Электронная библиотека » Фрэнсис Эшкрофт » » онлайн чтение - страница 8


  • Текст добавлен: 21 марта 2017, 14:30


Автор книги: Фрэнсис Эшкрофт


Жанр: Зарубежная прикладная и научно-популярная литература, Зарубежная литература


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 8 (всего у книги 26 страниц) [доступный отрывок для чтения: 8 страниц]

Шрифт:
- 100% +
В бездну

Натренированные и физически крепкие ныряльщики могут опускаться, дыша гелиоксом, на глубину до 200 м. Использование более редких смесей позволяет увеличить этот предел до 400 м, при условии что водолаз облачится в шлем из стеклопластика и обогреваемый костюм. Ниже этой отметки человеку приходится «брать» привычную среду обитания с собой, и здесь человека выручают батискафы. Команда живет при нормальном атмосферном давлении, не испытывая необходимости в продолжительной декомпрессии, а судно может быстро погружаться и всплывать. Однако стенки батискафа должны быть достаточно прочными, чтобы выдерживать внешнее давление, а для сбора проб и образцов необходимы гибкие и послушные механические захваты или манипуляторы.

Первая в мире субмарина была построена приблизительно в 1620 г. Корнелиусом ван Дреббелем, хотя проекты подводных аппаратов рождались и раньше – у Леонардо да Винчи в том числе. Дреббель намного опередил свое время. После него в области подводного судостроения подвижек почти не наблюдалось до середины XIX в., когда в войне между Севером и Югом начали использовать субмарины на паровой тяге, прозванные «дэвидами». Однако до исследования океанских глубин было еще далеко. Первым подводным аппаратом, способным выдерживать огромное давление океанской толщи, стала батисфера – полый шар с очень толстыми стенками, который на тросах опускали с палубы судна. В таком стальном шаре диаметром всего 1,4 м Уильям Биб и Отис Бартон совершили 15 августа 1934 г. свое рекордное погружение на 923 м у Бермудских островов. Однако батисфера могла только опускаться и подниматься на тросах, позволяя лишь краем глаза взглянуть на манящее подводное царство.

Переворот в глубоководных исследованиях совершил швейцарский ученый Огюст Пикар, изобретя в 1940-х годах батискаф – полностью маневренное и независимое от судна-носителя устройство. Название его состоит из греческого «батис» – глубокий и «скафос» – корабль. Он был устроен как воздушный шар, только наоборот. Верхний поплавок (заполненный 60 000 галлонами бензина) обеспечивал всплытие, а для погружения добавлялся балласт. После сбрасывания балласта батискаф устремлялся наверх. Под поплавком подвешивалась шарообразная толстостенная стальная кабина, где и помещался экипаж. 23 января 1960 г. Жак Пикар, сын Огюста, вместе с Доном Уолшем, лейтенантом американского флота, опустились на батискафе «Триест» на дно Марианской впадины. Глубина ее составляет 10 914 м (более шести миль), и давление в этой глубочайшей расселине нашей планеты тоже внушительное – 1100 бар. Рекорд Пикара и Уолша пока не удалось повторить никому, кроме японского автоматического зонда «Каико», который коснулся дна в 1995 г.

Погружение на «Триесте» продемонстрировало, что на морское дно можно путешествовать без опаски. На волне этого успеха появилось новое поколение батискафов, в которых громоздкий поплавок с бензином заменили герметичным корпусом, обеспечивающим начальную плавучесть. Теперь собственные батискафы имеются у Японии, Франции, России и США. Пожалуй, самый знаменитый из них – подводный аппарат «Элвин», спущенный на воду Вудсхоллским океанографическим институтом в 1964 г. и применявшийся для обнаружения водородной бомбы, случайно попавшей в Средиземное море у берегов Испании; для поисков гидротермальных источников на срединных океанических хребтах и обследования останков «Титаника». Последним на сегодняшний день словом техники среди подводных аппаратов является сконструированный Грэмом Хоксом «Дип Флайт» – быстроходное, исключительно маневренное устройство, напоминающее крылатую торпеду, которое и в самом деле словно летит сквозь толщу воды. Однако пока «Дип Флайт» опробован лишь на относительно небольших глубинах.

Первая в мире подводная лодка

Первую в мире действующую субмарину построил в 1620 г. голландский алхимик Корнелиус ван Дреббель (1572–1634), проживавший в то время в Лондоне. Лодок по его чертежам было построено три, причем третья была самой большой и сложной. Она прошла под водой по Темзе от Вестминстера до Гринвича, и за ее плаванием наблюдал сам король Яков I. Внешне подлодка напоминала разросшийся грецкий орех и для водостойкости была обтянута промасленной кожей. Судя по сделанным чуть позже рисункам, в движение она приводилась шестью парами весел. Однако при этом непонятно, как удавалось предотвратить проникновение воды внутрь через весельные отверстия. Не менее интересная загадка – как гребцам (и пассажирам) удавалось дышать, ведь субмарина могла пробыть под водой полтора часа, что вполне достаточно для ощутимого падения уровня кислорода и насыщения воздуха углекислым газом.


Из свидетельств современников о «спертом воздухе» ясно, что его состояние в субмарине действительно оставляло желать лучшего. Неясно, как Дреббель боролся с этой трудностью. В одном из описаний говорится, что из субмарины вела на поверхность воздушная трубка. Однако ученый Роберт Бойль, после разговора с зятем Дреббеля, писал (40 лет спустя, в 1660 г.), что Дреббель, «откупорив сосуд с этим химическим раствором, моментально возвращал спертому воздуху необходимую пропорцию жизненных частиц, которая на некоторый срок делала воздух вновь пригодным для дыхания». Что это был за «раствор», остается неясным, поскольку официально выделять кислород из воздуха научились лишь 150 лет спустя. Однако не исключено, что разгадку следует искать в 1610 г., когда Дреббель ездил в Прагу, где тогда работал польский алхимик Сендивогий, питавший особую страсть к калиевой селитре (нитрату калия). Он описывал ее как «тайную пищу жизни», утверждая, что «дух селитры», рождающийся при ее сжигании, спасает людей от смерти. Вполне справедливое утверждение, поскольку при нагревании нитрат калия выделяет кислород. Возможно, с помощью этого «духа селитры» в запечатанных сосудах либо собственноручно сжигаемой селитры Дреббель и проводил очистку воздуха в субмарине. Однако трудный вопрос, как удавалось удержать уровень углекислого газа ниже того предела, за которым должна начаться потеря сознания у гребцов, остается без ответа. Возможно, все дело в непродолжительности путешествия.

Пуще неволи

Профессиональные подводники в наше время нарасхват – техобслуживание трубопроводов, ремонт буровых вышек, осмотр и ремонт судовых корпусов, подъем затонувших судов и даже участие в криминалистических экспертизах. Еще больше людей занимаются подводным плаванием ради удовольствия. Предел глубины погружения зависит от газа, которым дышит человек под водой, но если кислородное отравление и азотный наркоз можно предотвратить благодаря использованию сложных смесей, погрузиться глубже человеку мешает нервный синдром высокого давления. Кроме того, ныряльщику приходится бороться с холодом, а риск кессонной болезни вынуждает уменьшать скорость подъема на поверхность. Из этого следует, что подводники могут беспрепятственно работать на континентальном шельфе, но глубже, на абиссальные равнины, путь им заказан. Для глубоководных исследований используются стойкие к воздействию давления батискафы или автоматические зонды. В настоящее время люди еще не пришли к однозначному выводу, какой из аппаратов предпочтительнее, и, судя по всему, развиваться будут оба направления. Ведь радость не только в том, чтобы добраться до несметных подводных богатств – уникальной, почти не изученной экосистемы, гигантских залежей нефти и полезных ископаемых, бактериальных ферментов и природных средств, которые могут совершить переворот в биотехнологиях и медицине, но и в том, чтобы увидеть это все своими глазами.


С легким паром!

Несколько лет назад японский коллега познакомил меня с восточным вариантом «крещения огнем». Он отвез меня в Ибусуки – небольшой городок на юге Японии, знаменитый своими онсенами (горячими купальнями). Городок расположен на берегу моря, откуда открывается великолепный вид на действующий вулкан с чарующим названием Сакурадзима, то есть Вишневая гора. Облаченная в хлопковое кимоно, я вышла на черный песок широкого пляжа – и передо мной предстало удивительное зрелище. Из песка ровными рядами, словно кочаны капусты или футбольные мячи, торчали человеческие головы. Будто какой-нибудь древний самурай, озверев, перебил кучу народа, а потом разбросал плоды своих трудов на берегу, чтобы их смыло волнами. Загадка разъяснилась, когда меня подозвал жестом пожилой японец с лопатой в руке и принялся рыть мне «могилу». Я улеглась в узкую неглубокую яму, и он осторожно засыпал меня сверху песком, оставив снаружи одну голову. Эта песочная ванна ничем не напоминала сырой и холодный песок, в который мы закапывались в детстве на английском взморье. Через пляж фильтруется подогретая соседним вулканом вода, поэтому песок здесь горячий. Тепло обволакивало меня, просачиваясь сквозь тонкую хлопчатобумажную ткань и снимая напряжение в таких мышцах, о существовании которых я даже не подозревала. Убаюканная мягким плеском волны, я погрузилась в сон. Разбудили меня японские друзья, которые показывали на возвышающийся над пляжем большой циферблат, напоминающий гигантский леденец на палочке. Мы грелись в песке уже пятнадцать минут, время истекло.

Следующие десять минут мы провели в соседних домиках, смывая каждую песчинку, тщательно намыливаясь и орудуя щетками, до скрипа и блеска очищая волосы, кожу и ногти. Только теперь, отмытые добела, мы могли войти в онсен, общую горячую купальню.

«Там горячо», – предупредили друзья. Меня это не испугало. Я всегда наливаю себе ванну погорячее, чай пью – кипяток, и известна среди знакомых своими «асбестовыми» пальцами. Я отважно шагнула в купальню – и тут же, ошпаренная, выскочила обратно. Градусов сорок пять, не меньше. Думая, что ожоги как минимум первой степени я себе заработала, я с изумлением уставилась на хрупких японок, лежащих в купальне. Как они выдерживают этот кипяток? Купальщицы улыбались и кивали мне ободряюще, о чем-то мелодично щебеча между собой. Я не понимала, как они умудряются не свариться заживо. Перед глазами проплывали каннибальские котлы и средневековые процессы над ведьмами. Осторожно я вползла в воду и вытянула руки вдоль бортика, чтобы обеспечить как можно большую поверхность охлаждения. Я оглянулась вокруг. Купальня напоминала гигантскую оранжерею, полную тропических растений, между которыми виднелись разнообразные ванны. Мне вспомнилось пространство между мирами из «Хроник Нарнии», где каждая купель вела в какой-нибудь мир. Здесь же купели заполнялись водой разных температур и минерального состава. Когда через пять минут я вылезла из ванны, кожа у меня была вишнево-красная, как у вареного рака. Организм перенаправил всю кровь к поверхности в отчаянном стремлении охладиться – впрочем, безуспешно, поскольку я не только не могла избавиться от собственного тепла, но и стремительно поглощала тепло окружающей воды. Обливаясь потом, я села на край купели. Однако чувствовала я себя превосходно. Все недомогания и тревоги улетучились вместе с паром. С тех пор в любом уголке Японии я первым делом тестировала местный онсен.

Одно из самых незабываемых впечатлений мне подарило зимнее купание в онсене, расположенном высоко в «японских Альпах». Было это на горе Дзао, вдохновившей поэта Басё на самые знаменитые его хокку во время паломничества на вершину. Снег плотно укутывал деревья, делая их похожими на оплывшие свечи. Серые силуэты горных хребтов, наслаиваясь друг на друга, уходили за горизонт, прикрытый легкой вуалью облаков. Знакомый по японским гравюрам безмятежный пейзаж в черно-белых и приглушенно серых тонах, полный той самой эфемерной восточной красоты, которая, как мне казалось раньше, существует лишь в воображении художника. На склоне теснились маленькие бревенчатые домики, утопающие в глубоком снегу. Между ними прямо по улицам бежали горячие ручьи, окутывая неискушенного прохожего клубами сернистого пара.

Онсен оказался старинной каменной купелью, частично прикрытой деревянной верандой, но большей частью распахнутой всем стихиям. Из обрамленной японским садом купели открывался великолепный вид на окрестные горы. Через бассейн непрерывно текла горячая вода из природного источника. До купели мы дошли по морозу раздетые, так что в этот раз я только обрадовалась обжигающему жару. Куда меньше меня порадовал поднимающийся от воды пар, источающий стойкую удушливую серную вонь. Разомлев в воде, я попросила своего спутника перевести маленькое объявление на стене. Вопреки моим предположениям (я думала, это будет «Не курить!») оно настоятельно рекомендовало тщательно помыться после посещения онсена, чтобы кислотная вода не испортила одежду. Я, все еще млея, лениво поинтересовалась, что же в таком случае станется с нашей кожей. Однако на самом деле угрозу для здоровья несет вовсе не сера, а жар. В малых дозах он полезен, но если вовремя не остановиться, исход может быть трагическим.

3. Жизнь в пекле

Сила моя иссохла, как черепок; язык мой прилипнул к гортани моей, и Ты свел меня к персти смертной.

Псалом 22




В один прекрасный день (дело было в конце XVIII в.) секретарь Лондонского королевского общества мистер Благден отважился зайти в помещение, нагретое до 105° С, прихватив с собой несколько яиц, сырой бифштекс и собаку. Четверть часа спустя яйца испеклись в скорлупе, а бифштекс прожарился, но Благден с собакой вышли невредимыми (собаку, правда, пришлось держать в корзине, чтобы не обжечь подошвы лап). Эта способность выдерживать температуру, превышающую отметку кипения воды, тем более поражает, если учесть, что изменение свойств белка и необратимые повреждения клеток начинаются уже при температуре выше 41° С, что температура тела, превышающая 43° С, является для человека смертельной и что ситуация нахождения в течение нескольких минут при температуре выше 50° С приводит к гибели всех клеток. Однако, как наглядно продемонстрировал мистер Благден, человеческий организм способен почти четверть часа продержаться при температуре в 105° С. В этой главе мы попытаемся выяснить, как такое возможно.

Наша жизнь зависит от расположенного в 150 млн км от Земли ядерного реактора, который дарит нашей планете свет и тепло. Температура на поверхности Солнца составляет 5500° С. На Земле она существенно ниже, однако и здесь может достигать смертельных для человека значений. Самая высокая температура воздуха на Земле в тени, 58 ° С, была зафиксирована в сентябре 1992 г. в ливийском городе Эль-Азизия. Выше 45° С регулярно прогревается воздух в летние месяцы в Центральной Австралии, странах Персидского залива и Судане, а предметы, расположенные на солнце, раскаляются еще больше, поэтому до металлических поверхностей невозможно дотронуться, и песок обжигает ноги. Воздействие солнечного тепла ощущается даже в холодных регионах. Снежные шапки Эвереста солнце прогревает до 30° С, полярники могут пострадать одновременно от солнечного ожога и обморожения, и даже в ледяном космическом пространстве предметы, попадающие под солнечные лучи, быстро накаляются.

Самые высокие температуры на Земле зафиксированы в пустынях. Согласно определению, пустыня – это территория, где в год выпадает менее 200 мм осадков, однако для многих пустынь даже этого много, а в некоторых дождя может не быть годами. Отсутствие облаков означает интенсивное солнечное облучение, в результате которого земля и воздух быстро прогреваются днем и не менее быстро остывают ночью. Запасы воды скудны, поэтому земля большую часть года иссушена, а в раскаленном мареве возникают миражи, превращающие потрескавшуюся землю в призрачный цветущий оазис. К палящему зною добавляются жгучие ветры, которые лишают тело влаги, сморщивая кожу и иссушая носоглотку. Песок и пыль царапают, как наждачная бумага, и забивают горло. Ультрафиолет вызывает солнечные ожоги, яркий свет слепит глаза. Жить в таких условиях человеку нелегко. Однако люди селились в пустынях столетиями, и каждый год тысячи туристов приезжают полюбоваться неземной красотой изрезанных ветром дюн и разноцветных скульптурных скал. Чтобы выжить в этих суровых условиях, человеку не обойтись без физиологической и поведенческой адаптации.

Температура тела

Прежде чем выяснять, как человеческому организму удается справиться с экстремальной жарой, следует пояснить, что такое температура тела и как она регулируется в нормальных условиях. Не во всех участках тела поддерживается одинаковая температура, поэтому так называемая «температура тела» – это на самом деле температура внутренняя, температура глубинных тканей грудной клетки и брюшной полости. Она обычно составляет около 37° С, отклоняясь в течение суток примерно на полградуса – выше всего вечером, ниже всего перед рассветом. У женщин на внутреннюю температуру дополнительно влияет менструальный цикл: перед овуляцией температура повышается и держится с 15-го по 25-й день 28-дневного цикла. Эти изменения позволяют женщине определить наиболее подходящие для зачатия дни, поэтому на их основе строится календарный (ритмический) метод контрацепции.

Как наглядно демонстрируют тепловизионные снимки, температура поверхности тела может сильно отличаться от внутренней. У обнаженного человека в холодной комнате температура кожи может понизиться до 20° С, и температура конечностей также будет ниже внутренней. И наоборот, после интенсивной физической нагрузки температура в потрудившихся мышцах возрастет до 41° С, хотя внутренняя температура повысится всего на один-два градуса. Участки с повышенным кровотоком тоже всегда горячие – именно поэтому у нас «горит лицо», когда мы краснеем.

Норма внутренней температуры лежит в пределах 36–38° С; ниже 35° С наступает гипотермия, выше 40° С – гипертермия, если пользоваться медицинской терминологией. При подъеме внутренней температуры выше 42° С наступает смерть от теплового удара. Поэтому, в отличие от переохлаждения, которое человек при определенных условиях может пережить (см. гл. 4), перегрев с увеличением внутренней температуры на каких-нибудь пять градусов является смертельным. Особенно чувствительна к повышениям температуры сперма, поэтому у млекопитающих тестикулы вынесены для охлаждения за пределы тела. Как ни сексуально выглядят обтягивающие брюки, они понижают мужскую фертильность, препятствуя отдаче тепла и уменьшая выработку спермы.

Чувствуя жар

Вопрос о том, как ощущает организм свою внутреннюю температуру, занимал ученых годами. Субъективно нам всем понятно, что чувство тепла или холода возникает благодаря нервным окончаниям в коже. Однако, если задуматься, мы поймем, что для выживания важна не температура поверхностных покровов, а температура мозга. Таким образом, организму логичнее ориентироваться на температуру мозга, а не кожи – подобно тому, как система отопления контролируется центральным термостатом, а не датчиками с наружных стен.

Аналогичный «термостат» в животном организме был обнаружен Э. Ааронзоном и Ю. Заксом в 1885 г. Он находится в гипоталамусе – отделе мозга, расположенном у основания черепа. И все равно долгое время после его обнаружения не утихали бурные споры о том, что важнее для температурного контроля – кожа или мозг. Окончательный ответ был получен благодаря одному ученому, который позволил вживить себе в мозг температурный датчик и проследить, чем определяется реакция его тела на холод – температурой кожи или мозга. Чтобы охладить кровь, поступающую в мозг, но при этом не дать ей добраться до кожи, испытуемый ел мороженое. Последовавшая в результате типичная реакция организма на холод поставила окончательную точку в спорах: главный регулятор температуры тела находится в мозге.

Однако мозгом чувствительность к температурному воздействию не ограничивается. Хлебнув слишком горячего кофе и от неожиданности опрокинув чашку на себя, вы наверняка подскочите от боли, убеждаясь заодно, что кожа, язык, ротовая полость и горло тоже снабжены тепловыми «датчиками». Они воспринимают не температуру окружающей среды, а, скорее, температуру кожи, в которой расположены. Именно поэтому воздух из электрической сушилки для рук кажется прохладным, пока руки еще влажные, но когда руки высыхают, становится обжигающе горячим.

Температурные рецепторы кожи делятся на две разновидности. Первые реагируют на температуру от 13 до 35° С, сигнализируя об уровне холода или тепла. Их называют холодовыми рецепторами, поскольку интенсивность сигналов, посылаемых ими к мозгу, возрастает с понижением температуры. Наибольшая их чувствительность наблюдается при 28° С – вероятно, именно при такой средней температуре развивался человеческий организм.

Вторая группа рецепторов реагирует на жару, подавая болевые сигналы. Изолировать эти рецепторы и определить последовательность их ДНК удалось лишь недавно, использовав их высокое химическое сходство с капсаицином, активным компонентом жгучего стручкового перца. Мирно спящий внутри огненно-красных стручков капсаицин пробуждается на языке, как вулкан, извергаясь жгучей лавой и разжигая во рту пожар, отлично знакомый любому, кто пробовал мексиканскую или индийскую кухню. Попытки залить его водой приводят лишь к большему распространению огня. Вслед за пожаром обычно наступает обильное потоотделение, словно приправа действительно повысила температуру тела.

История термометра

Термометр изобрел около 1610 г. Галилео Галилей, славу которому принесло другое устройство – телескоп. Галилей был профессором математики Падуанского университета и ради приработка к скудному жалованью изготавливал и продавал научные приборы. Его термометр представлял собой длинную полую стеклянную трубку, частично заполненную водой, запаянную с одного конца и погруженную другим концом в пробирку с водой (некоторые специалисты утверждают, что с вином). При повышении температуры воздух в трубке расширялся, заставляя воду опускаться. Чем выше температура, тем ниже уровень воды. При помощи шкалы с делениями, нанесенной на трубке, можно было проводить измерения. Основная трудность использования этого термометра состояла в том, что он реагировал и на изменения атмосферного давления, поэтому даже при постоянной температуре столбик часто колебался. Проблему решили запаиванием второго конца трубки.

Следующий важный шаг был сделан Даниелем Габриелем Фаренгейтом, немецким физиком и изготовителем научных приборов, работавшим в Амстердаме, который в 1724 г. догадался заменить воду (или алкоголь) в трубке термометра на ртуть. Преимущество ртути в том, что при повышении температуры она расширяется равномернее, не испаряется и лучше просматривается. Фаренгейт модифицировал температурную шкалу другого, менее известного физика Реомюра, взяв за основу три отправные точки: температуру замерзания воды (32° F), кипения воды (212° F) и температуру тела здорового мужчины (98,4° F). Шкала Фаренгейта до сих пор используется в Соединенных Штатах. Кроме того, Фаренгейт одним из первых установил, что точка кипения воды варьируется в зависимости от барометрического давления.

Кроме Фаренгейта и Реомюра термометр изобретали и другие, предлагая собственные шкалы. Бытовало мнение, что в разных частях света одни и те же отправные точки неприменимы. С неразберихой покончил в 1742 г. Андерс Цельсий, разбив шкалу на сто градусов. Он работал в старейшем шведском университете Упсалы, и в наши дни его термометр можно увидеть в университетском музее. Шкала на этом термометре нанесена им собственноручно. С помощью своего термометра Цельсий показал, что снег всегда тает при одной и той же температуре – как в суровых условиях лапландской тундры, так и в более мягком климате южной Швеции. Более того, взяв термометр Реомюра, он продемонстрировал, что в Швеции вода замерзает при той же температуре, что и в Париже, согласно измерениям Реомюра. Температуру таяния льда Цельсий обозначил ста градусами, а температуру кипения воды – нулем, однако после его смерти шкалу перевернули, и она приняла привычный нам вид.

Много лет спустя британский физик лорд Кельвин (1824–1907) изобрел температурную шкалу, которой сегодня пользуются ученые. Она начинается с абсолютного нуля, предельно холодной температуры. Абсолютный ноль обозначается как 0° K и соответствует –273° С.

Первым человеком, применившим научный подход к измерению температуры тела, был венецианец Санторио Санторио, опубликовавший в 1612 г. фундаментальный медицинский труд Ars de Statica Medicina. Он приспособил прибор Галилея, чтобы мерить температурные изменения, но не воздуха, а тела. Вот что говорится в его руководстве: «Пациент сжимает колбу или дышит над ней в капюшон, или захватывает колбу ртом, и мы видим по результатам, идет он на поправку либо нет». Санторио тоже пользовался шкалой, но она служила для сравнения температуры больного с его же показателями в здоровом состоянии, а не для сравнения с неким «нормальным» значением. Во времена Санторио еще не знали, что у всех здоровых людей температура примерно одинакова.

Капсаицин взаимодействует с тем же мембранным белком, который участвует в передаче ощущения жгучего жара, – именно поэтому острый перец воспринимается «жгучим». Кроме того, капсаициновые рецепторы активируются ресинифератоксином (который содержится в соке молочая смолоносного – Euphorbia resinifera). Именно из-за него растение жжется и вызывает раздражение кожи. Люди, регулярно потребляющие острую пищу, теряют чувствительность к капсаицину и могут с наслаждением поедать огненно-жгучее карри. Не исключено, что длительное воздействие капсаицина уменьшает число одноименных рецепторов. Другая гипотеза, более настораживающая, состоит в том, что чувствительные к боли нейроны разрушаются в буквальном смысле, поскольку высокая концентрация алкалоида вызывает гибель культивированных лабораторным путем нервных клеток. Как бы то ни было, способность капсаицина лишать чувствительности болевые нервные волокна позволяет применять его как анальгетик при артрите (он применяется наружно, в составе мази).

Содержание капсаицина варьируется в зависимости от сорта перца. В 1912 г. это натолкнуло Уилбура Сковилла на мысль о создании шкалы жгучести для стандартизации качества импортируемой в США продукции. Степень жгучести определялась тем, до какой степени можно развести водой вытяжку из перца, чтобы она перестала ощущаться на языке. По этой шкале сладкий перец не дотянул и до единицы, халапеньо удостоился 1000 единиц, жгучий хабанеро – 100 000, а чистый капсаицин – целых 10 млн.

Подобно тому как жгучий перец воздействует на тепловые рецепторы, некоторые химические вещества взаимодействуют с холодовыми рецепторами, вызывая ощущение прохлады. Одно из таких веществ – ментол, главный компонент мятного масла. Когда-то ментол считался лечебным средством, поэтому в 1930-х гг. в районе английского Митчема перечной мятой (Mentha pipertita) засеяли около 500 акров земли. Похожие плантации можно было видеть и во Франции, и в итальянском Пьемонте, и в других странах Европы. Японцы, тоже уверовавшие в целебную силу мяты, носили ментол на поясе в маленьких серебряных шкатулках. В наше время он используется по-прежнему – в сигаретах (для «холодка»), а также в жвачке и зубных пастах (для освежающего вкуса).

Сигналы от тепловых и холодовых датчиков кожи вызывают местную реакцию. Если погрузить кисть руки в холодную воду, кожа покраснеет, поскольку кровь устремится к поверхности для обогрева, хотя внутренняя температура тела при этом не изменится. При этом, что гораздо важнее, рецепторы посылают сигнал в мозг, где на основе информации, сопоставленной с данными центральных терморецепторов в гипоталамусе, будет отрегулирована общая теплопродукция и теплопотеря организма.

У некоторых животных, в отличие от человека, имеются специализированные теплочувствительные органы, способные различать инфракрасное излучение и действующие как природные тепловизионные камеры. Лучше всего такие органы изучены у змей. У ямкоголовых змей (например, у гремучих) по обеим сторонам головы имеется два теплочувствительных «глаза», называемые лицевыми ямками. Они представляют собой крошечное, размером с булавочную головку, отверстие, расширяющееся под кожей в полость диаметром в несколько миллиметров. Эти ямки определяют положение теплокровной добычи в пространстве и позволяют змее не промахиваться даже в темноте. Пока точно не известно, как именно действует этот орган (не в последнюю очередь потому, что ямкоголовые змеи крайне агрессивны и укус их смертелен). У боа-констрикторов, анаконд и питонов также имеются высокочувствительные тепловые сенсоры: сенсор боа-констриктора, например, способен почти мгновенно почувствовать такую мельчайшую частицу тепла, как одна десятимиллионная калории на квадратный сантиметр. Это примерно то же самое, что почувствовать тепло от 100-ваттной лампочки (или человека) на расстоянии 40 м. Специализированные инфракрасные сенсоры обнаружены и на брюхе жука-златки рода Melаnophila, откладывающего яйца на свежих лесных пожарищах. Взрослые жуки, привлеченные теплом, стаями устремляются к месту пожара. Чувствительность их настолько высока, что пожар они могут различить за 50 км.

Внимание! Это не конец книги.

Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!

Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации