Автор книги: Карл Андерсон
Жанр: О бизнесе популярно, Бизнес-Книги
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 1 (всего у книги 23 страниц) [доступный отрывок для чтения: 8 страниц]
Карл Андерсон
Аналитическая культура. От сбора данных до бизнес-результатов
Научный редактор Руслан Салахиев
Издано с разрешения O’Reilly Media, Inc.
Все права защищены.
Никакая часть данной книги не может быть воспроизведена в какой бы то ни было форме без письменного разрешения владельцев авторских прав.
© 2017 Mann, Ivanov and Ferber
Authorized Russian translation of the English edition of Creating a Data-Driven Organization,
© 2015 Carl Anderson, published by O’Reilly Media, Inc.
This translation is published and sold by permission of O’Reilly Media, Inc., which owns or controls all rights to publish and sell the same.
© Перевод на русский язык, издание на русском языке, оформление. ООО «Манн, Иванов и Фербер», 2017
* * *
Введение
Краткий обзор
Эта книга посвящена двум основным вопросам:
1) что означает для компании управление на основе данных?
2) как компания может к нему прийти?
Многие компании считают, что, если они генерируют множество отчетов или у них много дашбордов, значит, они относятся к категории компаний с управлением на основе данных. Хотя эти виды деятельности и составляют часть того, чем занимается компания, обычно они ретроспективны, то есть часто лишь представляют прошлые или настоящие факты без обеспечения достаточного контекста, без объяснения причинно-следственных связей, а также без рекомендаций, какие шаги предпринять. Иными словами, они фиксируют произошедшее, но ничего не предписывают. В этом отношении их потенциал роста ограничен.
В противовес следует рассматривать типы перспективного анализа, такие как прогнозные модели, которые способствуют оптимизации расходов на рекламу, пополнению цепочки поставок или снижению оттока покупателей. Они отвечают на вопросы «кто», «что», «когда», «почему» и «где». На основе моделей люди дают рекомендации, делают прогнозы и интерпретируют полученные данные. Часто они становятся ключевыми факторами роста в организациях с управлением на основе данных. Сформулированные на основе данных выводы и рекомендации, если их правильно использовать, оказывают огромное потенциальное влияние на эффективность деятельности компании.
Однако для получения подобных выводов требуется, чтобы были собраны правильные, заслуживающие доверия данные, анализ был проведен качественно, выводы учитывались при принятии решений, а решения подразумевали конкретные действия, чтобы потенциал был полностью реализован. Уф! Я называю эту последовательность от сбора данных до конечного результата аналитической цепочкой ценности.
Последний шаг в этой цепочке чрезвычайно важен. Аналитику нельзя считать основанной на данных, если полученная информация не учитывается при принятии решений и не вызывает последующих действий. Если данные игнорируются, а большой босс делает что пожелает, сбор этих данных не имеет смысла. Управление на основе данных осуществляется в компании при наличии правильных процессов и корпоративной культуры, чтобы дорабатывать или стимулировать важные деловые решения с учетом проведенного анализа данных, который таким образом оказывает непосредственное влияние на развитие бизнеса.
Ключевую роль играет создание соответствующей корпоративной культуры. Это многосторонняя программа, включающая качество данных и обмен информацией, прием на работу и обучение аналитиков, коммуникацию, аналитическую организационную структуру, разработку показателей, A/B-тестирование[1]1
Метод маркетингового исследования, суть которого заключается в том, что контрольная группа элементов сравнивается с набором тестовых групп, в которых один или несколько показателей были изменены, для того чтобы выяснить, какие из изменений улучшаю целевой показатель. Прим. ред.
[Закрыть], процессы принятия решений и многое другое. Эта книга поможет пролить свет на все эти понятия благодаря доступным объяснениям и наглядным примерам из целого ряда производственных отраслей. Кроме того, здесь приводятся практические советы и рекомендации от лидеров в области анализа и обработки данных. Надеюсь, эта книга вдохновит читателей на то, чтобы переориентировать свою деятельность и начать руководствоваться данными.
Более того, на протяжении всей книги подчеркивается важная роль, которая отводится самым разным специалистам в области обработки и анализа данных. Я убежден, что компанию с управлением на основе данных и соответствующую корпоративную культуру можно и нужно развивать не только сверху вниз – от руководства на места, – но и снизу вверх. Как отметил на форуме 2014 года Chief Data Officer Executive Forum руководитель направления по анализу и обработке данных компании Trulia Тодд Холлоуэй, «лучшие идеи подают сотрудники, наиболее тесно работающие с данными». Они не только напрямую имеют дело с источниками данных и способны оценить их качество и повлиять на него, не только понимают, как лучше всего их дополнить, но также «часто подают хорошие идеи по поводу товаров». Кроме того, они могут помочь повысить уровень знаний других сотрудников компании в этой области. Частично это происходит благодаря тому, что они развивают свои навыки и активно применяют их для качественного выполнения работы. Другая причина в том, что у них лучше развито предпринимательское мышление: они умеют задавать правильные вопросы и формулировать бизнес-проблемы, а затем убеждать в своих выводах и рекомендациях тех, от кого зависит принятие решения, предлагая им веское обоснование, какое влияние на бизнес способны оказать эти выводы и рекомендации.
А влияние и выгоды могут быть весьма заметными. Согласно результатам одного из отчетов[2]2
Brynjolfsson E., Hitt L. M. and Kim H. H. Strength in Numbers: How Does Data-Driven Decisionmaking Affect Firm Performance? Social Science Research Network (2011). URL: http://ebusiness.mit.edu/research/papers/2011.12_Brynjolfsson_Hitt_Kim_Strength in Numbers_302.pdf.
[Закрыть], в котором контролировались и другие факторы, в компаниях с управлением на основе данных производительность была на 5–6 % выше, чем в тех, что не практикуют подобное управление. К тому же в компаниях первой категории были выше показатель использования ресурсов, коэффициент рентабельности капитала и рыночная стоимость. Согласно данным другого отчета[3]3
Nucleus Research. Analytics pays back $13.01 for every dollar spent. O204 (Boston, MA: Nucleus Research, 2014), 5. URL: http://nucleusresearch.com/research/single/analytics-pays-back-13-01-for-every-dollar-spent/.
[Закрыть], возврат на каждый вложенный в проведение аналитики 1 долл. составляет 13,01 долл. Управление на основе данных окупается!
Ориентацию на использование данных можно представить в виде непрерывного процесса: компания всегда может повысить свой уровень управления на основе данных, улучшить качество собираемых данных и аналитического процесса, провести больше тестирований. Более того, всегда можно усовершенствовать качество процесса принятия решений. В этой книге мы обсудим отличительные черты эффективных компаний с управлением на основе данных. Мы остановимся на инфраструктуре, навыках, корпоративной культуре, необходимых для создания компании, где к данным относятся как к основному активу и используют их для принятия бизнес-решений. Кроме того, мы рассмотрим некоторые примеры поведения, которое, наоборот, мешает бизнесу максимально эффективно использовать получаемые данные.
Таким образом, цель этой книги – вдохновить специалистов по анализу и обработке данных в компаниях эффективно выполнять свои функции, время от времени делать паузу, чтобы ответить на вопросы, максимально ли использует компания свои данные и можно ли делать это еще эффективнее. Еще одна цель – стимулировать обсуждение: для каких еще целей возможно применение этого ключевого ресурса. Никогда не рано думать об этом. Основатели компании и руководство высшего звена должны постараться внедрить принципы управления на основе данных на самых ранних этапах развития организации. Давайте узнаем больше о том, что эти принципы собой представляют.
Для кого эта книга?
Информация, здесь изложенная, поможет разработать программу внутренней аналитики и управлять ею: принимать решения, какие данные собирать и хранить, как их получать и интерпретировать, и самое важное – как действовать на их основе.
Неважно, единственный ли вы специалист по анализу и обработке данных в стартапе (и притом вынуждены выполнять еще с десяток других функций) или руководитель отдела с кучей подчиненных в зрелой компании. Если вы работаете с данными и стремитесь действовать быстрее, рациональнее и эффективнее, эта книга поможет создать не просто аналитическую программу, а соответствующую корпоративную культуру.
Структура глав
Cтруктура книги соответствует этапам создания цепочки аналитической ценности. Первые главы посвящены непосредственно данным, в частности выбору правильных источников, обеспечению качества и достоверности. Следующий шаг в этой цепочке – анализ данных. Для качественного выполнения анализа, результаты которого можно будет эффективно использовать в дальнейшей работе, нужны профессионалы, владеющие определенными навыками и инструментами. Для обозначения этой группы сотрудников намеренно используется общий термин «специалисты по аналитической работе», который объединяет сотрудников, занимающихся сбором, обработкой, анализом данных. Это сделано на основании убеждения, что любой член команды – от младшего аналитика без опыта работы до суперзвезды в области анализа данных – вносит свою лепту в общее дело. Мы подробнее остановимся на том, какими компетенциями должен обладать хороший аналитик, как можно развивать профессиональные навыки в этой области, а также на организационных аспектах – как помочь специалисту по аналитической работе стать частью команды или подразделения. Следующие главы посвящены непосредственно аналитической работе: выполнению анализа, разработке показателей, A/B-тестированию и рассказыванию истории. Затем мы перейдем к следующему этапу в цепочке аналитической ценности – принятию решений на основе результатов анализа. Мы рассмотрим, что может затруднять процесс принятия решения и как с этим бороться.
На протяжении всей книги прослеживается основная мысль: суть процесса управления компанией на основе данных не сводится к данным как таковым или к обладанию самым современным набором инструментов по работе с большими данными. Самое важное в этом – корпоративная культура. Культура организации – доминирующий фактор, который устанавливает ожидания относительно того, насколько демократичным будет процесс работы с данными, как эти данные станут использоваться внутри организации, какие ресурсы, в том числе образовательные, станут инвестироваться в использование данных как стратегического актива компании. По этой причине в главе, посвященной корпоративной культуре, мы объединим все уроки, извлеченные на разных этапах цепочки аналитической ценности. В одной из последних глав обсудим роль двух относительно новых позиций в высшем руководстве компаний: CDO (Chief Data Officer, директор по управлению данными) или CAO (Chief Analytics Officer, директор по аналитике). Тем не менее рядовые сотрудники тоже в значительной мере влияют на формирование корпоративной культуры организации, поэтому на протяжении книги мы будем напрямую обращаться к специалистам по работе с данными, подчеркивая, что именно они способны сделать для повышения своего влияния на эффективность деятельности компании. В компании, для которой управление на основе данных не просто модная тенденция, сотрудники на всех уровнях уделяют большое внимание качеству данных и их оптимальному использованию при принятии взвешенных решений и для повышения конкурентного преимущества компании.
Условные обозначения
В книге используются следующие условные обозначения.
Выделение курсивом
Применяется для обозначения новых терминов, адресов сайтов (URL), адресов электронной почты, имен файлов и расширений файлов.
Моноширинный шрифт
Применяется для обозначения программных элементов, таких как переменные, названия функций, базы данных, типы данных, переменные окружения, утверждения и ключевые слова.
Моноширинный шрифт с полужирным выделением
Применяется для обозначения команд или другого текста, который должен внести пользователь.
Моноширинный шрифт с курсивом
Применяется для обозначения текста, который нужно заменить переменными пользователя или переменными, которые определяются контекстом.
Этот элемент обозначает совет или рекомендацию.
Этот элемент обозначает общую информацию.
Глава 1. Что значит «на основе данных»?
Без данных вы просто еще один человек с собственным мнением.
Управление на основе данных подразумевает формирование инструментов, способностей и, что самое важное, корпоративной культуры, которая опирается на данные. В этой главе мы рассмотрим, что отличает компанию с управлением на основе данных. Начнем с базовых требований к их сбору и доступности. Затем остановимся подробнее на весьма важном отличии – подготовке отчетов и получении оповещений в противовес процессу анализа. Существует много различных типов перспективного анализа, отличающихся по степени сложности. Мы уделим некоторое время изучению этих типов с точки зрения их «уровня аналитики» и «аналитической зрелости», а также обсудим основные признаки «аналитически зрелой» организации. Какой она должна быть?
Начнем с ответа на первый вопрос: что означает для компании управление на основе данных?
Сбор данных
Давайте сразу озвучим несколько очевидных требований.
Требование № 1: в компании должен осуществляться сбор данных.
Несомненно, данные – ключевой компонент. При этом речь идет не о любых данных, а о правильных. Необходимо, чтобы набор данных соответствовал вопросу, который требуется решить. Помимо этого, данные должны быть своевременными, точными, чистыми, объективными, и, что важнее всего, они должны заслуживать доверия.
Это не так-то просто. Данные никогда не бывают настолько чистыми, как вам кажется. Они могут быть предвзятыми, что может повлиять на результат анализа, а очистка данных может стать трудоемким и дорогим процессом, требующим времени. Часто приходится слышать, что специалисты по работе с данными до 80 % времени тратят на их сбор, очистку и подготовку и только 20 % – на построение моделей, процесс анализа, визуализацию и формулировку заключений на основе этих данных[5]5
См., например: http://bit.ly/nyt-janitor и http://bit.ly/im-data-sci.
[Закрыть]. Как показывает опыт, это вполне вероятно.
В следующей главе мы поговорим о качестве данных подробнее.
Даже если у вас есть действительно качественные данные и даже если у вас много качественных данных, это означает только то, что вы обладаете этими данными, но не то, что в вашей компании действует управление на основе данных. Некоторые люди, особенно специалисты организаций, предоставляющих услуги по работе с большими данными, называют большие данные практически панацеей: если собирать абсолютно всё, где-то должен попасться алмаз (или крупинки золота, или искомая иголка, или любая другая метафора) и компания станет успешной. Горькая правда в том, что одних только данных недостаточно. Небольшое количество чистой, достоверной информации может быть гораздо более ценно, чем петабайты мусора.
Доступ к данным
Требование № 2: данные должны быть общедоступными.
Наличие точных и своевременных данных по теме еще не делает управление в вашей компании управлением на основе данных. Данные также должны отвечать еще ряду требований.
Данные могут быть объединены
Их формат должен при необходимости допускать объединение с другими данными компании. Варианты могут быть разные: реляционные базы данных, хранилища NoSQL или Hadoop. Используйте инструмент, который отвечает вашим конкретным требованиям. Например, в течение длительного времени финансовые аналитики в компании Warby Parker использовали Excel для вычисления основных показателей, которые они предоставляли высшему руководству. Они собирали огромное количество сырых данных из разных источников и запускали функцию ВПР (VLOOKUP – функцию в Excel для поиска перекрестных ссылок в данных), чтобы объединить весь массив данных и взглянуть на них в перспективе. Изначально это работало, но по мере того как базы данных по клиентам и продажам быстро росли и информации становилось все больше, объем файла в Excel начал приближаться к 300 МВ, загрузка оперативной памяти компьютеров была максимальной, а обработка файла с помощью функции ВПР начала занимать до десяти часов и больше, при этом программа периодически зависала, и ее приходилось запускать заново. Специалисты компании применяли этот инструмент и подход так долго, как могли, но если когда-то Excel была вполне удобным инструментом, то динамичный рост компании изменил ситуацию. Механика получения этих данных превратилась для аналитиков в «пожиратель времени» и источник стресса: они никогда не знали, получат ли необходимые им данные или через десять часов им вновь придется перезапускать функцию ВПР. Условно говоря, из специалистов по анализу данных они превратились в специалистов Microsoft по сбору данных. Моя команда помогла перенести весь массив информации в реляционную базу данных в MySQL. Мы написали запросы для обработки данных для аналитиков, чтобы они могли сосредоточиться на анализе, выявлении трендов и презентации этих данных, что было гораздо более эффективным использованием их рабочего времени. Теперь, когда в их распоряжении более эффективные инструменты и больше времени, они способны проводить более глубокий анализ.
Данные можно использовать совместно
Внутри организации следует развивать культуру обмена данными, чтобы была возможность их сопоставлять и объединять, например связать историю поисковых запросов пользователя и историю осуществленных им покупок. Представим ситуацию: пациента доставили в отделение экстренной медицинской помощи, где ему оказали первую помощь, а затем выписали, и теперь ему необходимо обратиться за амбулаторным лечением и провести обследования. Очевидно, что качество обслуживания и, что важнее, качество лечения пострадают, если между этими медицинскими учреждениями не будет организован обмен информацией: когда и по какой причине пациент обратился за медицинской помощью, какое лечение ему было оказано и так далее. С точки зрения представителей здравоохранения, невозможно проанализировать или улучшить процесс в отсутствие связной и четкой картины потока пациентов, процесса диагностики и полных данных наблюдения за этими пациентами за длительный срок. Таким образом, разрозненные данные всегда стараются охватить все, что возможно. Когда больший объем данных доступен для большего количества частей системы, целое всегда бывает лучше суммы частей.
Доступны по запросу
Необходимы адекватные инструменты для работы с данными и предоставления информации по запросу. В процессе анализа и составления отчетности огромный объем сырых данных необходимо отфильтровать, сгруппировать и объединить в небольшие наборы высокоуровневых показателей, чтобы обеспечить понимание того, что происходит в бизнесе. Например, мне нужно увидеть тренд или понять разницу между сегментами покупателей. У специалистов по работе с данными должны быть инструменты, позволяющие сделать это относительно просто.
(Все эти аспекты мы подробнее проанализируем в следующих главах.)
Итак, теперь у нас есть данные и доступ к ним. Достаточно ли этого? Нет, пока недостаточно. Нужны квалифицированные специалисты, которые смогут работать с этими данными. И здесь важны не только механизмы сортировки и систематизации данных, например посредством языка запросов или макросов Excel, но, главным образом, специалисты, которые будут выбирать соответствующие показатели (подробнее об этом в главе 6). К этим показателям могут относиться уровень повторной подписки (для таких сервисов, как Netflix или Wall Street Journal), долгосрочные показатели ценности или показатели роста, но в любом случае кто-то должен решать, какие именно это будут показатели, и кто-то должен создать процесс их получения.
Таким образом, человеческий фактор в управлении компанией на основе данных – важнейший: необходимы люди, способные задавать правильные вопросы, люди с необходимыми навыками для получения нужных данных и показателей, люди, использующие данные для планирования следующих шагов. Иными словами, одни лишь данные мало чем помогут компании.
Составление отчетности
Предположим, у вас есть аналитическая группа с доступом к точным данным. Эта группа получает данные по объему продаж и гордо рапортует о росте портфеля заказов компании на 5,2 % с апреля по май (рис. 1.1).
Рис. 1.1. Рост уровня продаж на 5,2 % месяц к месяцу!
Кажется, что в компании осуществляется управление на основе данных. Однако этого по-прежнему недостаточно. Разумеется, хорошо, что специалисты отслеживают данные по продажам. Генерального и финансового директоров эти цифры, несомненно, заинтересуют. И тем не менее – о чем на самом деле говорит показатель 5,2 %? Практически ни о чем. Возможны самые разные причины роста объема продаж компании.
• Предположим, вы продаете сезонный товар, например купальные костюмы. Может быть, рост в 5,2 % – это гораздо ниже, чем обычно. Может быть, в предыдущие годы рост объема продаж в мае составлял более 7 %, а в этом году он ниже обычного.
• Возможно, директор по маркетингу потратил кучу денег на национальную кампанию по повышению узнаваемости бренда. Какой процент роста из этих 5,2 % обусловлен проведенной кампанией? Насколько эффективным оказалось подобное вложение средств?
• Может быть, генерального директора вашей компании пригласили поучаствовать в телешоу Good Morning America[6]6
Good Morning America («Доброе утро, Америка») – американское телевизионное шоу, которое транслируется по утрам на канале ABC. Выходит в эфир с 1975 г. Прим. ред.
[Закрыть], или ваш продукт был упомянут в Techcrunch[7]7
Techcrunch – сайт и одноименная компания, блог, описывающий продукты, стартапы и другие сайты, основанный Майклом Аррингтоном в 2005 г. Прим. ред.
[Закрыть], или ваше видео стало «вирусным», и это послужило фактором роста продаж. То есть причина – какое-то конкретное событие, способное обеспечить временный или устойчивый рост.
• Возможно, продажи за месяц характеризуются низким объемом и широким ассортиментом. Возможно, это было лишь удачным стечением обстоятельств, а общая тенденция – нисходящая. (Если вы когда-нибудь пробовали играть на бирже, то понимаете, о чем речь.)
• Может быть, ошибка в самих данных. Если уровень продаж относительно стабилен и вы видите резкий скачок без каких-либо предпосылок к тому, возможно, все дело в качестве данных.
Все это возможные объяснения. Цифра в отчете представляет собой именно это – числовой показатель без контекста.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?