Текст книги "Физика: Парадоксальная механика в вопросах и ответах"
Автор книги: Гулиа Нурбей
Жанр: Физика, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 4 (всего у книги 6 страниц) [доступный отрывок для чтения: 1 страниц]

где G – гравитационная постоянная, равная 6,67·10-11 Н·м2/кг2;
R – расстояние между центрами масс тел.
Считая для простоты ускорения тел постоянными (допустим, падение происходит с небольшой высоты), вычисляем их: ускорение планеты aпл = F/M, ускорение груза агр = F/m. Скорости планеты и груза vпл = aплt и vгр = aгрt, где t – время.
Скорость сближения этих тел (скорость падения):

при этом средняя скорость падения:

где vпад. к – конечная скорость падения.
Считая оба тела массивными точками, определим время падения:

Подставляя vпад. к, получим:

В знаменателе под корнем сумма масс тел, следовательно, чем больше масса падающего груза т при постоянной М, тем меньше время падения.
Приведем гипотетический пример. Расчет показывает, что если Луна падает на Землю с высоты 1000 км, то до соприкосновения этих тел пройдет примерно 700 с (рис. 19). Если же при всех прежних условиях увеличить массу Луны до массы Земли, то падение, или, точнее, взаимное сближение, будет длиться всего 500 с.

Рис. 19. Схема падения Луны на Землю.
4.8. Вопрос. В учебниках можно встретить тезис, что при падении тел с высоты в сопротивляющейся среде, например, воздухе, в первой фазе падения тело движется с ускорением, а во второй – равномерно. Может ли так быть, ведь характер физического процесса во время падения не меняется?
Ответ. Это распространенная ошибка среди людей, обладающих определенным практическим опытом, например парашютистов, но в точной науке она неприемлема. В одном очень полезном учебнике для школ с углубленным изучением физики [26], в разделе 3.16 «Установившееся движение тел в вязкой среде» написано, что при падении шарика в вязкой среде, например воздухе, где сила сопротивления движению тела (аэродинамическое сопротивление) пропорциональна квадрату скорости, уравнение движения имеет вид:

где F – равнодействующая силы тяжести и архимедовой силы;
v – скорость падения тела;
k – коэффициент пропорциональности (сопротивления).
Согласно утверждению авторов учебника, в самом начале движения ускорение падения шарика почти равно ускорению свободного падения, а в дальнейшем, когда скорость нарастает, «ускорение тела обращается в нуль и, начиная с этого момента, тело будет двигаться с постоянной установившейся скоростью». Сказанное выделено курсивом в конце раздела, видимо, как очень важное положение, которое следует получше запомнить. Причем приводятся конкретные данные, когда это ускорение обращается в нуль. Для падающей авиабомбы, например, это произойдет через 5–6 км падения.
Проверим, так ли это на самом деле. Воспользуемся формулой (4.14), заимствованной из цитируемого учебника, и, чтобы быть поближе к практике, расшифруем значение коэффициента k для реальных тел, падающих в воздухе:

где Сx – коэффициент обтекаемости, хорошо известный автомобилистам;
ρ – плотность воздуха;
S – площадь проекции тела на плоскость, перпендикулярную направлению движения.
На падающее тело действуют силы: Р – разность силы тяжести и архимедовой силы, и сопротивление среды R (рис. 20):


Рис. 20. Силы, действующие на тело, падающее в вязкой среде.
В проекции сил на ось падения тела х:

Составляем дифференциальное уравнение движения, используя формальную запись:

Обозначив:

и подставив в (4.18), получим:

или, после разделения переменных:

Интегрируем обе части уравнения:

При х = 0 v = 0, следовательно С1 = 0. Тогда:

Отсюда окончательно находим зависимость скорости v от пути х:

А теперь проверим, при каком значении пути падения х скорость падения достигнет предельного значения, когда ускорение падения равно нулю. С возрастанием х величина:

убывает, стремясь при х → ∞ к нулю, а скорость v возрастает, стремясь к некоторой предельной величине с.
Из равенства (4.19) находим:

Однако, как мы видим, скорость эта достигается только при х – со, а стало быть, не достигается никогда. Поэтому все утверждения о моменте, начиная с которого ускорение падения тела становится равным нулю, необоснованны.
Другое дело, что скорость падения может приблизиться к предельной, а ускорение падения может стать очень малым, но равным нулю – никогда. В реальной жизни могут, конечно, встретиться случаи падения, когда тело даже начнет подниматься вверх, например, в восходящих потоках воздуха, чем успешно пользуются птицы и планеристы. Но если считать справедливыми принятые нами условия (4.14), то скорость падения тела в воздухе, как и в любой вязкой сопротивляющейся среде, где сопротивление пропорционально любой (конечной) степени скорости, продолжает расти.
4.9. Вопрос. Если толкнуть плавающее в воде тело, то как скоро оно остановится?
Ответ. С первого взгляда вопрос может показаться некорректным – кажется, что нужно знать массу тела, его обтекаемость, величину импульса толчка и т. д. Но, оказывается, это не так – теоретически тело не остановится никогда. Поясним это, казалось бы, парадоксальное утверждение.
Тело, плывущее в воде с небольшой скоростью v, испытывает сопротивление воды R, пропорциональное первой степени скорости:

где μ – коэффициент сопротивления, зависящий от целого ряда параметров, в данном случае не имеющих принципиального значения. Итак, после сообщенного толчка тело приобретает начальную скорость v0, и затем вдоль линии движения на тело действует только одна сила R, направленная противоположно скорости (рис. 21).

Рис. 21. Силы, действующие на плывущее в воде тело.
Вычисляя проекцию силы, находим:

Для определения времени движения составляем дифференциальное уравнение:

Замечая, что vx = v и Σ Fk = – μv, записываем:

Интегрируем это уравнение, беря от обеих его частей после разделения переменных соответствующие определенные интегралы. При этом нижним пределом каждого из интегралов будет значение переменной интегрирования в начальный момент, а верхним – в произвольный момент времени.
Учитывая, что при t = 0, v = v0, записываем:

Беря интегралы, получаем:

Откуда:

Определяя время движения до остановки, из равенства (4.32) найдем, что при v=0 (остановкатела) время t = ∞. Это означает, что при принятом законе сопротивления движению (4.26) тело теоретически будет двигаться бесконечно долго, все время уменьшая свою скорость.
Однако из практики известно, что тело рано или поздно все равно остановится, причем не исключено, что оно может сдвинуться и назад. В чем же здесь дело? А в том, что, во-первых, при чрезвычайно малых скоростях движения закон сопротивления может измениться. Во-вторых, могут измениться свойства жидкости – она может остыть и замерзнуть, покрыться тиной и т. д. Тогда будет действовать какой-то новый закон сопротивления движению тела. Но он нам не задан, а согласно принятому закону сопротивления (4.26), тело будет двигаться уже описанным образом.
Интересно определить путь, который пройдет тело до остановки. Можно предположить, что если тело никогда не остановится, то и пройденный им путь за бесконечно большое время будет тоже бесконечно большим.
Проверим и это. Применим уже известную нам формальную подстановку (см. вопрос 4.8) и составим дифференциальное уравнение движения в виде:

Сокращая обе части его на v, разделяя переменные и учитывая, что при х = 0 v = v0, имеем:

Интегрируя, получаем:

откуда:

или при v = 0:

То есть получаем вполне конкретное значение пути. Например, при массе тела 100 кг, скорости v0 = 1 м/с и μ = 10 кг/с (средний коэффициент сопротивления для обычной лодки), получаем путь движения до остановки х = 10 м. Если проверять эту задачу экспериментально, то так примерно оно и получится. Хоть движение и «вечное», а вот пройденный путь вполне конечен.
Вот к каким неожиданным выводам приводит иногда механика!
4.10. Вопрос. Что такое трение качения?
Ответ. Казалось бы, такое обыденное явление – трение при качении, а ответа – что это такое, по крайней мере, поясняющего сущность вопроса, в школьных учебниках нет. Даже для школ с углубленным изучением физики. Про теорию относительности – есть, а про трение качения, встречающееся, буквально, на каждом шагу – нет. И, может быть, это к лучшему, потому что даже в вузовских учебниках по физике, где рассматривается этот вопрос, ясности все-таки нет. А ведь трение качения – очень важный для техники вопрос, оно обнаруживает себя в любом колесном транспорте, начиная от велосипеда и роликовых коньков и заканчивая многотонными тягачами и поездами, а кроме того, в механических передачах, подшипниках качения и во многих других случаях.
Между тем, объяснить хотя бы в первом приближении – что это такое, не так уж сложно. И одним из этих приближений будет то, что опорную поверхность или дорогу, по которой катится колесо, будем считать абсолютно твердой. Второе допущение, которое совершенно реально: опорная поверхность и поверхность колеса обладают трением скольжения, предельное значение которого превышает максимальное сопротивление качению колеса. Короче говоря, при приложении к оси колеса силы, оно будет катиться, а не скользить «юзом» по дороге. Иногда говорят, что рассматриваемые поверхности «шероховаты», но это недостаточно точно отражает суть вопроса. Трудно представить себе, например, что-нибудь более гладкое, чем зеркальная рабочая поверхность плиток Иогансона, применяющихся для точных измерений расстояний в качестве эталонов длины, но попробуйте сдвинуть одну такую плитку по другой!
А теперь поставим колесо на дорогу, приложим к нему силу тяжести G, нормальную силу со стороны дороги N и будем толкать колесо силой Р, приложенной горизонтально к оси, пытаясь его покатить. Мешает ли нам теоретически что-нибудь это сделать? Нет, все силы пересекаются в точке выхода оси колеса, и моменты, создающие сопротивление качению, не могут образоваться (рис. 22).

Рис. 22. Схема сил, действующих при качении абсолютно твердого колеса по абсолютно твердой дороге.
Получается парадокс – выходит, при качении нет никакого сопротивления? Но заметьте, что мы совершенно не учли деформацию колеса, оно у нас как бы «абсолютно твердое», тверже алмаза. Тогда, конечно, сопротивления качению быть не может, с учетом того, что дорогу мы уже приняли абсолютно твердой. Поэтому, чтобы уменьшить сопротивление трению качения, колёса и железную дорогу делают из очень твердых материалов (не из алмаза, конечно, но из термообработанной стали с наклепом – очень твердого материала). Железнодорожные колеса, катящиеся по рельсам, имеют сопротивление качению во много раз меньше, чем «мягкие» автомобильные колеса.
Что же происходит с «мягким» колесом при его качении? В контакте с дорогой его немного расплющивает, и из-за гистерезисных потерь (перехода части механической энергии, затраченной на деформацию, в тепло, что всегда имеет место в реальных материалах) сила давления на колесо со стороны дороги N немного смещается вперед по движению (рис. 23). Появляется плечо силы а, то есть момент, который надо преодолевать, а значит, и трение качения. Чем больше диаметр колеса и чем тверже оно (при твердой дороге), тем меньше оно сопротивляется качению. Вот почему у некоторых вездеходов колеса такие большие (до 17 м диаметром), а у поездов и трамваев они такие твердые.

Рис. 23. Схема сил, действующих на реальное колесо, катящееся по абсолютно твердой дороге.
А вот легковому автомобилю нельзя «позволить себе» ни того, ни другого. Если колеса будут слишком большими, автомобиль утратит мобильность, комфортабельность, эргономичность и эстетичность, а кроме того, станет слишком тяжелым. Ну, а твердые колеса будут резать асфальт, как сошедший с рельсов трамвай, да и тряска при движении станет непереносимой – мягкие шины демпфируют колебания от неровностей дороги. Вот и приходится идти на технические компромиссы.
И еще одно обстоятельство, которое вызывает недоумение у каждого, кто пытается проанализировать качение упругого колеса по твердой дороге. Нижняя часть колеса расплющивается, и ее длина становится меньше соответствующей дуги недеформированного колеса. Зная, что окружная скорость точки на ободе шины равна произведению угловой скорости колеса на радиус колеса, мы видим, что этот радиус в точке контакта с дорогой меньше, чем рядом, где колесо не касается дороги. Получается, что окружная скорость разных точек колеса – различная? Если у одной и той же шины скорость в разных точках различная, то это означает или разрыв шины, или напротив – ее сжатие.
Именно сжатие и происходит в контакте колеса с дорогой – упругая поверхность шины сжимается, проскальзывает к центру зоны контакта, а при выходе из контакта происходит обратная картина. В передней зоне контакта колеса с дорогой силы трения скольжения при проскальзывании действуют со стороны дороги на колесо назад по движению, а в задней зоне их действие противоположно. Кроме того, что это скольжение создает потери (переход механической энергии в тепло), увеличивающие сопротивление качению, силы эти играют еще одну отрицательную роль. В передней зоне контакта, где давление выше из-за смещения вперед силы N, эти силы больше, чем в задней. И это, в свою очередь, опять же повышает сопротивление качению колеса.
Не следует забывать и о боковом скольжении частей шины по дороге – ведь колесо «расплющивается» в зоне контакта и в боковом направлении.
Вот какие сложные явления возникают при трении качения, и очень важно знать физическую природу этого очень распространенного в технике явления.
Из равенства моментов (см. рис. 23) N·a = Р·r, что необходимо для равномерного качения колеса по дороге, следует:

где а – коэффициент трения качения, имеющий размерность длины.
Надо сказать, что это очень неудобная величина и ею мало кто пользуется. Например, а = 0,05 мм – мало это или много? А ведь это коэффициент трения качения железнодорожного колеса по рельсу. Если диаметр колеса 1 м, а нагрузка на колесо – 10 кН, то, чтобы катить это колесо, нужна сила около 1 Н. Чтобы толкать уже стронутый с места вагон массой 60 т (весом 600 кН) без учета всех других потерь (аэродинамических, в подшипниках, уплотнениях и пр.) понадобится сила всего в 60 Н. Это кажется неправдоподобно малой силой, тем не менее, это так.
У «мягкой» автомобильной шины при движении по хорошему шоссе коэффициент трения качения в полсотню раз больше, и для толкания автомобиля массой в тонну при диаметре колеса 0,6 м понадобится уже сила 83 Н. При этом не надо забывать, что эта сила идет только на равномерное качение уже стронутого с места автомобиля с «прогретыми» шинами без учета всех других уже перечисленных сопротивлений.
Так как на практике пользование коэффициентом а неудобно, чаще всего его «переводят» в вид, похожий на коэффициент трения скольжения:

Тогда для железнодорожного колеса:

а для автомобильного:

Эти значения соответствуют справочным данным; например, для автомобильного колеса на хорошей дороге fa = 0,007-0,015.
5. Механические загадки и парадоксы
5.1. Вопрос. Можно ли двигаться на парусном судне против ветра?
Ответ. Парусные суда уже давно «ходят» против ветра, правда, зигзагами, или, как называют их моряки, галсами.
Все дело в том, что у парусных судов киль делается очень глубоким, и движение судна боком практически исключается. Если же при этом парус поставить так, чтобы его плоскость делила пополам угол между направлением киля и направлением ветра, то появляется составляющая силы, направленная вдоль киля. Ветер оказывает давление на парус практически полностью перпендикулярно его плоскости, и сила этого давления раскладывается на направление, перпендикулярное килю (куда судно двигаться почти не в состоянии), и направление вдоль киля, куда судно и движется. Это движение, правда, происходит не «в лоб» ветру, а под острым углом к нему.
Через некоторое время судно поворачивает под тем же углом к ветру, но теперь угол отсчитывается в другую сторону. Вот и идет судно зигзагами, или галсами, против ветра. Парадокс, имеющий место на практике!
Схема движения судна и направления действия сил при этом показаны на рис. 24. Сила действия ветра на парус – Рв, сила, движущая судно вдоль киля – Рк, сила, перпендикулярная килю, почти не совершающая работы (так как судно не может двигаться боком) – Р0.

Рис. 24. Схема движения судна и направления действия сил при движении судна против ветра галсами.
5.2. Вопрос. Можно ли двигаться на безмоторном судне против течения реки?
Ответ. Оказывается, и это можно, хотя кажется противоречащим законам механики. Первым эту идею воплотил в жизнь знаменитый русский механик-самоучка Иван Петрович Кулибин (1735–1818). Когда Екатерина II увидела баржу, плывущую по Неве против течения, то была поражена. Ведь баржа была без парусов и без мотора (моторных судов, по крайней мере в России, тогда не было). Какая же сила толкала баржу против течения?
Схематически устройство подобной баржи, двигающейся против течения реки представлено на рис. 25. Баржа была снабжена большими водяными колесами, расположенными по ее бортам, наподобие тех, которые применялись на водяных мельницах, а также на так называемых «колесных» пароходах. На валу водяных колес помещались два барабана лебедки, на которые наматывались тросы. Эти барабаны могли соединяться с валом и отсоединяться от него.

Рис. 25. Схема устройства безмоторного судна, движущегося против течения реки.
Двигалась баржа следующим образом. Она становилась на один якорь, а второй отвозился на лодке далеко вперед против течения реки. Трос второго якоря сматывался с барабана, отсоединенного от вала водяных колес, которые постоянно вращались, приводимые в движение течением реки. После забрасывания второго якоря первый поднимался и второй барабан тросовой лебедки соединялся с валом водяных колес. Барабан начинал вращаться, наматывая на себя трос и «подтягивая» баржу к заброшенному вперед якорю (см. рис. 25). Вот это-то движение баржи так поразило Екатерину П.
Пока баржа двигалась, наматывая на барабан трос второго якоря, первый якорь, трос которого был намотан на первый барабан, теперь отсоединенный от вала, быстренько отвозился на лодке вперед и забрасывался так же, как и предыдущий якорь. Затем первый барабан соединялся с валом водяных колес, а второй – отсоединялся от него. При движении баржи на первом тросе, второй якорь уже известным нам способом забрасывался на лодке вперед.
Вот так, или почти так (точной технологии работы этой самоходной баржи не сохранилось, и автор описал наиболее вероятный способ ее действия) двигалось безмоторное судно против течения реки, поражая современников.
5.3. Вопрос. Можно ли отапливать помещение… ветром?
Ответ. Можно получать энергию от ветроэлектростанций, которых так много в Америке и Европе, и отапливать помещение этой электроэнергией. Однако есть способ, позволяющий обойтись без электрической части ветроустановки.
Если в устройстве имеется вертикальный вал, а он почти всегда присутствует на ветряках средней мощности, то с его нижней частью можно без всякой механической передачи непосредственно соединить мешалку Джоуля, хорошо известную из школьного курса физики (рис. 26). Эта мешалка переводит механическую энергию в тепловую.

Рис. 26. Мешалка Джоуля.
Схема такого ветряка с мешалкой Джоуля представлена на рис. 27. Нижняя часть вертикального вала ветряка соединена непосредственно с валом мешалки Джоуля, изготовленной, например, из обычной 200-литровой бочки. При вращении ветроколеса вода в мешалке, перемешиваемая лопастями, нагревается совсем как в опытах Джоуля. Горячая вода по патрубкам может направляться в батареи отопления или для других целей.

Рис. 27. Схема ветряка, вал которого непосредственно связан с мешалкой Джоуля.
5.4. Вопрос. Говорят, что первый вертолет придумал Леонардо да Винчи и что построенная по его эскизам машина летала. Могло ли такое быть?

Ответ. Интересно, что в игрушки типа летающего пропеллера, которыми забавляются дети сейчас, играли и дети в Средневековье. Установлено, что такие игрушки известны аж с 1320 года [13].
Первый же эскиз большого вертолета создан Леонардо да Винчи (1452–1519). Этот эскиз представлен на рис. 28. Эскиз подписан самим автором – справа налево, и не следует думать, что это «зеркально» перевернутый рисунок. Он был левшой и часто писал таким образом.

Рис. 28. Эскиз вертолета Леонардо да Винчи, подписанный автором.
Вот что сам Леонардо пишет об этой конструкции: «Остов винта должно сделать из железной проволоки, толщиной в веревку; расстояние же от окружности до центра – 25 локтей. Если все будет сделано как следует, то есть из прочной парусины, поры в которой тщательно замазаны крахмалом, то я думаю, что при вращении с известной скоростью такой винт опишет в воздухе спираль и поднимется вверх».
Не так давно распространилось сообщение, что в США на авиазаводе в Сан-Диего по эскизам Леонардо был построен летательный аппарат, который якобы поднялся в воздух, даже с грузом.
Автор утверждает, что этого быть не могло. Или вертолет построен не по чертежам Леонардо, и работала эта машина не по заложенному им принципу, или она никогда не поднималась в воздух.
Если внимательно взглянуть на эскиз Леонардо, то в нижней части машины можно увидеть круглую платформу. По ней должны были бегать люди, вращающие кабестан, к которому крепился воздушный винт. Об этом говорится и в описании принципа работы летательного аппарата. Да и других двигателей, кроме мускульного, в то время просто не было.
Так вот, даже если не говорить о том, что ничтожной мощности этих бегающих людей не хватило бы на отрыв машины от земли, другой эффект уж точно помешал бы это сделать.
Вал винта не мог быть жестко скреплен с платформой – люди, отталкиваясь от платформы, вращали воздушный винт. Значит платформа подвешивалась на валу воздушного винта с возможностью свободного вращения, т. е. на подшипниках. Но тогда в аппарате вращаться стала бы в первую очередь сама платформа, от которой отталкивались ногами люди, а не воздушный винт, испытывающий большое сопротивление вращению – ведь именно винт должен был, «ввинчиваясь» в воздух, поднимать вертолет. А вращению самой платформы ничто не препятствовало.
5.5. Вопрос. Почему вертолет летит намного медленнее самолета?
Ответ. Вертолет поддерживается в воздухе главным образом своим несущим винтом. Для простоты будем говорить только о вертолете с одним несущим винтом, хотя, как известно, бывают и летательные аппараты с двумя винтами, вращающимися в противоположные стороны.
Почему же вертолеты не летают так же быстро, как самолеты? Оказывается, мешает этому именно несущий винт. Когда вертолет летит, а винт вращается (рис. 29), то на одну лопасть винта, которая движется в сторону полета машины, приходится набегающий поток воздуха, по скорости равный сумме скоростей вертолета ¥и окружной скорости лопасти ωR. На другую лопасть винта, которая движется в противоположную сторону, приходится набегающий поток, скорость которого равна разности окружной скорости лопасти и скорости полета вертолета. Поэтому, по теории движущегося крыла, первая часть винта будет обладать подъемной силой больше второй, и вертолет будет крениться.

Рис. 29. Скорости движения лопастей винта летящего вертолета.
Чтобы этого не происходило, а также и для других целей несущий винт вертолета содержит сложный механизм, называемый «автомат-перекос». Он в течение одного оборота лопасти винта дважды изменяет угол ее наклона к направлению воздушного потока (угол атаки) – уменьшает его там, где поток воздуха набегает, и увеличивает на другой стороне. В результате подъемные силы во всех частях винта уравниваются (если, конечно, не требуется искусственно создать крен, что тоже выполняется этим механизмом).
Трудно представить себе всю напряженность работы такого механизма, ведь на винте «висит» многотонная машина и винт делает сотни оборотов в минуту. Но даже автомат-перекос не может помочь, когда скорость машины сравняется с окружной скоростью винта. Тогда вторая часть винта вообще неподвижна относительно воздуха и ее подъемная сила при любом угле атаки равна нулю. Соответственно, подъемная сила в первой части винта становится чрезмерно большой. В результате вертолет может перевернуться. Именно поэтому вертолеты и не летают так быстро, как самолеты: самолетный винт вращается в плоскости, перпендикулярной скорости полета, и описанного эффекта не наблюдается.
5.6. Вопрос. Куда движется ракета, когда в ней горит топливо? А заодно, куда движется выхлоп сгоревшего топлива?
Ответ. Для корректности постановки задачи будем считать систему отсчета «абсолютной», а ракету, заправленную топливом и окислителем, до начала сгорания топлива – неподвижной. На ракету не действуют никакие внешние силы, а вокруг нее – абсолютный вакуум.
Начинается горение топлива (соединение его с окислителем) в камере сгорания 2, и газы, получаемые в результате этого, устремляются через сопло 1 наружу (рис. 30). Газы эти, безусловно, имеют массу и, получая скорость, будут обладать определенным импульсом. Так как до начала сгорания импульс неподвижной ракеты был равен нулю, а внешние силы на нее не действуют, то при горении топлива импульс всей системы тел (ракеты с горючим, окислителем и головной частью 3) тоже будет равен нулю. Часть первоначальной массы (газы, образовавшиеся при сгорании топлива) будет двигаться в одну сторону, корпус ракеты – в другую, но центр масс всей системы останется в неизменном положении.

Рис. 30. Ракета с жидкими топливом и окислителем: 1 – сопло; 2 – камера сгорания; 3 – головная часть.
Следовательно, центр масс всей системы тел – корпуса ракеты с людьми, топливом, окислителем, приборами и т. д. – при сгорании топлива никуда двигаться не будет, так как просто не сможет этого сделать без действия внешних сил, которых по условию нет. А внутренними силами центр масс системы сдвинуть невозможно!
Получается, на первый взгляд, парадоксальная ситуация – корпус ракеты (или ее головная часть) несется с огромной скоростью, а центр масс первоначальной ракеты так и не сдвинулся с места. Но тем не менее это так! Головная часть ракеты может вылететь хоть за пределы Солнечной системы, но отработавшие газы, массой намного больше этой головной части, вылетят за пределы этой же системы, но в другую сторону. А центр масс навечно останется на одном и том же месте!
А теперь о том, куда движутся отработавшие газы, в которые превратилось топливо, соединившееся с окислителем. Если вообразить себе неподвижного наблюдателя, то в начале работы ракеты он увидит, что корпус ракеты будет двигаться относительно него, допустим, вправо, а газы – влево. Потом, по мере того, как корпус достигнет скорости, большей скорости истечения газов (для химического топлива эта скорость находится в пределах 3 км/с), наблюдатель увидит, что и корпус ракеты и газы, истекающие из сопла, будут двигаться в одном направлении, в данном случае – вправо. Однако, скорость газов будет всегда меньше скорости корпуса ракеты на величину скорости истечения газов. Например, при скорости корпуса 8 км/с и скорости истечения 3 км/с, скорость движения газов в направлении движения корпуса составит 5 км/с.
Естественно, что при малых скоростях истечения, для создания большого импульса нужны большие массы топлива и еще большие – окислителя. Выгоднее отбрасывать от корпуса ракеты частицы с гораздо более высокой скоростью, чтобы при этом же значении импульса их масса была меньше. Например, протоны можно разогнать даже сравнительно низковольтными ускорителями до 10 тыс. км/с, что в тысячи раз уменьшит массу отбрасываемого вещества.
5.7. Вопрос. Казалось бы, шуточный вопрос: что тяжелее – тонна железа или тонна дерева?
Ответ. Вопрос этот не так уж шуточен, как кажется. При ответе на него ошибались даже известные популяризаторы науки, такие, как, например, Я. И. Перельман. Он утверждал, что тяжелее будет тонна дерева. Вот как он это доказывал:
«Каждое тело в воздухе „теряет“ из своего веса столько, сколько весит вытесненный телом объем воздуха. Дерево и железо тоже, конечно, теряют в воздухе часть своего веса. Чтобы получить их истинные веса, нужно „потерю“ прибавить. Следовательно, истинный вес дерева в нашем случае равен 1 т плюс вес воздуха в объеме дерева; истинный вес железа равен 1 т плюс вес воздуха в объеме железа.
Но 1 т дерева занимает гораздо больший объем, нежели 1 т железа (раз в 15), поэтому истинный вес 1 т дерева больше истинного веса 1 т железа! Выражаясь точнее, мы должны были бы сказать: истинный вес того дерева, которое в воздухе весит 1 т, больше истинного веса того железа, которое весит в воздухе тоже 1 т.
Так как 1 т железа занимает объем в 1/8 м3, а 1 т дерева – 2 м3, то разность в весе вытесняемого ими воздуха должна составить около 2,5 кг. Вот насколько 1 т дерева в действительности тяжелее 1 т железа!»
Попробуем доказать обратное. Что такое тонна? Это тысяча килограммов. Что такое килограмм? Это единица массы вещества. При этом не имеет значения, где это вещество находится – в вакууме, воздухе или воде. А то, насколько одно тело тяжелее или легче другого, измеряют весами так, как это предполагал делать в своем доказательстве Я. И. Перельман. При взвешивании в вакууме сила тяжести численно равна весу тела:

где т – масса тела;
g – ускорение свободного падения.
Напомним, что сила тяжести и вес, будучи численно равными друг другу, отличаются тем, что первая приложена в центре масс самого тела, а второй – к связи, например, чаше весов.
При взвешивании в воздухе часть веса «теряется» – вверх действует выталкивающая архимедова сила воздуха. Но она больше у дерева, следовательно, кусок железа массой в 1 т будет весить при взвешивании в воздухе больше, чем кусок дерева той же массы, что и требовалось доказать.
Кстати, массу в 1 т может иметь и определенный объем водорода, который в воздухе будет иметь вообще отрицательный вес. Поэтому «весить одну тонну» водород, гелий и другие вещества легче воздуха не могут, если даже вдруг начать считать тонну мерой веса, хотя иметь массу в 1 т им не возбраняется.
Вот в какие дебри может завести использование одной единицы измерения вместо другой, например, силы вместо массы, что делается в быту достаточно часто!
5.8. Вопрос. В чем можно накопить больше потенциальной энергии – в растянутой пружине или резине?
Ответ. Обычно отвечают, что в пружине, но это не так. Чтобы упростить задачу, представим себе, что мы просто растягиваем стержень из того или иного материала. На упругий элемент, допустим, стальной стержень, действует сила Р, зависящая от величины перемещения h конца этого стержня. Умножив среднюю силу на перемещение, получим значение накопленной потенциальной энергии: