процентов истории жизни.
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.