Электронная библиотека » Илья Леенсон » » онлайн чтение - страница 5


  • Текст добавлен: 22 апреля 2014, 16:26


Автор книги: Илья Леенсон


Жанр: Химия, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 5 (всего у книги 25 страниц) [доступный отрывок для чтения: 6 страниц]

Шрифт:
- 100% +
Как их сосчитать?

В школьном учебнике по органической химии есть тема «Предельные (насыщенные) углеводороды», которые называются также алканами. В учебнике говорится, что начиная с бутана С4Н10 для каждого алкана существуют структурные изомеры с разветвленной цепью. Они имеют одинаковый состав, но разное строение. Примером могут служить бутан и изобутан (два изомера С4Н10), пентан, 2-метилбутан и 2,2-диметилпропан (три изомера С5Н12) и т. д. Написав структурные формулы всех изомеров, нетрудно выяснить, что у гексана С6Н14 пять изомеров, а у гептана С7Н16– девять. Дальше дело пойдет труднее: с увеличением числа атомов углерода число изомеров растет очень быстро, достигая астрономических величин. Например, у октана С8Н18 изомеров уже 18, у нонана С9Н20– 35, у декана С10Н22 – 75, у эйкозана С20Н42  – 366 319, у триаконтана С30Н62 – 4 111 846 763, у тетраконтана С40Н82 – 62 481 801 147 341… Эти числа значительно возрастут, если рассматривать также зеркально-симметричные молекулы – стереоизомеры: с 9 до 11 для гептана, с 75 до 136 для декана, с 366 319 до 3 396 844 для эйкозана, с 5,921 · 1039 до 1,373 · 1046 для гектана С100 и т. д.

Понятно, что никто эти формулы на бумаге не выписывал и их число вручную не подсчитывал. Как же узнали, что у эйкозана 366 319 структурных изомеров, у триаконтана – 4 111 846 763 и т. д.? Интересно также, больше или меньше изомеров у алкенов – углеводородов с одной двойной связью?

Для начала рассмотрим названия алканов. Корни этих названий взяты из греческого языка. Разобраться со многими из них не очень сложно даже тем, кто не учил греческий язык в классической гимназии. Ведь в русском языке немало слов, ведущих происхождение от греческих числительных: Пентагон, пентаграмма (средневековый магический знак); гекзаметр (стихотворный размер – шестистопный дактиль), гектар (100 ар или 100 соток); гептахорд (звукоряд из 7 ступеней, а также семиструнная кифара у древних греков); октаэдр (многогранник с 8 вершинами), октант (старинный астрономический инструмент для измерения углов между небесными светилами), октаподы (отряд головоногих моллюсков с 8 щупальцами); декада (десятидневный промежуток времени), декан (в Древнем Риме – начальник 10 солдат, сейчас – руководитель факультета в вузе), декаподы (дословно «десятиногие») – моллюски с 10 щупальцами, к которым относятся каракатица, кальмары и др.; от латинского decem – десять происходят многие единицы измерения: дециметр, децибел, декалитр и др.); гектограф (печатный аппарат, позволявший получать до 100 копий с листа), гекатомба (жертвоприношение из 100 быков), гекатонхейры (мифические 100-рукие великаны), а также пентод, гексод и гептод (радиолампы с 5, 6 и 7 электродами)… Множество таких терминов в музыке: пентатоника (звуковая система из 5 нот в октаве, распространенная в Китае и ряде других стран), додекафония (метод музыкальной композиции, основанный на 12 тонах); октава, нона, децима и ундецима (музыкальные интервалы в 8, 9, 10 и 11 тонов), октет и нонет (ансамбли из 8 и 9 музыкантов) и др.

Мало кто задумывается о том, что похожие корни имеют и названия последних четырех месяцев года: сентябрь (в древнерусском «септябрь»), октябрь, ноябрь, декабрь (в соответствии с их латинскими и греческими корнями – седьмой, восьмой, девятый и десятый месяцы). Но ведь декабрь – не 10-й, а 12-й месяц года! А дело в том, что в Древнем Риме новый год начинался 1 марта, поэтому месяцы с сентября по декабрь имели номера с седьмого по десятый соответственно. На Руси так называемый церковный год тоже начинался когда-то 1 марта – в соответствии с указаниями Библии: у древних евреев первый месяц года (ниссан) был заповедан Моисею и первосвященнику Аарону: «Месяц сей да будет у вас началом месяцев; первым да будет он у вас между месяцами года» (Исх. 12 : 2). Гражданский год на Руси до XV века соответствовал церковному. Однако в 1492 г. Иван III своим указом перенес встречу Нового года на 1 сентября, что совпадало со сбором урожая. Петр I в 1699 г. в последний раз праздновал Новый год по древнему обычаю 1 сентября, а уже через 3,5 месяца, 20 декабря того же года, повелел перенести начало года на 1 января 1700 г. (7208 г. «от сотворения мира»).

Но вернемся к нашим алканам. Сложнее с названиями первых членов ряда: в них использованы не числительные, а другие греческие слова, причем иногда довольно хитро зашифрованные. Так, название метана происходит от метилового спирта, который раньше называли древесным: его получали сухой перегонкой древесины. Слово «метил» и происходит от греческих methy – «вино» и hile – «лес» (так сказать, «древесное вино»). Название этана, как это ни покажется на первый взгляд странным, этимологически родственно слову «эфир». Оба происходят от греческого aither – так древние греки называли некую небесную субстанцию, которая пронизывает космос. Когда алхимики в XIII веке из винного спирта и серной кислоты получили легко испаряющуюся («улетающую к небесам») жидкость, ее назвали сначала духом эфира, а потом просто эфиром. В XIX веке выяснили, что эфир (по-английски ether) содержит группировку из двух атомов углерода – такую же, как и этиловый спирт (этанол); ее назвали этилом (ethyl). Таким образом, «диэтиловый эфир» – по сути дела, тавтология, масло масляное… От «этила» произошло и название этана, а также этилового спирта – этанола. Кстати, другое название этанола – алкоголь – того же происхождения, что и слово «алкан». По-арабски «аль-кохль» – «порошок», «пудра», «пыль». От малейшего дуновения они поднимаются в воздух – как и винные пары при нагревании. Со временем термин «винные пары» («алкоголь вина») превратился просто в «алкоголь».

Одна из простейших жирных кислот была названа пропионовой – от греческих слово protos – «первый» и pion – «жир». Отсюда недалеко и до углеводорода пропана. Названия другой жирной кислоты – бутановой и соответствующего ей углеводорода бутана происходят от греческого butyron – «масло».

Перейдем, наконец, к числу изомеров алканов. Эта задача была решена математиками в XIX веке. Оказалось, что формулы, по которой можно сразу определить число изомеров для углеводорода С n H2n+2, не существует. Подсчет возможен лишь с помощью формул, позволяющих найти число изомеров углеводорода с n атомами углерода, если уже известно число изомеров всех его гомологов – углеводородов с числом атомов углерода от 1 до n – 1. Поэтому расчеты для алканов с большими значениями n были получены сравнительно недавно с помощью компьютеров. Они доведены до тетрактана С400Н802, для которого, с учетом стереоизомеров, получено значение, трудно поддающееся воображению: 4,776 · 10199! Подсчитано, что начиная с С167Н336 число изомеров уже превышает число элементарных частиц в видимой части Вселенной, которое оценивается как 1080; так, для С200Н402 оно равно примерно 9,430 · 1083.

Для химиков подобные расчеты мало интересны, и вот почему. Даже для сравнительно простого алкана, содержащего всего полтора десятка атомов углерода, подавляющее число изомеров не получено и вряд ли будет когда-либо синтезировано. Так, в случае декана С10Н22 последние из 75 его изомеров были синтезированы лишь сравнительно недавно. И сделано это было лишь для того, чтобы иметь более полный набор стандартных соединений, по которым можно идентифицировать различные углеводороды, например те, что встречаются в нефти. Кстати, в нефти были обнаружены все 18 возможных изомеров октана.

Но самое интересное, что начиная с гептадекана С17Н36 сперва лишь некоторые изомеры, затем – многие из них, а потом практически все являются ярким примером «бумажной химии», т. е. не могут существовать в действительности! Дело в том, что по мере роста числа атомов углерода в молекулах разветвленных изомеров возникают серьезные проблемы пространственной упаковки при замене атомов водорода на метильные группы СН3 в ряду симметричных сферических молекул СН4 → C(CH3)4 → C[C(CH3)3]4 → C{C[C(CH3)3]3}4 и т. д., а также близких по структуре изомеров. Причина в том, что математики рассматривали атомы углерода и водорода как точки, тогда как на самом деле они имеют конечный радиус. Так, метановый «шарик» имеет на «поверхности» 4 атома водорода, которые свободно на ней размещаются. Следующий пентановый «шарик» C(CH3)4 имеет на «поверхности» уже 12 атомов водорода, расположенных значительно ближе друг к другу. Таким образом, при заполнении каждого следующего слоя число метильных групп СН3 на «поверхности» молекул углеводородов увеличивается втрое. Поэтому уже у следующего, после пентанового, гептадеканового «шарика» С17Н36 на «поверхности» становится мало места для размещения всех 36 атомов водорода в 12 метильных группах (это легко проверить, попробовав нарисовать плоское изображение подобных изомеров, соблюдая постоянство длин связей С–С и С–Н и всех углов между ними). С ростом n проблемы возникают и для атомов углерода: для них тоже становится все меньше места. В результате, несмотря на то что число возможных изомеров с ростом n увеличивается очень быстро, число «бумажных» изомеров растет значительно быстрее. Проведенная с помощью компьютеров оценка показала, что с ростом n отношение числа возможных изомеров к числу «бумажных» быстро стремится к нулю. Именно поэтому расчет точного числа изомеров предельных углеводородов для больших n, которое когда-то вызывало значительный интерес, в настоящее время не имеет для химиков никакого практического значения.

То же можно сказать и о числе изомеров непредельных соединений с одной двойной связью – алкенов C n H2n. Для них можно конструировать изомеры не только изменяя углеродный скелет молекулы, но и путем перемещения двойной связи, а также различного расположения заместителей относительно двойной связи (так называемые цис-транс-изомеры); поэтому число изомеров алкенов N с увеличением числа атомов углерода n растет еще стремительнее, чем у алканов:

Понятно, что, как и в случае предельных углеводородов, такие расчеты представляют лишь теоретический интерес. Тем более что при больших n почти все эти изомеры окажутся «бумажными».

В заключение рассмотрим еще одну комбинаторную задачу, имеющую уже практическое значение. Сколько разных соединений получится, если в простейшем алкане – метане замещать атомы водорода на атомы галогенов? При этом получаются соединения, которые называются галогенметанами. Если начать считать методом перебора всех вариантов, легко сбиться. Как решить такую задачу? И все ли возможные метаны были синтезированы?

Будем рассматривать только четыре галогена – фтор, хлор, бром и йод (астат не учитываем: в природе этот элемент не встречается, а из искусственно полученных его изотопов самый долгоживущий, 211At, имеет период полураспада всего 7,2 часа).

В зависимости от того один, два, три или все четыре атома водорода замещены, различают моно-, ди-, три– и тетразамещенные метаны. Они могут быть газообразными (например, CH3Cl), жидкими (CCl4) или твердыми CBr4). Многие из этих производных хорошо известны. Например, дихлорметан (метиленхлорид, хлористый метилен) – растворитель, используемый для производства изделий из ацетата целлюлозы; дийодметан – жидкость с высокой плотностью (3,33 г/см3), ее применяют при исследовании горных пород для разделения минералов по их плотности; трихлорметан (хлороформ) раньше широко использовался для наркоза (а сейчас – только для наружного применения в растираниях); трийодметан (йодоформ) – сильный антисептик, хотя и с неприятным навязчивым запахом, который раньше использовали в хирургии при перевязке ран; тетрахлорметан (четыреххлористый углерод) – прекрасный растворитель жиров, смол, каучука, многих других органических соединений, но из-за ядовитости сейчас для этих целей почти не применяется; многие фторпроизводные (фреоны, они же хладоны) – низкокипящие жидкости или легко сжижающиеся газы, которые широко используются в качестве хладагентов в холодильных машинах.

Оказывается, различных галогензамещенных метанов теоретически существует намного больше, чем может показаться на первый взгляд, даже если не учитывать стереоизомеров – зеркально-симметричных форм (впрочем, стереоизомеры есть всего у пяти соединений, так как они возможны лишь в случае четырех разных заместителей у атома углерода; в этом легко убедиться, сделав модели молекул замещенных метанов из спичек и цветного пластилина). Попробуем подсчитать число различных замещенных метанов. Тетрагалогенметанов СХ4 с четырьмя одинаковыми заместителями может быть 5 (считая и сам метан). Соединений типа CX3Y (где X, Y – любой атом галогена или водород) может быть 20; соединений типа CX2Y2 существует 10; соединений CX2YZ – 30, и еще 5 соединений типа CXYZW, когда все заместители разные. Всего получаем 70 соединений. Это же значение можно получить методами комбинаторики; оно равно числу сочетаний из n = 5 заместителей (H, F, Cl, Br, I), взятых по k = 4 с повторениями, а именно (n + k – 1)!/k!(n – 1)! = 8!/4!4! = 70.

Число различных галогенметанов намного увеличится, если учитывать также изотопные разновидности элементов – хотя бы те, что встречаются в природе. Это стабильные 12С, 13С, 1H, 2Н (D, дейтерий), 19F, 35Cl, 37Cl, 79Br, 81Br, 127I и радиоактивные 3Н (T, тритий, период полураспада 12,3 года) и 14С (период полураспада 5730 лет). Подставляя в приведенную формулу n = 9, k = 4 и умно-жая полученное значение на 3 (три изотопа углерода), получим 3 · 12!/4!8! = 1350. И еще к ним надо добавить 126 · 3 = 378 оптических изомеров (126 – это число сочетаний из 9 элементов по 4 без повторений, которое дается формулой n!/k!(nk)!). Если же не брать в расчет радиоактивные соединения, то разных галогенметанов будет поменьше: при n = 7 и k = 4 получим 2 · 11!/4!7! = = 660 и еще 2 · 7!/4!3! = 70 стереоизомеров.

Сколько же из них уже синтезировано? В справочнике «Свойства органических соединений» (Л.: Химия, 1984), содержащем основные сведения о нескольких тысячах веществ, приводятся данные только о 47 соединениях. Это сам метан, а также CH3Br, CHBrI2, CHBrF2, CHBrCl2, CH2BrI, CBrF3, CBrCl3, CH2BrF, CHBrClF, CH2BrCl, CH2Br2, CBr2F2, CBr2Cl2, CHBr2I, CHBr2F, CHBr2Cl, CH2I2, CHFI2, CHClI2, CH2F2, CCl2F2, CHClF2, CH2Cl2, CH3I, CHF2I, CHCl2I, CCl3I, CH2FI, CH2ClI, CBr4, CI4, CF4, CCl4, CHBr3, CBr3F, CBr3Cl, CHI3, CHF3, CClF3, CHCl3, CDCl3, CH3F, CHCl2F, CCl3F, CH2ClF, CH3Cl.

Отметим, что в этом справочнике, в соответствии с правилами номенклатуры, все вещества приведены в алфавитном порядке названий на русском языке, тогда как сами формулы расположены в алфавитном порядке латинских букв (кроме водорода); дейтерохлороформ CDCl3 помещен в справочнике, так как это распространенный растворитель в спектроскопии протонного магнитного резонанса. Кстати, в англоязычном справочнике порядок расположения названий, в соответствии с теми же правилами, может быть несколько иным. Например, в русском языке буква «ф» в алфавите стоит перед «х», поэтому вещество CH2ClF называется фторхлорметаном. В латинском же алфавите буква «с» предшествует букве «f», поэтому то же вещество, фторхлорметан, по-английски называется chloroflouromethane.

Итак, из основного списка 70 галогенпроизводных (включая и сам метан) в указанном справочнике есть данные лишь о 46. Интересно, что синтезированный в 1893 г. бельгийским химиком Фредериком Свартсом бромфторхлорметан CHBrClF попал также в книгу «Мировые рекорды в химии» как самая маленькая хиральная молекула, в которой у атома углерода находятся четыре разных заместителя. Правда, полученное Свартсом соединение было оптически неактивным, так как представляло собой рацемическую смесь «правых» и «левых» молекул. Эту смесь сумели разделить методом газовой хроматографии только в 1996 г.

В справочнике Бейльштейна (4-е дополнение к 1-му тому, в котором рассмотрена литература по химии за 1950–1959 гг.) можно найти сведения еще о 12 производных: это CHBrClI, CHBrFI, CHClFI, CBrClF2, CBrCl2F, CBrI3, CBr2ClF, CBr3I, CClF2I, CCl2FI, CCl2I2 и CF3I.

Наконец, в справочнике Гмелина (том 14, раздел D, часть 2, издан в 1974 г.) приведены сведения о CF2I2 и CBrF2I. Первое соединение получено в 1963 г. при фотолизе смеси йода с дифтордиазирином – трехчленным циклом с двумя атомами азота. При облучении отщепляется молекула азота и образуется карбен CF2, который реагирует с йодом. О втором веществе сказано лишь, что оно, вероятно, могло образоваться при гамма-радиолизе смеси CF3Br и йода, и дана соответствующая ссылка на статью 1972 г. Как видим, многие галогенпроизводные метана синтезировать не так-то просто!

Для дальнейшего поиска были просмотрены формульные указатели издающегося в США реферативного журнала Chemical Abstracts. И хотя в этих указателях имеется несколько ссылок на все «недостающие» изомеры, знакомство с самими рефератами показало, что это, увы, – лишь теоретические расчеты физических, термодинамических и спектральных свойств соответствующих молекул. Дело в том, что спектральные характеристики галогенметанов (частоты колебаний и вращений в их молекулах) весьма интересны для теоретиков. Интересны и возможные применения подобных соединений в качестве хладагентов, что также отмечают авторы расчётов. Кстати, многие из подобных расчетов были выполнены отечественными химиками. В зарубежных же расчетных работах обращает на себя внимание звучная фамилия одного из авторов: С. К. Нг (химический факультет Национального университета Сингапура).

Из других казусов поиска можно отметить соединение CBrCl2I, упомянутое в указателе за вторую половину 1999 г. Ссылка дана на работу, написанную семью исследователями из Лаверна (Калифорния, США), специалистами по… технологии водоочистки. В своей статье они уверяют, что появляющийся иногда «медицинский» запах водопроводной воды обусловлен «бромдихлориодметанами». Это весьма странное заявление: во-первых, бромдихлориодметан – один-единственный, а во-вторых, его до сих пор никто не синтезировал… Еще одна странность: поисковая система Google неожиданно выдала для CFI3 более 3 тысяч ссылок. Оказалось, что большинство их – вовсе не на трийодфторметан, а на… аббревиатуру Chipped Finish Inspector, то есть на автоматическую систему отбраковки поврежденных контейнеров, из которых возможна утечка содержимого или его загрязнение. Некоторые другие формулы также оказались схожи сокращениями, не имеющими никакого отношения к галогензамещенным метанам…

И все же некоторые из «недостающих» веществ были с помощью Chemical Abstracts обнаружены. Уже упомянутый CBrF2I был синтезирован в университете штата Айова (США) в 1977 г. Там же в 1982 г. были получены еще два бромйодфторметана: CBrFI2 и CBr2FI. И это пока все. Из 70 галогенметанов до сих пор не описаны CBrClFI – единственный содержащий одновременно все четыре галогена, а также CBrClI2, CBrCl2I, CBr2ClI, CBr2I2, CClFI2, CClI3 и CFI3. Примечательно, что все они содержат атомы йода, и это не случайно. Связь C–I довольно слабая, в 2,5 раза слабее связи C–F; может быть, это одна из причин трудности синтеза таких соединений, поскольку органические йодиды легко разлагаются. Но кроме 70 «классических» галогенметанов, оказывается, были получены десятки изотопных производных, содержащих как стабильные, так и радиоактивные нуклиды. Из последних можно отметить такие экзотические соединения, как CDT3, CD2T2, CD3T, 11CH3I (а ведь период полураспада углерода-11 лишь немногим превышает 20 минут) и многие другие. Эти синтезы наглядно демонстрируют возможности, которыми обладают современные химики.

Глава 2
Химия и нумизматика

Нумизматика – историческая наука, изучающая монеты; на латыни numisma и есть «монета». Слово же Moneta у римлян служило эпитетом богини Юноны (как у греков эпитет Паллада для богини Афины). Рядом с храмом Юноны в Риме находился монетный двор, на изделия которого со временем и перешло одно из имен богини. От него произошли и «портмоне», и английское слово money. С тех пор как появились монеты (а произошло это 27 веков назад), их изготовление неразрывно связано с искусством очистки и переработки металлов и сплавов, то есть с химией. Конечно, когда-то не было ни химии, ни химиков. Но мастера методом проб и ошибок находили способы очистки монетных металлов, проверки их качества, придания свойств, способствующих качественной чеканке. Со временем чеканка монет как дело исключительной государственной важности была поставлена на строгую научную основу. Достаточно сказать, что в течение многих лет смотрителем, а затем и директором английского Монетного двора был великий физик Исаак Ньютон. На некоторых современных монетах (как и на почтовых марках) можно увидеть и портреты химиков. Химические знания помогают также восстанавливать редкие монеты, найденные в кладах и представляющие интерес для историков. А некоторые химические особенности монет помогают учителям химии. Так что у нумизматики и у химии много общего.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации