Текст книги "На грани возможного: Наука выживания"
Автор книги: Фрэнсис Эшкрофт
Жанр: Зарубежная прикладная и научно-популярная литература, Зарубежная литература
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 5 (всего у книги 26 страниц) [доступный отрывок для чтения: 9 страниц]
Пузырьки в крови
Причину кессонной болезни выявил в 1878 г. французский ученый Поль Бер. Он доказал, что «корчи» наступают, когда водолаз или кессонный рабочий, дышащий сжатым воздухом, слишком быстро поднимается на поверхность, и тогда газы, растворенные в крови и тканях, высвобождаются в форме пузырьков, перекрывая кровеносные сосуды. Вдыхаемый под давлением газ растворяется в жидкостях организма в большем объеме: например, на каждые 10 м спуска поглощается дополнительный литр азота (как мы увидим ниже, процесс этот не быстрый). Пока газ присутствует в жидкостях и тканях в растворенном состоянии, избыток его не создает проблем. Трудность возникает из-за недостаточной скорости вывода растворенного газа во время декомпрессии. Если ныряльщик поднимается на поверхность медленно, избыток газа, растворенный в крови, выбрасывается легкими при выдохе и не представляет опасности, но если подъем происходит быстро, легкие просто не успевают вывести газ наружу, поэтому ткани и кровь оказываются перенасыщенными и в какой-то момент газ вырывается из раствора в виде пузырьков{13}13
Одним из первых это явление описал Роберт Бойль, наблюдавший в 1670 г. образование воздушного пузыря в глазу гадюки при декомпрессии.
[Закрыть]. Этот феномен знаком любому, кто открывал бутылку газированной воды (или шампанского): как только исчезает давление, цепочки пузырьков устремляются наружу. Если крышку сорвать резко (быстрая декомпрессия), эффект будет более впечатляющим, чем при плавном откручивании крышки и медленном выпуске газа. Однако если в газированной воде и шампанском растворен углекислый газ, то у ныряльщиков, дышащих сжатым воздухом, пузырьки в крови образует прежде всего азот, поскольку содержание углекислого газа крайне мало, а кислород быстро потребляется тканями.
Почему кашалоты не страдают кессонной болезнью
Многие морские млекопитающие способны погружаться на недоступную человеку глубину. Мертвого кашалота однажды обнаружили на глубине 1134 м, где он зацепился нижней челюстью за трансатлантический кабель. Морские слоны – еще более искусные ныряльщики, рекордная достигнутая ими отметка – 1570 м, на этой глубине давление в 150 раз превышает давление на поверхности. Это далеко за пределами человеческих возможностей. Кроме того, морские слоны могут нырять многократно, не испытывая при этом никаких пагубных последствий. На самом деле морского слона правильнее было бы назвать «всплывальщиком», а не ныряльщиком, поскольку 90 % времени он проводит под водой. Один из слонов за 40 дней наблюдения провел на поверхности не более шести минут. Как же удается кашалотам и морским слонам избежать кессонной болезни?
Все дело в том, что морские млекопитающие выработали способ сокращать количество азота, растворенного в тканях организма. В отличие от человека, морские слоны и кашалоты выдыхают перед погружением. Таким образом они ограничивают запас воздуха, который берут с собой, поэтому где-то на глубине 50 м альвеолы уже полностью сжимаются и никакие дополнительные газы в кровоток не проникают. Давление на глубине заставляет полностью сжаться и сами легкие кашалота, вытесняя весь воздух в верхние дыхательные пути, укрепленные круглыми хрящевыми дисками и менее поддающиеся сжатию. Приток крови к легким тоже значительно сокращается. Таким образом, во время погружения газ практически не поступает из легких в кровь, а остаточное количество азота растворяется в жидкостях организма, поэтому при всплытии образование пузырьков в крови млекопитающему не грозит.
Образование пузырьков в крови чревато серьезными последствиями. Сформировавшись, они продолжают расти за счет новых порций газа. В итоге они разрастаются до таких размеров, что закупоривают тончайшие кровеносные сосуды и препятствуют поступлению крови к тканям, вызывая нехватку кислорода и питательных веществ. В результате клетки умирают. Кроме того, воздушные пузырьки могут активизировать работу клеток крови, реагирующих на приток воздуха, например, тромбоцитов, которые участвуют в образовании тромбов. И наконец, образование пузырьков внутри тканей может привести к деформации или разрыву клеток ткани и нарушить их функции.
У ныряльщиков сложилась богатая терминология, описывающая симптомы появления пузырьков в разных тканях. «Удушье» – перебои с дыханием, когда крупные пузыри застревают в капиллярах легких, сокращая необходимую для газообмена поверхность и вызывая ощущения, сходные с асфиксией. «Шатание» возникает из-за пузырьков в вестибулярном аппарате, отвечающем за равновесие. Пузырьки в коленных и плечевых суставах (наиболее уязвимых для кессонной болезни местах) приводят к «корчам». Находясь в спинном мозге, они приводят либо к затеканию конечностей, либо к параличу, а в самых серьезных случаях могут спровоцировать дистрофию нервных волокон. Появление их в головном мозге ведет к расстройствам речи и зрения, иногда неустранимым.
Известна одна курьезная история (возможно, вымышленная) о том, как при рытье одного из первых тоннелей под Темзой руководство решило отметить проход до серединной отметки званым обедом непосредственно в тоннеле. Поскольку строительство еще не было завершено, в тоннель подавался сжатый воздух, и обедать приглашенным пришлось «под давлением». К их большому разочарованию, шампанское при открытии не выстрелило и не «играло», поскольку давление в бутылке оказалось таким же, как в тоннеле. И все же шампанское выпили. «Заиграло» выпитое шампанское уже потом, когда руководители с гостями вышли на поверхность…
Подниматься нужно медленно
Вскоре кессонные рабочие сами обнаружили, что повышенное, по сравнению с их рабочими условиями, атмосферное давление снимает неприятные симптомы. Это натолкнуло сэра Эрнеста Мойра на идею рекомпрессионной камеры для лечения кессонной болезни. Впервые подобную камеру применили около 1890 г. на строительстве Блэкуоллского тоннеля под Темзой и Ист-Риверского тоннеля в Нью-Йорке, где она отлично себя зарекомендовала. Однако пострадавшему рабочему приходилось провести в камере не один час, чтобы вылечиться. Ясно было, что усилия надо направить, в первую очередь, на профилактику и предотвращение болезни. Благодаря трудам Поля Бера решение оказалось очевидным: водолаз или кессонный рабочий должен подниматься (или проходить декомпрессию) достаточно медленно, чтобы легкие успели вывести растворенный в крови газ. Оставалось самое сложное – определить безопасную скорость подъема. К 1906 г. проблема приобрела такую остроту, что руководство Британского флота обратилось за помощью к профессору Джону Скотту Холдейну из Оксфордского университета, физиологу, уже известному своими исследованиями в области дыхания (см. гл. 1).
Совместно с лейтенантом Г. Дамантом и профессором А. Бойкоттом Холдейн провел в лондонском Институте Листера ряд экспериментов с большой стальной камерой, в которой можно было легко регулировать давление. В ходе экспериментов над козами выяснилось, что при резкой декомпрессии с 6 до примерно 2,6 атмосферы с животным ничего страшного не происходит. Однако если давление уменьшали на такую же величину, но с 4,4 до 1 атмосферы (т. е. до уровня моря), дело принимало иной оборот. Лишь 20 % животных удавалось в таком случае избежать кессонной болезни, принимавшей иногда самые тяжелые формы, вплоть до летального исхода. После ряда проб и ошибок исследователи убедились, что можно быстро сократить абсолютную разницу в давлении до половины, но потом нужно уменьшать перепад как можно медленнее. Таким образом была выявлена максимальная глубина погружения, не требующая декомпрессии, – 10 м (давление в 2 атмосферы). Как издавна принято у физиологов, исследователи затем провели испытание и на самих себе, к счастью, без последствий. Последние стадии эксперимента велись в море у острова Бьют, у западных берегов Шотландии, с корабля ВМФ «Спэнкер». Холдейн взял к морю всю семью и позволил своему 13-летнему сыну Джеку, который впоследствии тоже загорелся изучением дыхательных процессов, погрузиться на глубину 12 м{14}14
Как писал позднее Дж. Б. С. Холдейн, развлечение это было то еще. Рукава гидрокостюма заканчивались тугими резиновыми манжетами, не пропускающими воду. Но костюм оказался мальчику великоват, поэтому вода просочилась внутрь и заполнила костюм до самой шеи. К счастью, закачиваемый в шлем воздух не позволил воде подняться выше, но продрог Джон основательно.
[Закрыть].
Холдейн сознавал, что скорость растворения азота в разных тканях различна. Жировые клетки, например, обладают большей накопительной емкостью, тогда как в клетках мозга азота откладывается меньше (это, в свою очередь, означает, что женщинам и полным людям требуется больше времени на декомпрессию, чем среднестатистическому мужчине). Кроме того, скорость накопления азота зависит от скорости поступления крови к тканям, поэтому в тканях с более низким кровоснабжением азот накапливается медленнее. Таким образом, для полного насыщения организма азотом требуется более пяти часов. При декомпрессии растворенный в жидкостях и тканях азот должен выводиться с кровотоком. Безопасная скорость его удаления зависит от накопительной емкости и скорости кровоснабжения различных тканей, то есть, проще говоря, чем дольше газ накапливается, тем дольше он выводится. Отсюда следует, что оптимальный для ныряльщика расклад – быстрое погружение, ограниченное время на глубине, затем медленный, поэтапный подъем на поверхность.
Быстрое погружение, рекомендованное Холдейном и его коллегами, противоречило принятой практике, однако было вполне оправданно с точки зрения физиологии: чем меньше времени человек проведет на глубине, тем меньше газа успеет раствориться в тканях. Во время первого, быстрого этапа подъема ныряльщик должен преодолеть половину глубины – это, как показали эксперименты, совершенно безопасно. Затем подъем должен проходить плавно, с остановками на определенное время на определенной глубине, чтобы обеспечить постепенность декомпрессии. Смысл этой поэтапности в том, что газ всегда увеличивается в объеме одинаково, независимо от того, падает давление с восьми атмосфер до четырех или с двух до единицы (напомним, что произведение давления на объем – это постоянная величина, поэтому при уменьшении давления в два раза объем в два раза возрастет). Исследования предоставили водолазам преимущество быстрого и беспрепятственного подъема до половины глубины, позволив тем самым отводить больше времени на декомпрессию во время дальнейшего подъема. Как отмечал сам Холдейн, «по традиционной методике подъем проводится ‹…› неоправданно медленно на начальном этапе и опасно ускоряется под конец».
К 1908 г. Холдейн с коллегами предоставили военно-морскому флоту подробные декомпрессионные таблицы, расписывающие, сколько водолаз должен пробыть на определенной глубине во время поэтапного подъема в зависимости от глубины и продолжительности погружения. Благодаря этим таблицам количество случаев кессонной болезни резко снизилось, они наблюдались только тогда, когда водолаз по каким-то причинам пренебрегал рекомендациями и поднимался быстрее, чем предписывалось. Не все сразу осознали важность исследований Холдейна. Как он сам говорил десятью годами позже: «Очень жаль, что в некоторых странах не удается ввести поэтапную декомпрессию из-за косных правил, предусматривающих по старинке либо постепенный подъем, либо медленный в начале и ускоряющийся по мере приближения к поверхности и атмосферному давлению». К счастью, результаты его исследований говорили сами за себя, и теперь метод Холдейна применяется повсеместно. Тем не менее трагедии все-таки имеют место – как правило, в случае пренебрежения рекомендациями. В числе самых громких несчастных случаев – гибель Криса и Крисси Раусов, достаточно опытных ныряльщиков, погибших от кессонной болезни в 1992 г. во время обследования затонувшей немецкой подлодки.
Интересно сравнить, сколько времени уходило на декомпрессию у кессонных и тоннельных рабочих раньше и сколько времени отводит на декомпрессию Холдейн с коллегами. Кессонные рабочие, подвергавшиеся воздействию давления, в три раза превышающего атмосферное (т. е. 3 бара), поднимались на поверхность в течение десяти минут, а то и меньше. Холдейн же рекомендовал после трех часов работы отводить на декомпрессию не менее полутора часов. Неудивительно, что столько кессонных рабочих страдали от «корчей».
Кроме того, ныряльщикам не рекомендуется некоторое время после погружения подниматься в воздух, поскольку давление в самолете меньше, чем на уровне моря (см. гл. 1), и дальнейший его спад также может вызвать образование пузырьков в крови. После однократного погружения ныряльщик должен воздерживаться от полетов в течение 12 часов, а после многократных погружений или погружений, требующих поэтапной декомпрессии, – еще дольше. Любители морского отдыха, не знакомые с проблемами декомпрессии, могут заработать кессонную болезнь, если, поплавав утром с аквалангом, днем отправятся на самолете домой. Даже военные пилоты, летающие на негерметизированных истребителях, рискуют пасть жертвами кессонной болезни при слишком стремительном наборе высоты с уровня моря.
Подводное плавание и кессонная болезнь
Ныряльщики без специального оборудования, которые сразу погружаются на большую глубину, не страдают от кессонной болезни, поскольку на глубине задерживаются недолго и в жидкостях организма не успевает раствориться опасное для подъема количество азота. Совсем другое дело – многократные глубокие погружения, как выяснил на собственном опыте военный врач П. Паулеу, служивший в датских ВМС. В начале 1960-х он совершил в резервуаре для тренировок по эвакуации с подлодки (глубина – 20 м) около 60 двухминутных погружений с интервалами в одну-две минуты. Где-то через полчаса после финального погружения он ощутил резкую боль в левом бедре. Сперва он решил не обращать на нее внимания, но еще два часа спустя начались сильные боли в груди, туман в глазах, перебои с дыханием и отнялась правая рука. В состоянии болевого шока его обнаружил коллега, который тут же поместил его в компрессионную камеру, понизив в ней давление до шести атмосфер. Симптомы быстро прошли. Последующая декомпрессия заняла свыше 19 часов, но, к счастью, Паулеу выздоровел полностью и впоследствии описал все, что с ним произошло.
Ныряльщики за жемчугом на островах Туамоту в Тихом океане тоже нередко впадают в состояние, похожее на то, что перенес доктор Паулеу. На их языке оно называется «таравана» и переводится как «безумное падение», а симптомы варьируются от нарушений зрения до потери сознания. Иногда у ныряльщиков наступает паралич или даже смерть (ведь у них, в отличие от доктора Паулеу, нет декомпрессионной камеры). Как отметил один из гостей архипелага: «На берегу любого острова самая крупная группа построек, скорее всего, окажется кладбищем погибших ныряльщиков». Таравана – заболевание распространенное, и его очень боятся. Только за один день симптомы проявились у 47 ныряльщиков из 235, причем у некоторых в очень острой форме, поскольку шесть человек были парализованы и двое скончались. К счастью, до таких крайних проявлений доходит не каждый день, однако уровень заболеваемости все равно очень высок.
И хотя долгие годы этиология тараваны оставалась загадкой, работы Паулеу и его последователей позволяют предположить, что она является разновидностью декомпрессионной болезни. Ныряльщики с Туамоту не щадят себя, совершая двухминутные погружения на глубину до 40 м (давление – 5 бар). В час они совершают от 6 до 14 нырков с мизерным интервалом в 4–8 мин. За это время азот, растворяющийся в тканях во время погружения, не успевает вывестись из организма и накапливается с каждым новым нырком, поэтому вызывает декомпрессионную болезнь при подъеме (таравана никогда не наблюдалась на глубине, только на поверхности). Ее следует опасаться прежде всего тем, кто совершает многократные погружения через короткие промежутки времени. Надо отметить, что на соседнем острове Мангарева, где о тараване даже не слышали, традиция велит ныряльщику проводить на поверхности не меньше десяти минут между погружениями.
На входе в воду
Декомпрессионная болезнь – не единственная трудность, с которой сталкивается ныряльщик. Даже простое погружение тела в воду по шею уже вызывает физиологические изменения. Когда вы стоите на берегу моря, кровь под действием земного тяготения стремится к ногам. Если же вы погрузитесь в воду по шею, внешнее давление воды заставит около половины литра крови устремиться вверх, к грудной клетке, наполняя крупные вены и правое предсердие, а также повышая объем кровотока. Растягивание стенки предсердия служит сигналом для двух гормонов, влияющих на поглощение воды почками и производство мочи. Именно поэтому нам после погружения в воду нередко хочется в туалет.
Ама – японские ныряльщицы
Самые знаменитые в мире ныряльщицы – японские ама, собирающие с морского дна урожаи морепродуктов (моллюсков, морских слизней, осьминогов, морских звезд и водоросли). В Японии, в отличие от западной кухни, все это идет в пищу. Кроме того, ама собирают раковины-жемчужницы под названием «акойя-гаи», использующиеся для выращивания искусственного жемчуга. Профессия ныряльщиков ама существует более 2000 лет. Это традиционно женское занятие увековечено на гравюрах художников школы укиё-э, изображающих прекрасных обнаженных по пояс девушек, ныряющих за ценнейшими раковинами моллюсков аваби – «морского ушка». Гравюры, впрочем, несколько приукрашают действительность, поскольку ама трудятся до 50-летнего возраста. Да и работа у них не сахар. Вот как описывает ее Сэй-Сёнагон, придворная дама японской императрицы Садако: «Море страшит даже благополучных. Какой же ужас должны испытывать несчастные ныряльщицы, которым приходится погружаться в пучину ради куска хлеба. О том, что произойдет, если оборвется шнур, обвязывающий ныряльщицу за талию, лучше даже не думать. Пока женщины под водой, мужчины посиживают себе в своих лодках и распевают песни, чтобы не скучать, наблюдая за плавающим на поверхности багровым шнуром. Удивительное зрелище – полнейшее равнодушие мужчин к грозящей женщинам опасности. Перед подъемом на поверхность ныряльщица дергает за шнур, и мужчины со вполне понятной мне поспешностью вытягивают ее из воды. И вот ныряльщица уже цепляется за борт лодки, судорожно хватая ртом воздух. Даже сторонний наблюдатель не удержится от слез при виде этой картины, и вряд ли найдется человек, мечтающий о такой работе».
Девушки наблюдают за ныряльщицами на Эносиме. С триптиха, написанного великим художником укиё-э Утамаро около 1789 г.
Описание Сэй-Сёнагон актуально по сей день, хотя воды с тех пор утекло немало.
Когда-то в Японии насчитывались тысячи ама (перепись 1921 г., например, зафиксировала 13 000), но в последние годы их число резко пошло на убыль. К 1963 г. оно упало до 6000, а сейчас их едва ли больше тысячи. Большинство современных ама уже в возрасте, поскольку мало кого из молодежи привлекает такой изнурительный труд. Кроме того, многие виды моллюсков сейчас выращивают искусственно. Судя по всему, профессия ама скоро отомрет, сохранившись печальным эхом лишь в названиях деревень вроде Амамати.
Так сложилось, что среди ама существуют две разновидности – катидо и фунадо. Катидо – это молодые девушки, ученицы, ныряющие без помощников на глубину 5–7 м и проводящие на дне около 15 сек. Хотя катидо может сделать около 60 нырков в час, кессонная болезнь ей не грозит – благодаря небольшой глубине погружений. Самые опытные и умелые ныряльщицы – фунадо, которые погружаются на гораздо большую глубину – в среднем около 20 м. Как видно из описания Сэй-Сёнагон, у каждой фунадо имеется помощник в лодке. Проведя серию частых вдохов, чтобы заполнить легкие воздухом, фунадо ныряет вертикально на дно с тяжелым грузом в руках, крепко сжимая ноги для лучшей обтекаемости. На дне она выпускает груз и начинает собирать свою добычу в маленькую плетеную корзинку. Перед всплытием она дергает за шнур, прикрепленный к грузу, и помощник вытаскивает ныряльщицу за веревку, обвязанную вокруг талии. Каждое погружение длится около минуты, и половина этого времени проводится на глубине. Между нырками фунадо также около минуты отдыхает в воде, у борта лодки. За утро опытная ныряльщица совершает примерно 50 погружений, потом еще столько же днем, однако, как и катидо, после серии погружений ей необходим отдых.
Кессонная болезнь среди ама не распространена, однако от ушных заболеваний они страдают гораздо чаще представителей «сухопутных» профессий. Согласно исследованию 1965 г., 60 % фунадо в возрасте после пятидесяти теряют слух. Среди прочих частых недугов – звон в ушах и разрыв барабанной перепонки.
Физиологически женщины лучше подходят на роль ныряльщиц – они дольше могут задерживать дыхание, меньше мерзнут в воде, однако маловероятно, что только по этим причинам все ама исключительно женского пола.
Даже просто окунув лицо в воду, мы тем самым вызываем физиологическую реакцию организма – сердцебиение замедляется. Этот феномен известен как рефлекс ныряльщика, и хотя у человека не слишком развит, для морских млекопитающих, например тюленей, крайне важен, как мы увидим ниже. Вы можете убедиться в существовании этого рефлекса сами, погрузив лицо в тазик с холодной водой и попросив кого-нибудь из друзей подсчитать при этом ваш пульс и сравнить с обычным. Однако эксперимент этот работает не всегда, поскольку нервозность (или волнение) вызывают выброс адреналина, учащающего сердцебиение.
Когда мы выныриваем, тело лишается водной поддержки, и кровь снова перераспределяется от грудной клетки к ногам. Это необходимо учитывать. История знает немало случаев, когда у утопающих, спасенных с помощью вертолета, развивался коллапс после подъема из воды: на плаву человек держится вполне активно, а после подъема в вертолет у него вдруг случается остановка сердца. Физиология пришла на помощь и здесь, доказав, что при погружении в воду происходит отток крови от ног и они охлаждаются сильнее, чем верхняя часть тела. Еще недавно людей из воды спасали в вертикальном положении, продевая спасательный пояс под мышки. В результате при выдергивании из воды кровь моментально приливала к ногам, где она тут же охлаждалась и, возвращаясь к сердцу, вызывала его остановку. Избежать этого помогает подъем в горизонтальном положении, с помощью второго пояса, которым обхватываются ноги. В этом случае перераспределения крови не происходит. Важно также подержать человека в положении лежа, пока конечности не прогреются равномерно. После того как Британская служба спасения на водах приняла этот метод на вооружение, количество случаев остановки сердца после спасения из воды резко сократилось.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?