Электронная библиотека » Хельга Хофман-Зибер » » онлайн чтение - страница 4

Текст книги "Дикие гены"


  • Текст добавлен: 29 января 2018, 15:20


Автор книги: Хельга Хофман-Зибер


Жанр: Биология, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 4 (всего у книги 16 страниц) [доступный отрывок для чтения: 5 страниц]

Шрифт:
- 100% +

Но не стоит забывать о том, что не каждое изменение вредно. Некоторые имеют нейтральный характер или даже дают определенные преимущества. Эти «полезные ошибки» являются двигателем эволюции и дальнейшего развития наших генов. С их помощью жизнь до сих пор справлялась со всеми препятствиями, встававшими на ее пути, включая астероиды-убийцы и коварные сине-зеленые водоросли.

Но каков путь от случайной полезной мутации до возникновения совершенно нового биологического вида? Другими словами, как выглядит связь между мутациями и эволюцией? Если сегодня мы довольно хорошо знаем, как происходит данный процесс, то благодарить за это надо главным образом Джона Бёрдона Сандерсона Холдейна, который с помощью математических методов соединил эволюционную теорию Дарвина с законами наследственности Менделя. Он был не единственным ученым, работавшим над тем, чтобы придать эволюционным процессам некоторую предсказуемость, но именно ему удалось стать движущей силой и одним из основоположников современной эволюционной генетики.

Об эволюции он начал задумываться уже в раннем возрасте. Холдейн, которого все звали Джеком, родился в 1892 году в Эдинбурге и в восемь лет начал помогать в научных экспериментах отцу – знаменитому физиологу. В 1901 году отец разрешил ему присутствовать на докладе, посвященном трудам Менделя, и это произвело на Холдейна-младшего неизгладимое впечатление. Всегда ли действуют принципы, открытые Менделем в ходе статистических подсчетов, или они годятся только для гороха? И что все это может значить?



Еще будучи подростком, Холдейн с 1908 года начал активно искать ответы на эти вопросы. Стартовым выстрелом для его работ стал глухой звук падения, с которым его одиннадцатилетняя сестра Наоми свалилась с пони. В результате у нее начисто пропала любовь к лошадям и она переключилась на морских свинок. С этого все и началось. Джек совместно с Наоми, которая научилась различать своих питомцев по писку, решили выяснить, применимы ли законы наследственности Менделя к грызунам, продемонстрировавшим такую тягу к размножению, что уже через несколько месяцев их поголовье выросло с одной пары до 300 особей. И надо же: они действовали и в данном случае! Для полной уверенности Джек и Наоми повторили эти эксперименты на мышах и уже вскоре опубликовали свою первую научную работу.

Позднее Джек изучал математику и классическую филологию в Оксфорде. В 1914 году он с отличием окончил университет, но диссертацию так и не защитил. Все познания в биологии он получил за счет самообразования. Однако отсутствие формального образования не помешало ему стать одним из величайших биологов своего времени. Юный Джек с годами превратился в Дж. Б. С. Холдейна и приобрел импозантный внешний вид: стал высоким и широким, словно шкаф, и вдобавок отрастил усы, как у Сталина. Он был известным упрямцем и спорщиком, а также марксистом, гуманистом и атеистом. Ни за какие деньги Холдейн не соглашался держать язык за зубами и всегда высказывал свою точку зрения. Короче говоря, он был ярким примером того, как проще всего потерять друзей и обзавестись врагами среди влиятельных людей. Об успешной карьере не могло быть и речи, поскольку для этого требовались такие качества, как тактичность в общении с людьми и определенная склонность к консерватизму. К счастью, его мало интересовала карьера в классическом понимании. Единственное, чего он хотел, – это чтобы его оставили в покое и дали возможность заниматься наукой.

С помощью математики Холдейн определенным образом упорядочил многие области биологии, пребывавшие до этого в хаотическом состоянии, и постоянно занимался проблемами эволюции. В частности, ему не давала покоя загадка талассемии, или средиземноморской анемии, – особого вида малокровия. Причиной этого заболевания являются мутации в генах гемоглобина – белка, отвечающего за транспортировку кислорода в красных кровяных тельцах. Если ребенок получал дефектные гены от обоих родителей, заболевание могло оказаться смертельным. Если же был поражен только один набор хромосом, то последствия были значительно мягче и иногда почти не сказывались на здоровье. Но почему эти опасные вариации генов встречались так часто? И почему они были сосредоточены в средиземноморском регионе? Если эта мутация смогла закрепиться, то в чем ее преимущества для выживания людей?

У Холдейна возникла идея на этот счет, и в 1948 году он представил ее общественности. По его мнению, все дело было в малярии. В последние тысячелетия она сильно распространилась в регионе Средиземного моря, унося тысячи жизней, и перед эволюцией встала насущная задача по выработке стратегии, позволяющей избежать если уж не самой болезни, то, по крайней мере, ее самых тяжелых последствий. Генетическое изменение, создававшее устойчивость к малярии, давало такие преимущества, которые перевешивали все побочные эффекты. Именно в этом, по предположению Холдейна, заключалось значение талассемии: болезнь изменяла красные кровяные тельца, то есть как раз те клетки, в которых размножались возбудители малярии. Если талассемия позволяет уберечься от малярии, то становится понятным, почему эта мутация получила такое распространение, несмотря на все негативные эффекты.

Спустя несколько лет выяснилось, что Холдейн прав. То, что на первый взгляд представлялось непростительной ошибкой в генетическом материале, на самом деле оказалось преимуществом (хотя и купленным дорогой ценой). Сегодня малярия истреблена во многих местах распространения, а там, где это пока не сделано, применяются профилактические меры. Кроме того, ее научились лечить. Теперь недостатки, возникшие вследствие мутации гемоглобина, уже перевешивают былые преимущества, и можно ожидать, что в будущем эта генетическая ошибка станет встречаться реже или вообще исчезнет.

Таким образом, ошибки и возможные мутации, вносимые в наследственный материал, играют большую роль в выживании вида. Но при этом очень важно соблюдать баланс. Если ошибок возникает слишком много, то погибает большое количество особей, а если слишком мало, то популяция недостаточно быстро приспосабливается к условиям окружающей среды.

Благодаря своим работам, посвященным эволюции и другим темам, Холдейн быстро приобрел международную известность. В то время он был одним из немногих ученых, умеющих доходчиво доносить до общественности научные истины в своих докладах, статьях и книгах. Холдейн был яркой фигурой и не стеснялся время от времени наступать кому-нибудь на мозоли. При этом неизбежно возникали скандалы, и он стал персонажем нескольких из них. В 1924 году Холдейн влюбился в молодую замужнюю журналистку Шарлотту Берге. Они хотели пожениться, но для этого ей сначала нужно было развестись, что в то время было не так просто. В конце концов пара наняла частного детектива, который зафиксировал факт, что они вместе провели ночь в отеле. План сработал, и развод состоялся, но последовавший скандал в прессе едва не стоил Холдейну места в Кембридже. Его поведение сочли аморальным. В конце концов Джон и Шарлотта поженились и прожили вместе 20 лет. В 1945 году они расстались, после чего Холдейн в том же году женился на Хелен Спервей, которая писала под его руководством научную работу и была на 25 лет моложе его. Во время Суэцкого кризиса Холдейн вместе с Хелен уехал в Индию, так как не мог больше переносить английских порядков и называл Великобританию «преступной страной». Там он продолжил свои исследования и больше никогда не возвращался на родину.

Мутации, двигающие эволюцию вперед, очень важны для выживания, но несут с собой риски. В связи с этим возникает вопрос: какое количество мутаций следует считать «правильным»? Ответ во многом зависит от того, с каким видом живых организмов мы имеем дело. Если для вида характерен большой геном, а количество особей невелико, то ему (виду) приходится прилагать большие усилия, направленные на сохранение генома. Каждая особь при этом будет на счету. Поэтому клетки человека работают намного точнее, чем бактерии, которых насчитывается так много, что потеря миллионов или даже миллиардов пройдет незамеченной. Это делает бактерии намного более гибкими в генетическом плане. Но частоту мутаций определяют не только особенности организма, но и окружающая среда.

Если живой организм очень хорошо адаптирован к окружающей среде, то шанс на то, что случайное изменение приведет к дальнейшему улучшению, слишком мал. Поэтому для него важнее избегать ошибок и производить как можно больше потомства с неизменными свойствами. Если же организм не слишком хорошо справляется с вызовами окружающей среды, то для него приобретает важность повышенная частота мутаций, поскольку в результате изменений возрастает шанс на выигрыш.

И действительно, мы наблюдаем, что микроорганизмы, которые живут в условиях, далеких от оптимальных, целенаправленно активизируют «аварийные» программы, повышающие частоту мутаций и ускоряющие таким образом адаптацию к окружающей среде.

Сложные организмы приспосабливаются к среде труднее, чем бактерии. Тем не менее многие животные, например лебеди, в случае осложнения условий пытаются повысить вариативность своих генов. Правда, это делается не за счет галопирующей частоты мутаций, а происходит более романтично – путем выбора партнера. Если жизненные условия оптимальны, то лебедь останавливает свой выбор на партнерше, которая максимально похожа на него и, возможно, даже приходится ему какой-то дальней родней. Такая особь, вероятнее всего, обладает схожим набором генов. Разумеется, это не единственный критерий для выбора партнера, но он тоже присутствует. Если же дела идут не слишком хорошо и птицы находятся в стрессовом состоянии, то они тяготеют к партнерам, которые сильно отличаются от них самих и, по всей вероятности, обладают другими генами, которые могут оказаться полезными для потомства.

Дж. Б. С. Холдейн был знаменит еще и тем, что любил проводить эксперименты на самом себе и добровольных помощниках. Все это было небезопасно, но у него всегда было оправдание: «Трудно узнать, как чувствует себя подопытный кролик. На самом деле подавляющее большинство кроликов вовсе не горят желанием сотрудничать с учеными».

Работая вместе с отцом над конструкцией противогаза в годы Первой мировой войны, он надышался ядовитым газом. Во время научной лекции Холдейн продемонстрировал слушателям слезоточивый газ на основе кайенского перца, в результате чего пришлось эвакуировать всю публику из аудитории. Он проводил эксперименты в барокамере, следствием чего стали не только судороги, но и разорванные барабанные перепонки у большинства участников. Комментарий Холдейна по этому поводу был сух: «Барабанные перепонки обычно зарастают. Если же останется небольшое отверстие, то человек, конечно, будет немного хуже слышать, но зато у него появится возможность выпускать табачный дым из ушей, что создает определенные социальные преимущества».

А как у людей? По всей видимости, примерно также. Это очень элегантно продемонстрировало одно исследование, проведенное в 2010 году в Германии. Пятидесяти мужчинам предъявили фотографии обнаженных женщин и исследовали возникшие у них реакции. Чтобы избежать ложных предположений, сразу скажем, что измерялись непроизвольные подергивания мышц, управляющих движениями глаз. При позитивной реакции на увиденное они проявляются сильнее, а при негативной – слабее. Некоторые фотографии были подвергнуты предварительной обработке, и черты лица женщин изменили таким образом, чтобы они стали похожими на испытуемых (то есть подсознательно воспринимались ими как генетически близкие). Анализ полученных данных показал, что измененные фотографии воспринимались как более привлекательные, чем реальные. Если же на испытуемых в ходе эксперимента оказывалось стрессовое воздействие (они должны были рассматривать фотографии, засунув руку в холодную воду), то эффект был противоположным и они более положительно воспринимали женщин, далеких в генетическом плане. Таким образом, люди далеко не избавлены от контроля со стороны своих генов, как принято считать.

Как мы видим, ошибок в жизни и в генах избежать невозможно, и, когда они происходят, поводов для радости не так уж много, но если повезет, то из них можно извлечь уроки, которые помогают развиваться. Как говорит тетя Хедвиг, «допустить ошибку может каждый… Главное – то, как ты к ней относишься!»

Глава 4
Три жизни ♥♥♥


Что может получиться, когда чудаковатый биолог десять лет работает над темой, которая никому не интересна? Он открывает новую область жизни (по крайней мере, иногда).


На часах 16:27. Я уже битых полчаса смотрю в окно на улицу. Как и договаривались, ровно в 16:00 («Только без опозданий, пожалуйста!») я был в кафе, чтобы забрать тетю Хедвиг после похода за покупками. И каждый раз она с точностью швейцарских часов заставляет себя ждать. Но чего не сделаешь ради семьи! А ведь она на самом деле мне вовсе не тетя. Я прихожусь ей кем-то вроде внучатого племянника. Настроение у меня уже готово упасть ниже плинтуса, но тут перед моим носом появляется дымящаяся чашка.

– Ваш горячий шоколад, – произносит официант заученным тоном и тут же исчезает.

Ну, все же лучше, чем ничего.

Как только я подношу чашку к губам, в конце улицы появляется тетя Хедвиг. В руке у нее маленький пакетик из кондитерского магазина. И это все? Ради этого пакетика мне пришлось тащиться сюда, потому что ей, видите ли, нельзя носить тяжести? Она не торопясь движется в сторону кафе и вдруг останавливается: с ней заговорил какой-то панк, сидящий на подстилке прямо на тротуаре. У его ног расположилась помесь таксы бог знает с кем. Я делаю глоток и с интересом наблюдаю. Бродяга, очевидно, выпрашивает один евро, а собака пытается вынюхать, что у Хедвиг в пакете. Тетя смотрит таксе прямо в глаза, и та садится на подстилку. Хедвиг чешет ее за ухом. Потом тетя начинает что-то втолковывать панку. Я смотрю на часы и засекаю время. Могу поспорить, что этот тип продержится максимум пять минут… Он встает уже через две минуты. В течение еще одной минуты он с виноватым видом кивает своим синим ирокезом, как будто его поймали на краже яблок, а потом окончательно сдается. Так я и знал. Он сворачивает подстилку, аккуратно цепляет поводок к ошейнику у ставит начатую бутылку пива рядом с мусорным баком и покорно тащится за тетей Хедвиг в сторону кафе, неся в руках ее пакет. У дверей все трое останавливаются. Хедвиг пристально смотрит ему в глаза и что-то говорит. Он выглядит как робкий школьнику каким, скорее всего, никогда в жизни не был. Тетя треплет его по щеке так, что у панка начинают звенеть все кольца., вставленные в нос. Потом она забирает у него пакет и входит в кафе.

Увидев меня, Хедвиг усаживается напротив.

– А, вот ты где!

– Кто это? – спрашиваю я, указывая на панка, удаляющегося решительным шагом.

У него такой вид, будто он прямо сейчас решил устроиться в банк учеником кассира.

– Это Штруббель, твой троюродный брат.

– Что?

– Да, и его пес Вальдемар. Пришлось немного прочистить парню мозги. Нельзя же так, в конце концов.

Пока я пытаюсь реконструировать генеалогическое древо, чтобы понять, с какой стороны мы со Штруббелем родственники, тетя заказывает маленькую чашку кофе с молоком.

Я сдаюсь:

– А откуда ты его знаешь?

– Ой, да я его до этого и не знала вовсе, но недавно познакомилась с его бабушкой Вальбургой на похоронах Франца Ширенкоппа.

– А это еще кто такой?

Официант приносит кофе.

– Его я тоже не знала. Но меня пригласили на поминки.

Ну, ты знаешь, в то кафе возле кладбища, где готовят замечательные медовые пирожные.

Хедвиг с мечтательным видом помешивает кофе ложечкой.

– Минуточку! Значит, ты заявилась на поминки только ради медового пирожного, хотя не состоишь ни в каком родстве с этим Францем Ширенкоппом?

– Ерунда! Разумеется, мы родня. Все состоят друг с другом в каком-нибудь родстве. Просто я в то время еще не знала, по какой линии. Но мы с Вальбургой это выяснили. Правда, пришлось допустить наличие пары внебрачных связей, но свободная любовь существовала и до шестьдесят восьмого года…

Я в недоумении смотрю на тетю, а она допивает кофе, улыбается и говорит:

– Ну, пошли.

Неся пакетик с дезодорантом к машине, я все пытаюсь понять, в какой степени родства мы состоим с Хедвиг. Она всегда присутствовала на всех семейных торжествах и сидела, как правило, поближе к сладостям.


Бывают моменты в жизни, когда не дает покоя вопрос: «А действительно ли этот человек мне родственник? Может ли такое быть? Или это розыгрыш и где-то стоит скрытая камера?» Иногда это самое разумное объяснение.

Но если степень родства с тетушкой можно проследить по старым пожелтевшим документам, то с более дальними родственниками дело обстоит сложнее. Кто на генеалогическом древе сидит ближе ко мне: горилла, с наслаждением поедающая бананы прямо в кожуре, или орангутан, висящий на одной руке, а другой ковыряющий в носу? А какое место занимает чепрачный тапир по отношению к голому землекопу? Ученые долгое время пытались ответить на эти вопросы, основываясь главным образом на внешнем сходстве. Так, например, они судили о родстве по числу зубов. Но тут можно впасть в заблуждение. Вы можете прочесть на упаковке: «Только 52 зубчика являются защитой от подделки»[2]2
  Рекламный слоган сорта сливочного печенья с 52 зубчиками по периметру. – Прим. перев.


[Закрыть]
. Но, сунув туда руку в надежде выудить вкусное сливочное печенье, вы можете нарваться на злобного сумчатого муравьеда с его 52 зубами, которыми он вцепится в ваш палец. В этом нет ничего хорошего.

Но нашелся человек, который счел подобное положение дел совершенно неприемлемым. Это был Карл Вёзе. Вы можете представить его себе расхаживающим по университетскому городку в Иллинойсе во фланелевой рубашке в черно-красную клетку (мы уже встречались с ним раньше, так как он был одним из соавторов гипотезы мира РНК). В 1960-е годы он получил должность профессора Иллинойсского университета и собственную лабораторию в придачу. Но его больше интересовали родственные связи не с кусачими сумчатыми млекопитающими, а то, в каком родстве между собой (и с нами) состоят бактерии. Клетки нашего тела, как и клетки животных, растений и даже дрожжевых грибков, относятся к эукариотам (от греч. ей – хороший, настоящий и karyon – ядро). Они относительно велики, имеют сложную внутреннюю структуру и обладают ядром. Бактерии по сравнению с ними значительно меньше и имеют более простое строение. Их наследственный материал разбросан без должной упаковки по всей клетке, потому что у них нет ядра. Поэтому их относят к прокариотам (от греч. pro – до и karyon – ядро).

Большинство ученых в то время не задумывались о родстве между бактериями, так как поиски чего-то осмысленного в данном контексте представлялись совершенно безнадежным делом. Ведь внешние признаки, по которым подразделялись бактерии, давали для этого мало оснований. Бактерии могли быть круглыми, продолговатыми или спиралевидными. При некоторой доле везения мы могли получить кое-какие данные об их образе жизни, и на этом наука заканчивалась. Но Вёзе этим не удовлетворился. Ему хотелось создать систему.

Итак, он уселся в своем кабинете, положил ноги в потрепанных туфлях на стол и задумался. Проблема была в том, что все биологи, занимавшиеся вопросами эволюции, интересовались главным образом животными и растениями, но отнюдь не теми, которых можно было рассмотреть только под микроскопом. А микробиологам, которые занимались микроорганизмами, вопросы эволюции были неинтересны, поскольку отслеживать эволюцию микробов – настоящий кошмар, состоящий из предположений и теорий, которые очень редко согласуются между собой. Поэтому очень многие ученые придерживались мнения, что можно прекрасно прожить и без генеалогического древа бактерий. Однако Вёзе был убежден, что для подлинного понимания мира микробов необходимо знать историю их развития. А для этого надо было найти следы эволюции там, где она происходит, то есть в генах.

И Вёзе решил создать в одиночку генеалогическое древо бактерий. Задача представляется монументальной, но как ее решить? Давайте проведем небольшой мысленный эксперимент.

Для этого нам понадобятся свисток, секундомер, бабушкин рецепт ванильного кекса, пачка клейких листочков для записей и 20 автобусов с туристами, не слишком хорошо владеющими немецким языком, каждому из которых выдается шариковая авторучка.

Попросим участников выйти из автобусов и построиться в виде правильного треугольника. Прямо перед вами стоит первый турист. Сзади становятся еще двое, а за каждым из них – еще по двое, то есть уже четверо, и так далее. Когда все построятся, достаньте бабушкин рецепт и дайте первому туристу, который должен дословно переписать его на свой листок и приклеить себе на лоб. Два туриста из второго ряда тоже переписывают рецепт, но уже не с оригинала, а со лба первого. Через две минуты вы свистите снова, давая старт следующему кругу. Через 22 минуты очередь доходит до последнего ряда (как видите, эксперимент требует не так уж много времени и его можно провести в обеденный перерыв). В конце вы собираете все записи по рядам вплоть до последнего, благодарите участников за помощь, возвращаетесь к себе в кабинет и начинаете в спокойной обстановке анализировать результаты.

В переписанных рецептах наверняка будет куча ошибок (но вы ведь, честно говоря, именно на это и рассчитывали).

На одних вместо «маргарин» написано «мандарин». Сравнивая листки между собой, на основании этой ошибки можно сделать вывод о том, кто у кого списывал. Ведь все рецепты со словом «мандарин» имеют одного общего «предка». Даже если у вас нет возможности пообщаться с ним лично (потому что он тем временем уже изучает особенности немецкой истории и культуры в какой-нибудь пивной), вы можете уверенно сказать, что он здесь был. Если мы далее подробно рассмотрим все рецепты со словом «мандарин», то можем обнаружить, что в некоторых из них слово «кефгер» заменено на «зефир». Значит, один из потомков «мандарина» допустил новый огрех и также передал его по наследству. Так продолжается до тех пор, пока мы на основании всех допущенных ошибок не вычислим полное генеалогическое древо участников эксперимента и не поймем, кто, что, где, когда, у кого и как списывал с ошибками.

Именно это и собирался делать Карл Вёзе – только без туристов и клейких листочков. Чтобы заглянуть в прошлое, ему нужен был только фрагмент генетической информации (рецепт ванильного кекса), который можно встретить в любом живом существе и который с очень большим трудом изменяется при копировании. Как найти такую информацию? Это было совсем не просто, поскольку в то время биологи еще только расшифровывали генетический код. Наши знания о генах и их последовательности были весьма ограниченными.

Но не только эволюция может похвастать своим прошлым. Сам Карл Вёзе на протяжении многих лет до этого занимался рибосомами – теми самыми «машинами», которые изготавливают в клетках новые белки. Эти «машины» состоят из белков и фрагментов РНК – рРНК, которые необходимы для правильного функционирования рибосом. Они требуются всем живым существам на планете. А поскольку рРНК так универсальны и важны для выживания, Вёзе был уверен, что они не подвержены быстрым случайным мутациям. Это, разумеется, не значит, что с ними ничего не может случиться. Просто очень мала вероятность того, что произойдут настолько полезные (или даже нейтральные) изменения, которые смогут сохраниться для передачи по наследству. Это то же самое, что угадать шесть цифр в «Спортлото». Шанс составляет примерно 1 к 15 миллионам. Главный выигрыш с ходу крайне маловероятен, но если играть несколько миллионов лет подряд, то время от времени вы будете возвращаться из банка с полной тачкой денег. Именно так Вёзе представлял себе ситуацию с рРНК: она должна меняться постоянно, но очень медленно, что даст возможность заглянуть далеко в прошлое.

Итак, план был ясен: расшифровать рРНК как можно у большего количества живых организмов, сравнить последовательности оснований и, исходя из выявленных ошибок, вычислить, кто от кого происходит.

Можно ли предположить, что Вёзе глубоко вздохнул, приняв это решение? Скорее всего, да, потому что ему предстояла не просто крайне сложная, но и чертовски нудная работа. И не было никого, кто владел бы соответствующими методами осуществления такого гигантского проекта. Вёзе мог надеяться только на себя.

Он отправился к себе в лабораторию, поставил пластинку с джазовой записью и с головой ушел в работу. Прежде чем Вёзе расшифровал первую последовательность, прошел год. Для него это был огромный шаг, а человечество лишь едва заметно пожало плечами. Вряд ли хоть кто-то в мире интересовался тем, что он делает. Ни коллеги, ни руководство университета не могли понять, что заставляет Вёзе посвящать все свое время этому абсурдному проекту. От него трудно было ожидать сенсаций, не говоря уже о практической пользе. Но Вёзе не сдавался.

Вскоре в лаборатории штабелями стояли коробки с рентгеновскими снимками. В них были результаты анализов – россыпь черных точек, разобраться в которых не мог никто, кроме него. Для Вёзе они были частями головоломки, которую надо было сложить в одно целое. Он с огромным трудом одолевал одну последовательность за другой. Так проходили месяцы и годы. Через десять лет были проанализированы рРНК примерно двух десятков различных живых существ. По сравнению с огромным количеством их видов это была мелочь, не заслуживающая внимания. Тем временем Вёзе исполнилось 47 лет, а он еще не опубликовал никаких результатов, не выступил ни с одним докладом ни на совещаниях, ни на конференциях. Большинство ученых игнорировали его работу, а те, кто знал его лично, отзывались о нем как о странном чудаке и беспочвенном мечтателе.

Но в 1967 году его посетила добрая фея. Она предстала в облике коллеги Ральфа Уолфа, который работал с метаногенными бактериями в одном из кабинетов поблизости. Эти организмы во многом отличаются от своих сородичей, так как производят метан, не переносят кислород и проживают в местах, далеких от привычных туристических троп, – в очистных сооружениях городской канализации и в коровьем кишечнике. Уолф попросил изучить рРНК этих маленьких вонючек, и Вёзе согласился. Полученные результаты были уникальны. Он повторил эксперимент, но итог оказался таким же. Что бы это могло значить? И тут к нему пришло просветление. Судя по ощущениям, свет исходил не от обычной лампочки, а от прожектора на 500 ватт.

Вёзе, которому не свойственны были эмоциональные проявления, помчался к Уолфу и закричал:

– Метаногены – это не бактерии!

– Разумеется, бактерии, – невозмутимо ответил коллега.

Но Вёзе не успокаивался. Он начал объяснять Ральфу Уолфу суть своего открытия, а тот становился все бледнее.

Если вы, будучи биологом, на протяжении нескольких месяцев бредете по джунглям, зараженным малярией, и в конце концов вытаскиваете из кустов за хвост какого-нибудь неизвестного доселе науке геккона, то успех налицо. Вы можете дать этой неуклюже барахтающейся ящерице имя и приладить ее на особую ветку древа жизни где-нибудь в верхней части кроны.

Но то, что Вёзе вычитал из рентгеновских снимков, было вообще ни на что не похоже. Тут речь шла не о новой веточке, а об отдельном стволе! Начиная с этого момента у древа жизни было уже не два главных ствола, а три. Наряду с эукариотами и прокариотами Карл Вёзе открыл организмы, у которых, как и у бактерий, не было ядра, но которые в остальном имели с бактериями так же мало общего, как человек с белыми грибами.

Вёзе и коллеги назвали представителей третьего ствола архебактериями, или археями (что чаще употребляется в наши дни). Результаты были опубликованы в одном из научных журналов. Одновременно была созвана пресс-конференция, а статья об открытии появилась на первой полосе New York Times! Научное сообщество не проявило по этому поводу никакого восторга. На их взгляд, это попахивало авантюризмом. Ведь теория была представлена общественности еще до того, как эксперты получили возможность с ней ознакомиться. Те же, кто сумел это сделать, заметили, что работа основывается на методах, о которых мало кто слышал, не говоря уже о том, чтобы ими владеть. Таким образом, перепроверить данные было невозможно. Вполне вероятно, что Вёзе все это выдумал. Приговор научного мира был суров: не принимать Вёзе и Уолфа всерьез. Ральфу Уолфу даже позвонил американский микробиолог Сальвадор Лурия, только что получивший Нобелевскую премию: «Ральф, ты губишь свою карьеру! Тебе необходимо дистанцироваться от всего этого безобразия». Уолф потел, но не сдавался.

Слухи и брожения продолжались, но никто не смог хоть как-то опровергнуть наблюдения Вёзе и Уолфа. Вёзе был убежден в своей правоте. Он снова на несколько лет заперся в своей лаборатории и продолжил работу. Поскольку критика не утихала, для подтверждения своей теории Вёзе решил обнаружить среди поступающих проб других представителей класса архей. И они нашлись.

Решающим событием для признания открытия Вёзе стала экспедиция батискафа «Алвин». В 1982 году этот глубоководный аппарат совершил длительное погружение во тьму Тихого океана на глубину 2600 метров с целью изучения высокой «трубы», из которой постоянно била струя минерализованной горячей воды из земных недр («белый курильщик»). Находившиеся на борту ученые взяли пробы и доставили их на сушу. Ральф Уолф обнаружил в них археи, способные жить в кошмарных условиях – при температуре 90 °C. По сравнению с этим жизнь в кишках у коровы была куда комфортнее. Когда спустя десять лет наследственный материал найденных организмов подвергли тщательному изучению, выяснилось, что половина их генов не была известна ранее. Это стало доказательством того, что археи представляют собой нечто действительно отличное от бактерий и эукариотов. Критики Вёзе вынуждены были утихнуть. Но окончательного признания со стороны уязвленных собирателей гекконов пришлось ждать еще добрый десяток лет. Сегодня определение родства для всех видов организмов по наследственному материалу в рРНК стало уже привычной практикой, а на древе жизни за это время появилось несколько новых сучьев и веток.

Но что же особенного в археях, кроме способности заставлять коров испускать газы? Почему их открытие стало таким событием? Дело в том, что они представляют собой нечто совершенно чужеродное и у многих из них есть необычные гены, позволяющие выживать в местах, казалось бы, абсолютно непригодных для жизни: в морских глубинах, соляных озерах, антарктических льдах и на глубине сотни метров под поверхностью земли.


Страницы книги >> Предыдущая | 1 2 3 4 5 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации