Электронная библиотека » Гарри Каспаров » » онлайн чтение - страница 10


  • Текст добавлен: 24 декабря 2017, 19:40


Автор книги: Гарри Каспаров


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +18

сообщить о неприемлемом содержимом

Текущая страница: 10 (всего у книги 22 страниц)

Шрифт:
- 100% +

Наша жизнь постепенно преобразуется в данные. Тенденция будет ускоряться по мере появления все более продвинутых инструментов, и мы будет принимать ее либо добровольно, в обмен на комфорт и полезность, либо вынужденно – вследствие ужесточающихся требований безопасности. Это направление развития не изменить, поэтому особое значение приобретает наблюдение за наблюдателями. Объемы производимых нами данных будут только расти и использоваться в основном в наших интересах, но мы должны контролировать, куда они попадают и как используются. Конфиденциальность уходит в прошлое, но ей на смену должна прийти прозрачность.


В то время как основное внимание было сосредоточено на компьютерах с массивно-параллельной обработкой, специализированным аппаратным обеспечением и заказными микропроцессорами, революция происходила и в области шахматных программ для ПК. Благодаря тому, что растущее сообщество программистов получило возможность делиться идеями через интернет, а также ввиду появления все более мощных процессоров от Intel и AMD, персональные компьютеры с операционными системами MS-DOS и Windows постепенно наращивали свою шахматную силу. К 1992 году они затмили большинство популярных моделей электронных шахмат – так называли встроенные в электронные доски специальные шахматные компьютеры, которые производились компаниями Saitek и Fidelity и носили такие звучные названия, как Mephisto и даже Kasparov Advanced Trainer.

В конце 1980-х годов к некоторым моделям прилагалось послание от моего имени, гласившее: «Хотелось бы, чтобы игра с шахматным компьютером "Каспаров" доставила вам удовольствие и помогла усовершенствовать свое мастерство, – и кто знает, может быть, однажды мы встретимся с вами за шахматной доской!» Моя спортивная карьера оказалась достаточно долгой для того, чтобы это пожелание сбылось, и на различных шахматных мероприятиях ко мне часто подходили юные шахматисты с просьбой оставить автограф на их шахматном компьютере «Каспаров».

Для молодых читателей, которые не помнят те времена, скажу, что возможности персональных компьютеров в начале 1990-х годов были весьма скромными. Даже если вы приобретали компьютер самой последней модели за колоссальную цену $5000, очень скоро вам приходилось докупать к нему оперативную память, более емкий жесткий диск и более мощный процессор. Мало какая программа потребляет больше вычислительной мощности, чем шахматный движок. Он с легкостью использует все 100 % производительности процессора и все его ядра, сколько бы их ни было – четыре, десять или 20. За 15 минут работы шахматного движка мой старый ноутбук нагревался так, что его можно было использовать как тостер. Даже сегодня сверхмощные машины превращаются в медленных черепах, когда шахматный движок задействует для поиска все доступные ресурсы процессора.

Шахматные программы для ПК работают гораздо медленнее, чем программы на специализированном аппаратном обеспечении, такие как Deep Blue, что объясняется рядом причин. Однако это компенсируется тем, что они гораздо умнее и используют оптимизированные методы программирования, позволяющие добиться намного большей глубины поиска, чем при обычном исчерпывающем поиске. Они по-прежнему основаны на стратегии типа А – на грубой силе, но за многие годы стали значительно искуснее. Использование компьютеров многоцелевого назначения расширило возможности для креативного программирования и адаптации ПО; к тому же коммерческие шахматные программы постоянно повышали точность своих оценок, зачастую с помощью гроссмейстеров. В то же время шахматные микропроцессоры Deep Thought, хотя и имели настраиваемые аппаратные контроллеры, были фактически высечены из камня, пусть даже этим камнем был кремний.

Скорость работы аппаратного обеспечения во многом зависит от простоты принципиальной схемы. Как написала команда Deep Thought/Deep Blue в 1990 году о своей машине, «принесение в жертву некоторых шахматных знаний в оценочной функции рассматривается как оправданное, если это позволяет существенно упростить схемы». Они также признали, что «на данный момент оценочные функции в лучших коммерческих шахматных программах работают гораздо более эффективно, чем в программах, применяющихся в научных целях». Звучит неутешительно, но на самом деле это давало ученым основания надеяться на значительное улучшение в случае, если они сумеют создать следующее поколение шахматных микросхем и усовершенствовать оценочную функцию Deep Thought.

В 1992 году я сыграл длинный неофициальный блицматч с одной из программ нового поколения. Создавшая ее немецкая фирма ChessBase насмешливо окрестила свое детище Fritz, и это название практически стало синонимом шахматных движков для ПК. Разработчиком был голландец Франс Морш – автор программ для настольных электронных шахмат, таких как Mephisto и пр., – привыкший втискивать максимально оптимизированный код в очень ограниченные ресурсы. Он также внедрил несколько методов усиления поиска, которые повысили силу шахматных машин, несмотря на то, что увеличение глубины обычно замедляло их работу.

Одно из этих усовершенствований заслуживает, чтобы ненадолго на нем остановиться, поскольку оно представляет собой интересный пример того, как можно сделать машину умнее с помощью методик, не имеющих ничего общего с работой человеческого разума. Речь идет о так называемой эвристике нулевого хода – методе, заставляющем программу предположить, будто одна из сторон пропускает ход. То есть программа должна прийти к выводу, что один игрок сделал два хода подряд. Если позиция этого игрока не улучшается даже после двух ходов подряд, можно допустить, что первый ход является пустышкой и может быть отсечен от дерева поиска, что сокращает его длину и делает поиск по оставшимся вариантам более эффективным. Эвристика нулевого хода была использована в некоторых самых ранних шахматных программах, в том числе в советской «Каиссе». Это элегантный и немного парадоксальный подход – повышать эффективность алгоритмов, основанных на принципе исчерпывающего поиска, за счет ограничения поиска.

Люди тоже используют при планировании разные эвристические подходы. Например, стратегическое мышление требует от нас определения долгосрочных целей и промежуточных этапов без учета того, как на наши действия может отреагировать оппонент. Я могу посмотреть на позицию на доске и подумать: «Было бы хорошо, если бы мне удалось поставить слона сюда, пешку сюда, а затем подключить к атаке ферзя». Здесь нет никаких расчетов, лишь своего рода список стратегических пожеланий. Только после этого я начинаю думать, возможно ли это на самом деле и что в ответ может предпринять соперник.

Программисты, работавшие над шахматными программами типа Б с выборочным поиском, хотели научить машины именно такому стратегическому целеполаганию. Вместо того чтобы просматривать только дерево доступных вариантов, программа типа Б также изучала и оценивала гипотетические позиции. Если эти позиции получали высокую оценку, повышалась стоимость их элементов при поиске. Во многих случаях качество оценки улучшалось, но поиск становился таким медленным, что страдали результаты, – серьезный недостаток, характерный для всех программ типа Б.

Более успешным оказался другой метод, который также позволяет машинам анализировать гипотетические позиции за пределами дерева вариантов. В случае применения метода Монте-Карло машина берет все доступные позиции и с каждой разыгрывает большое количество случайных партий, определяя количество возможных побед, ничьих и проигрышей. Таким образом для каждого следующего хода выбирается наиболее удачная позиция. Играть «миллионы партий в рамках одной» оказалось не очень эффективной тактикой в шахматах, но в го и других играх, где точная оценка невероятно трудна для машин, метод Монте-Карло дает хорошие результаты. Он не требует больших знаний или эвристических правил; машина просто отслеживает цифры и ходы – и выбирает лучшие.

Это обилие интересных идей, призванных повысить эффективность интеллектуальных машин, показывает, почему попытки понять, как работает человеческий разум, и проникнуть в тайны мышления были отброшены. Что важнее – процесс или результат? Люди всегда хотят результатов, будь то в инвестировании, сфере безопасности или шахматах. Такое отношение, сокрушались многие программисты, способствовало созданию сильных шахматных машин, но ничего не дало науке и прогрессу в области ИИ. Шахматная машина, которая думает как человек, но проигрывает чемпиону мира, не сделает сенсации. Когда же шахматная машина побеждает чемпиона мира, никого не волнует, как она думает.

И это наконец-то случилось. В мае 1994 года в Мюнхене я проиграл программе Fritz 3 в блицтурнире, организованном при поддержке корпорации Intel Europe. Intel оказала существенную помощь Профессиональной шахматной ассоциации (ПША), созданной годом ранее мной и моим коллегой, претендентом на мировую корону Найджелом Шортом. В турнире участвовали сильнейшие шахматисты мира и программа Fritz 3, работавшая на новом процессоре Pentium. Целью организаторов было помочь шахматам обрести еще бóльшую популярность и потенциальных спонсоров, о чем я мечтал с тех пор, как увидел, насколько широкую известность получил мой матч с Deep Thought в 1989 году.

С предшественником Fritz я уже сталкивался в товарищеском блицматче в Кельне в декабре 1992-го. Я сыграл 37 партий против любимого детища Фредерика Фриделя и, более того, детально проанализировал действия программы, указав, когда та сделала особенно хороший ход и когда играла откровенно слабо. Хотя программа еще не стала диким зверем, но она уже и не была безобидным домашним питомцем. Я проиграл девять партий при двух ничьих и 26 победах.

Но в Мюнхене произошла совсем другая история. Это был серьезный турнир, несмотря на формат блиц, и я не сомневался в победе независимо от того, будет ли в нем участвовать машина или нет. После медленного старта я выиграл восемь партий подряд, но программа Fritz 3 следовала за мной по пятам, и наконец настал наш черед встретиться за доской. Я агрессивно разыграл дебютную стадию и всего после десятка ходов имел подавляющую позицию. Однако затем начал разворачиваться сценарий, который станет типичным для партий между людьми и машинами в течение следующего десятилетия. Я сделал один неточный ход, и машина контратаковала. Раздраженный своим промахом, я решил пожертвовать материал, отдав ладью на слона, чтобы удержать инициативу. Позиция была примерно равной, но в блице я не мог положиться на точность расчетов, чтобы воспользоваться своими возможностями. Несмотря на обоюдные ошибки ближе к концу партии, когда машина дала мне шанс свести партию к ничьей, а я его упустил, Fritz 3 сумела добиться победы.

Хотя мы играли блиц и каждому давалось по пять минут, это была первая победа машины над чемпионом мира по шахматам в официальном соревновании. По значимости ту партию можно было сравнить пусть не с высадкой человека на Луну, но как минимум с запуском небольшой ракеты. Мы c Fritz 3 оказались на вершине турнирной таблицы, что для машины являлось впечатляющим результатом. Мне это было на руку, поскольку давало возможность встретиться с ней в матче за первое место и отыграться. На этот раз мне удалось сосредоточиться и полностью разгромить машину, одержав три победы при двух ничьих. В одной ничейной партии я тоже фактически победил, но мне не хватило времени, чтобы выиграть позицию с ферзем против ладьи.

Но спустя несколько месяцев фортуна повернулась ко мне спиной, когда на очередном турнире, организованном Intel под эгидой ПША в Лондоне, я встретился с другой шахматной программой для ПК – Genius, разработанной Ричардом Лэнгом. Участники играли в быстрые шахматы на выбывание, и каждая сторона имела четверть часа на партию. Мне выпало играть с Genius уже в первом раунде, что, конечно же, привлекло большое внимание. Хотя это все еще не были классические длинные шахматы, ставки поднялись высоко. Игрок, проигравший миниматч из двух партий, выбывал из турнира, который входил в серию Гран-при, – поэтому имело значение каждое очко.

В 1-й партии, играя белыми, я получил отличную позицию, но зевнул один ход, позволив машине добиться уравнения. Тогда я совершил еще один смертный грех в партии против компьютера: начал играть слишком напористо. Вместо того чтобы сделать простую ничью и перейти к следующей партии, я попытался развить инициативу в пресном эндшпиле «ферзь и конь против ферзя и коня», но почти сразу об этом пожалел. Совершив ряд удивительных маневров ферзем, Genius ослабил положение моего короля так, что в итоге я проиграл пешку, а затем и партию. Такой резкий оборот событий стал для меня полной неожиданностью; вы можете увидеть мой шок, посмотрев на YouTube видео с этого турнира.

Несмотря на осечку, я был уверен, что одержу победу черными во 2-й партии, а затем выиграю тай-брейк и продолжу участие в турнире. Мне удалось получить очень хорошую позицию и выиграть пешку, снова в эндшпиле «ферзь и конь против ферзя и коня». Но Genius снова совершил целую череду невероятных маневров ферзем и застопорил мою проходную пешку. Я сидел, обхватив голову руками, но был вынужден смириться с ничьей и выбыл из соревнования. Это был сильный официальный турнир, хотя и по быстрым шахматам, и временами машина демонстрировала отличную игру. Все еще не высадка на Луну, но уже выход на околоземную орбиту.

Обе мои партии с Genius, особенно 2-я, отражали уникальную природу компьютерных шахмат. Самые большие проблемы у шахматистов возникают с визуализацией ходов коней, поскольку те ходят буквой «Г» – в отличие от других фигур, двигающихся по прямой. Но компьютеры ничего не визуализируют и управляют каждой фигурой с одинаковым мастерством. Кажется, Бент Ларсен – первый гроссмейстер, проигравший машине, – сказал: если убрать из шахмат коней, то рейтинг компьютеров тут же упадет на пару сотен пунктов. Это преувеличение, но в нем есть немалая доля истины. То же самое касается и ферзя, самой сильной фигуры: на открытой, не загроможденной пешками доске ферзь может достичь практически любого поля за один-два хода. Это резко повышает уровень сложности, с чем компьютеры справляются гораздо лучше людей. Столкнуться с компьютером в открытой позиции типа «ферзь + конь» – ужасный сон под стать романам Стивена Кинга.

На протяжении всей шахматной истории даже самые великие игроки избегали такой сверхсложной тактической игры, но с 1993 года она стала обычным делом для компьютеров. Играя с людьми, вы знаете, что ваш соперник сталкивается в ходе партии примерно с такими же проблемами, что и вы. Практически всегда я чувствовал, что умею рассчитывать варианты лучше любого другого шахматиста, за исключением «индийского чудотворца» Виши Ананда, заслуженно славившегося своей быстрой реакцией. В целом же я знал, что если не могу просчитать до конца последствия своего хода, то и сопернику это вряд ли удастся. Но примерный баланс сил исчезает, когда вы играете против мощной машины. Она играет не просто хорошо – она играет иначе.

Кроме того, вас все время преследует тревожное ощущение, что машина может видеть нечто такое, чего вы не можете себе даже представить. Когда на доске сложная позиция, вы напряжены и опасаетесь коварного удара со стороны машины. Поэтому вы дважды и трижды перепроверяете свои расчеты, вместо того чтобы положиться на интуицию, как поступили бы, играя против человека. Все эти дополнительные расчеты отнимают массу времени и делают игру предельно изнурительной в физическом и психологическом плане.

Когда вы всю жизнь играете в шахматы, у вас обязательно формируются определенные привычки, но их приходится нарушать, если вы играете против машины. Хотя я не был от этого в восторге, я хотел доказать, что могу преодолеть все препятствия и подтвердить свой титул сильнейшего шахматиста мира не только среди людей, но и среди машин.


Программы для ПК делали впечатляющие успехи, но я не упускал из виду и Deep Thought. В феврале 1993 года я еще раз пересекся с командой IBM в Копенгагене, где машина бросила вызов датской сборной, включая Бента Ларсена. IBM горела желанием проверить свое новое детище в деле. Маркетологи IBM решили переименовать Deep Thought II и дали машине название Nordic Deep Blue, вероятно, чтобы отличить ее от следующей версии, которая уже находилась в разработке и по завершении должна была бросить вызов мне как чемпиону мира. Но я думаю, что не будет большой путаницы, если с этого момента я буду называть ее просто Deep Blue.

Как бы она ни называлась, привезенная в Данию машина не произвела на меня впечатления. Мы использовали ее для анализа одной из моих партий перед аудиторией, желающей узнать, какие предложения та может сделать. Данные компьютером оценки позиций были откровенно плохи, он стабильно недооценивал мои шансы на атаку и нескоро понимал, что предложенные им усиления не сработали. Однако он умело сыграл против Ларсена и других датчан, набрав почти 2600 пунктов, и тем самым дал мне понять, что его значительный прогресс не за горами. Создатели проекта Сюй Фэнсюн и Мюррей Кэмпбелл включили в команду программиста Джо Хоана, к тому же теперь они могли полагаться на огромные материальные и человеческие ресурсы самой IBM. Вскоре команду Deep Blue перевели в главный исследовательский центр IBM в городе Йорктаун-Хайтс (штат Нью-Йорк). Надо сказать, что в ту пору компания переживала самый трудный период за всю свою 80-летнюю историю: ее акции упали до минимума из-за не очень успешных попыток угнаться за множеством новых шустрых конкурентов. Но новый генеральный директор Лу Герстнер отказался от плана по расчленению IBM на отдельные компании, что положило бы конец шахматному проекту.

В мае 1995 года мне удалось отомстить программе Genius в матче по быстрым шахматам, транслировавшемся по телеканалу German TV в Кельне. Конечно, глупо говорить о мести компьютерной программе, которой все равно, что делать – играть в шахматы или считать песчинки в пустыне, – но мне нравилось так думать. Первая партия должна была закончиться вничью, но Genius совершил традиционную ошибку шахматных машин, проявив чрезмерную жадность. Программа съела мою отдаленную пешку и позволила мне развить решающую атаку на ее короля. Во 2-й партии я сделал спокойную ничью, без кульбитов. В интервью я признался, что дома тренировался с одной из версий этой программы, чтобы как можно лучше подготовиться к матчу.

В конце года я сыграл еще один миниматч, на этот раз с программой Fritz 4 в Лондоне. Честно признаться, появление все новых версий программ с возрастающими порядковыми номерами было немного пугающим. Возможно, мне следовало настоять на том, чтобы после моего успеха в шестом матче на первенство мира меня называли «Каспаров 6.0». К тому же это было бы не так далеко от реальности: в 1993 году американский софтверный гигант Electronic Arts выпустил шахматную программу для ПК под названием «Гамбит Каспарова». У нее был сильный движок, красочная графика, и периодически на экране выскакивал короткий видеоролик, где я давал советы, такие как «Следите за пешкой!» или «Вы выбрали неверный путь!». На тот момент это была одна из самых передовых программ, но я, вероятно, посмеялся бы, если бы сегодня сумел найти ее рабочую версию.

Одной из интересных особенностей наблюдения за развитием шахматных программ от одной версии к другой было то, что я всегда мог распознать ДНК программы. В них добавляли новые коды, новые алгоритмы поиска и улучшения, использовали процессоры нового поколения, но все равно каждая машина имела что-то такое, что можно было назвать ее уникальным стилем. Я шутил, что программисты выращивают свои программы как детей или по крайней мере как домашних животных и оставляют в них свой неизгладимый след, который передается от одной версии к другой так же, как зеленые глаза или рыжие волосы. Со временем эти характерные признаки теряли свою устойчивость, как это происходит в любой генетической системе.

Например, программа Fritz была зациклена на материале и отстаивала каждую пешку любой ценой, даже в очень неважной позиции. Это нисколько не умаляет достоинств Fritz, но ее создатель Франс Морш сам признавал, что его программа никогда не являлась самой агрессивной на рынке. Можно вспомнить программу Junior, победительницу многих чемпионатов и детище израильских специалистов Шая Бушински и Амира Бана. Эта программа, наоборот, была революционно агрессивной, легко жертвовала материал ради открытых линий и шансов на атаку, что на тот момент расценивалось как совершенно «некомпьютерная» игра. Эти две программы настолько отличались друг от друга, что неизбежно возникал вопрос, не впитали ли флегматичная голландско-немецкая программа и воинственный израильский движок некоторые из черт национальных характеров. Вполне вероятно, поскольку личностные качества программиста неизбежно отражаются на свойствах программы, особенно если он сам – достаточно сильный шахматист со своим выраженным стилем игры.

Такие генетические профили разных программ имели практическую ценность для меня и других гроссмейстеров, сражавшихся с машинами на протяжении десятилетия и дольше. Конечно, нельзя было надеяться на то, что на очередном турнире или матче вы столкнетесь точь-в-точь с такой же программой, но, даже если вы располагали ее старой версией или текстами ее предыдущих партий, это значительно облегчало подготовку. По мере того как машины накапливали историю партий против людей и других машин, мы получили возможность готовиться к партиям с ними во многом так же, как мы готовились к партиям с гроссмейстерами. Конечно, всегда существовала вероятность того, что между двумя соревнованиями или даже партиями в компьютер будет загружена совершенно новая дебютная книга или даже новая «личность», но машины редко менялись полностью, хотя и становились все сильнее.

Две лондонские партии в быстрые шахматы с программой Fritz 4 запомнились мне из-за другого уникального аспекта игры против компьютеров. На седьмом ходу, играя черными, я передвинул слона на два поля – с с8 на а6. Но оператор по невнимательности ввел в программу ход слоном на одно поле, на b7. Невероятно, но партия продолжалась еще четыре хода, прежде чем оператор заметил свою ошибку. Что еще более немыслимо, когда слона поместили на правильное место, позиция осталась пригодна для игры, хотя, разумеется, требовала смены тактики. Я выиграл эту партию и, сделав ничью во 2-й, победил в матче, но та досадная ошибка оставила неприятный осадок. В отличие от меня, программа нисколько не была раздражена оплошностью своего оператора.


В начале 1995-го команда Deep Blue обратилась к Дэвиду Леви и Монти Ньюборну по поводу возможности матча со мной в следующем году, и я попросил своего агента Эндрю Пейджа следить за ситуацией. Когда я встретился с создателями Deep Blue в Дании двумя годами ранее, я шутливо заметил, что им нужно поторопиться, поскольку я хочу сразиться с их суперкомпьютером, пока еще молод и полон сил, – а на тот момент мне уже было под 30. К тому же я знал, что не останусь чемпионом мира навечно – так же, как был уверен в том, что не бессмертен. Компания IBM хотела этого матча, и я тоже; вопрос был только в том, когда будет готов Deep Blue.

Сюй Фэнсюн, работавший над шахматными микропроцессорами со свойственным ему неудержимым перфекционизмом, продолжал отодвигать сроки, и я, сам будучи чрезвычайно педантичен, мог его понять. Если и есть люди, которые в наибольшей степени способствовали наступлению Американского века, – то это талантливые инженеры с их мечтами и готовностью следовать за своими устремлениями сквозь огонь и воду. Но действительно, в компьютере постоянно возникали какие-то неполадки. Когда вы читаете отчеты Сюй Фэнсюна и других членов команды о разработке машины и ее игре в 1994–1995 годах, создается впечатление, будто вы читаете дневники сотрудников фирмы по ремонту компьютерного оборудования. Ошибки, сбои, прерывание телефонной связи, разрывы интернет-соединения, ошибки в дебютных книгах, ошибки в программе, отсутствие контактов в схеме – все, кроме вирусов. Между тем IBM хотела, чтобы машина постоянно путешествовала и участвовала в различных соревнованиях и выставках, внося свой вклад в создание имиджа компании.

Одним из таких событий стал чемпионат мира по шахматам среди компьютерных программ в Гонконге (1995). Главным фаворитом состязания являлся суперкомпьютер Deep Blue Prototype – машину тогда называли так (поскольку процесс создания нового аппаратного обеспечения еще не был завершен), хотя она и представляла собой все ту же Deep Thought II. За прошедшие несколько лет компьютер не проиграл в турнирах ни одной другой машине и, согласно Сюй Фэнсюну, при тестировании побеждал все ведущие коммерческие программы в соотношении три к одному. (Возможность протестировать свою машину в игре против конкурентов, просто купив нужную программу, в то время как доступа к их детищу не было ни у кого, давала команде Deep Blue серьезное преимущество.)

Но, как говорится, в этой жизни может случиться всякое, и именно поэтому мы любим играть в игры. В четвертом туре Deep Blue сыграл вничью с программой для ПК WChess и в пятом, последнем туре должен был встретиться с Fritz 3. Deep Blue был на пол-очка впереди и, по словам Сюй Фэнсюна, «при предварительном тестировании в центре IBM выиграл у Fritz девять из десяти партий». Он играл белыми, что тоже могло способствовать успеху. Программа Fritz 3 применила острую сицилианскую защиту и получила отличную позицию, а Deep Blue, по-видимому, пребывал в замешательстве из-за перестановки ходов и, не сумев продолжить партию по дебютной книге, перешел к самостоятельной игре.

Будь Deep Blue действительно намного сильнее, чем Fritz 3, для него это не представляло бы большой проблемы. Справедливости ради надо сказать, что дебют и правда оказался сложным и даже современные программы не справились бы с подобной ситуацией без дебютной книги. Deep Blue походил на юных шахматистов, которых на своих занятиях я критикую за то, что они безотчетно следуют дебютной теории и поэтому не в состоянии понять позицию, возникающую после того, как все усвоенные варианты заканчиваются. Однако для Deep Blue партия складывалась не так уж плохо. Игрок с 200-балльным преимуществом в рейтинге в такой позиции чувствовал бы себя вполне комфортно.

Но техника снова подвела. Из-за потери соединения между Гонконгом и Нью-Йорком компьютер пришлось перезагружать и заново устанавливать связь. Как утверждает Сюй Фэнсюн, из-за «холодного» перезапуска компьютер заново начал процесс анализа и сделал другой ход – не тот, что был выбран до разъединения.

Прежде чем переходить к захватывающему финалу этой маленькой машинной драмы, я хочу остановить ваше внимание на изложенном выше эпизоде, поскольку подобное не раз случалось и в ходе моих баталий с Deep Blue. Почти в каждом рассказе о партиях того периода можно найти упоминания о перезагрузках, перезапусках, сбоях и разрывах соединения. В одной из партий гарвардского турнира Deep Blue потерпел техническое поражение из-за сбоя питания, а в Пекине проиграл чемпионке мира Се Цзюнь из-за неполадок в системе. Но такова уж природа всех экспериментальных технологий, и обычно подобные обстоятельства оговорены в правилах матчей.

Сами по себе подобные аварии меня не волнуют, но меня беспокоят два связанных с ними момента. Первый состоит в том, что для возвращения машины в игру требуется вмешательство оператора. Дело не ограничивается восстановлением телефонной связи и ожиданием того, когда будет установлено повторное интернет-соединение. «Нам пришлось перезапустить Deep Thought II», – пишет Сюй Фэнсюн. И я предполагаю, что им также пришлось заново ввести в компьютер всю ранее сыгранную партию, чтобы тот мог продолжить игру. Как следствие, Deep Thought сделал другой ход, вместо того, который он счел лучшим перед сбоем. Вот что пишет по этому поводу Сюй Фэнсюн: «По словам Джо Хоана, наблюдавшего за игрой из нашей лаборатории в Хоторне, Deep Thought II переключился на альтернативный ход. Но этот ход не успел появиться на экране в Гонконге до обрыва связи, и мы узнали о нем только после партии».

Таким образом, команда Deep Blue утверждает, что ход, выбранный компьютером перед сбоем, был лучше хода, сделанного после возобновления работы системы. (Увы, это действительно так. Позднее я проанализировал партию и могу сказать, что сделанный после устранения неполадки 13-й ход был и впрямь неудачным.) Но что если бы выбранный после сбоя ход оказался намного сильнее первого? Особенности работы шахматных программ таковы, что после перезагрузки машина могла потратить на расчеты чуть больше времени и найти лучший ход или же быстро пойти иным, более благоприятным для себя образом – поди угадай. При всей снисходительности к экспериментальным машинам, потенциальные последствия таких ситуаций не могут не настораживать.

Игра продолжалась с большим преимуществом Fritz 3. В своем рассказе Сюй Фэнсюн делает попытку защитить честь Deep Blue, но его дальнейшие комментарии к партии можно назвать полной чушью. Пусть я ничего не знаю о том, что такое «микросхема по 0,8-мкм КМОП-технологии», и о других технических тонкостях работы компьютеров, но я прекрасно разбираюсь в шахматах. Сюй Фэнсюн пишет, что компьютер «замешкался» и «еще не разогрелся», словно речь идет о соревнованиях по бегу. На самом деле в тот момент Deep Blue, хотя этого и не осознавал, фактически проиграл партию, сделав после сбоя два ужасных хода. Правда, первая оплошность, совершенная сразу же после перезапуска, осталась безнаказанной: программа Fritz 3 не заметила решающего удара. Через два хода, уже в явно плохой позиции, Deep Blue совершил еще одну самоубийственную ошибку, просмотрев мощную атаку черных на королевском фланге. Все было кончено. Оба моих шахматных движка – один с 3000-очковым рейтингом в моем ПК, второй с 2800-очковым у меня в голове – мгновенно определили, что после 16-го хода черных белым крышка. Deep Blue, которому уже нечего было терять, отдал огромное количество материала, прежде чем сдался на 39-м ходу. Так маленький немецко-голландский Давид сокрушил американского Голиафа и в итоге выиграл чемпионат мира.

Я был рад за Фредерика и моих друзей из фирмы ChessBase, но такой исход ставил под вопрос возможность проведения матча между мной и Deep Blue, поскольку суперкомпьютеру IBM не удалось стать чемпионом, а следующий чемпионат мира среди шахматных программ мог состояться только через несколько лет. Но в итоге нам это не помешало. Ни у кого не возникло сомнений, что Deep Blue – сильнейшая шахматная машина в мире, особенно после появления ее новой, модернизированной версии, с которой я встретился в Филадельфии девять месяцев спустя и которая была намного сильнее той, что проиграла программе Fritz 3 в Гонконге.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | Следующая
  • 0 Оценок: 0


Популярные книги за неделю


Рекомендации