Электронная библиотека » Карл Саган » » онлайн чтение - страница 4


  • Текст добавлен: 26 апреля 2017, 15:59


Автор книги: Карл Саган


Жанр: Зарубежная образовательная литература, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 4 (всего у книги 16 страниц) [доступный отрывок для чтения: 5 страниц]

Шрифт:
- 100% +
Глава 6
Столько звезд, подобных солнцу, столько планет, подобных земле!

Какая удивительная, чудесная система – величественная в своей необозримости Вселенная! Столько звезд, подобных Солнцу, столько планет, подобных Земле!

– Христиан Гюйгенс. Новые предположения о планетных мирах, их обитателях и производстве (ок. 1670 г.)

В декабре 1995 г. от автоматической станции «Галилео», находящейся на орбите Юпитера, отделился спускаемый аппарат. Он вошел в бурлящую вихрями атмосферу планеты и стал падать в бездну, собирая и передавая информацию по пути к своей гибели. Этой миссии предшествовали еще четыре, но тогда космические станции изучали Юпитер издали, пролетая мимо. Велись также наблюдения с помощью наземных и космических телескопов. В отличие от Земли, состоящей главным образом из камня и металла, Юпитер – это шар из водорода и гелия, настолько огромный, что мог бы вместить тысячу таких планет, как наша. В глубине атмосферы Юпитера ее давление настолько возрастает, что атомы лишаются электронных оболочек, и водород проявляет свойства горячего металла – переходит в состояние металлического водорода. Считается, что именно поэтому Юпитер отдает в окружающее пространство в два раза больше энергии, чем получает от Солнца. Жестокие ветра, трепавшие зонд «Галилео» на максимальной достигнутой им глубине, вызваны, скорее всего, не солнечным излучением, а жаром внутренних слоев газового гиганта. В самом сердце Юпитера, вероятно, находится ядро из камня и железа в несколько масс Земли, окруженное чудовищной толщей водорода и гелия. Чтобы воочию увидеть металлический водород – тем более каменное ядро Юпитера, человечеству придется развивать свои технические возможности еще несколько столетий, если не тысячелетий.

Зная о колоссальном давлении в недрах Юпитера, крайне сложно представить себе жизнь на этой планете – даже совершенно не похожую на земную жизнь. Горстка ученых, я в том числе, из чистого интереса пытались смоделировать обитателей атмосферы юпитероподобных планет – нечто вроде микробов и рыб земных океанов. В подобной среде возникновение жизни чрезвычайно затруднено, но мы уже знаем, что при соударениях с астероидами и кометами материал с поверхности одних небесных тел переносится на другие. Не исключено, что в ранний период истории Земли примитивные формы жизни были таким образом перенесены с нашей планеты на Юпитер. Это, однако, всего лишь гипотеза.

Юпитер находится примерно в пяти астрономических единицах от Солнца. За астрономическую единицу (сокращенно а. е.) принято расстояние от Земли до Солнца – около 150 млн км. Если бы не тепло недр и парниковый эффект чрезвычайно плотной атмосферы Юпитера, температура на его поверхности была бы –160 °С. Примерно такая температура царит на его спутниках, и это слишком холодно для жизни.

Юпитер и большинство других планет Солнечной системы обращаются вокруг Солнца в общей плоскости, словно по разным дорожкам одной виниловой пластинки или компакт-диска. Почему орбитальные плоскости не наклонены друг к другу под самыми разными углами? Исаак Ньютон, гениальный математик, первым увидевший в гравитационных взаимодействиях причину движения планет, ломал голову над этим вопросом и не смог решить его без божьего промысла: это Бог с самого начала пустил планеты двигаться вокруг Солнца в одной плоскости.

Математик Пьер-Симон маркиз де Лаплас, а впоследствии и знаменитый философ Иммануил Кант обошлись без божественного вмешательства. По иронии судьбы они опирались на те самые законы физики, которые открыл Ньютон. В самом общем виде теорию Канта – Лапласа можно описать так. Представим в межзвездном пространстве бесформенное, медленно вращающееся облако газа и пыли – одно из множества подобных облаков. При достаточно высокой плотности силы взаимного притяжения его частей преодолеют внутреннее хаотическое движение, и облако начнет сгущаться. При этом оно будет вращаться все быстрее, подобно тому как ускоряется вращение фигуриста, когда он прижимает руки к телу. Вращательное движение не мешает сжатию облака по оси вращения, но замедляет его уплотнение в плоскости вращения. Первоначально бесформенное облако превратится в плоский диск. Таким образом, орбиты планет, конденсирующихся из вещества этого диска, окажутся практически в одной плоскости. Как видите, ничего сверхъестественного, достаточно законов физики.

Но одно дело – выдвинуть теорию о том, что планетам предшествует дискообразное облако, и совсем другое – подтвердить ее, действительно увидев такие диски вокруг звезд. После открытия других спиральных галактик, подобных Млечному Пути, Кант сделал вывод, что это и есть допланетарные диски, подтверждающие так называемую небулярную гипотезу происхождения планет (от небула – др.-гр. «облако»). Но спиральные образования оказались отдаленными структурами колоссальных размеров, а не относительно близкими к нам «яслями» звездных систем. Найти околозвездные диски оказалось трудно.

Прошло больше века, прежде чем специальное оборудование, в том числе орбитальные обсерватории, позволило подтвердить небулярную гипотезу. Оказалось, что более половины молодых солнцеподобных звезд – таких, каким было наше Солнце четыре или пять миллиардов лет назад, – окружены плоским диском из пыли и газа. Во многих случаях ближние к звезде области оказались свободными от пыли и газа, как будто там уже сформировались планеты, поглотив межпланетную материю. Это не стопроцентное доказательство, но очень серьезное основание предполагать, что звезды, подобные нашей, часто, если не обязательно, имеют планеты. Это открытие позволяет оценить вероятное количество планет в галактике Млечный Путь как минимум в несколько миллиардов.

Можно ли действительно увидеть планеты других звездных систем? Ведь звезды очень далеко – до ближайшей почти миллион астрономических единиц, – а планеты, при наблюдении в видимом диапазоне, излучают только отраженный свет. Но наши технологии бурно развиваются. Не позволят ли они рассмотреть хотя бы гиганты, такие как Юпитер, в системах ближайших звезд если не в видимом, то в инфракрасном диапазоне?

Несколько лет назад началась новая эра в истории человечества. Мы научились обнаруживать планеты других звезд. Первым достоверно установленным открытием стала планетарная система самой малообещающей в этом отношении звезды. Быстро вращающаяся вокруг своей оси нейтронная звезда В1257+12 является остатком массивной, больше нашего Солнца, звезды, ставшей сверхновой в результате колоссальной вспышки. Магнитное поле нейтронной звезды захватывает электроны и ограничивает их разлет, создавая узконаправленные, как у маяка, пучки радиоволн. По счастливому совпадению пучок излучения В1257+12 пересекается с Землей – причем каждые 0,0062185319388187 секунды, из-за чего звезду назвали пульсаром. Ее период вращения фантастически стабилен. Благодаря высокой точности измерений Алекс Вольщан, ныне сотрудник Университета штата Пенсильвания, смог обнаружить «сбои» – регулярные изменения периода вращения пульсара на уровне последних нескольких знаков после запятой. Что их вызывает? Сотрясения коры или другие процессы в самой нейтронной звезде? За несколько лет наблюдения параметры менялись именно так, как можно было бы ожидать, если бы вокруг В1257+12 обращались планеты, слегка смещая звезду то в одну, то в другую сторону. Очень близкое количественное согласие не оставляло места для сомнений: Вольщан открыл первые планеты вне Солнечной системы. Более того, это не гиганты вроде Юпитера. Две из них, вероятно, лишь немногим массивнее Земли и обращаются вокруг своей звезды примерно на том же расстоянии, что и Земля вокруг Солнца, – 1 а. е. Может ли на них существовать жизнь? Увы, бешеный поток заряженных частиц нейтронной звезды должен разогревать землеподобные планеты до температуры намного выше точки кипения воды. Расстояние 1300 световых лет гарантирует, что мы не скоро сможем наведаться в эту планетную систему. До сих пор неизвестно, пережили ли планеты взрыв сверхновой, породивший пульсар, или сформировались из продуктов взрыва.

Вскоре после эпохального открытия Вольщана Джеф Марси и Пол Батлер (Университет штата в Сан-Франциско) обнаружили[21]21
  Раньше них это сделали швейцарские астрономы Мишель Майор и Дидье Келос, которые и считаются первооткрывателями планет у нормальных звезд. – Прим. науч. ред.


[Закрыть]
еще несколько объектов планетной массы, обращающихся вокруг звезд – рядовых, как наше Солнце. Ученые воспользовались другой, гораздо более сложной методикой, отслеживая с помощью обычного оптического телескопа периодические изменения спектра ближних к нам звезд. Временами звезда немного приближается к наблюдателю и вновь отдаляется, что находит отражение в положении ее спектральных линий. Это так называемый эффект Доплера. Примерно так меняется частота гудка автомобиля в зависимости от того, едет он к нам или от нас. Звезду притягивает какое-то невидимое тело. Незримое вновь было обнаружено благодаря количественному согласию между наблюдаемыми периодическими смещениями звезды и расчетным влиянием находящейся рядом с ней планеты.

Такие планеты были найдены у звезд 51 Pegasi, 70 Virginis и 47 Ursae Majoris в созвездиях, соответственно, Пегас, Дева и Большая Медведица. В 1996 г. к ним прибавились находки у звезд 55 Cancri созвездия Рак, Тау Волопаса и Ипсилон Андромеды. Звезды 47 Большой Медведицы и 70 Девы можно наблюдать невооруженным глазом весной на вечернем небе. По космическим меркам они расположены очень близко к нам. Планеты имеют массу от чуть меньше юпитерианской до нескольких масс Юпитера. Самое удивительное в них то, как близко они находятся к своим звездам – от 0,05 а. е. (51 Пегаса) до 2 а. е. (47 Большой Медведицы). В этих системах могут присутствовать пока не открытые планеты, сопоставимые по размерам с Землей, но условия на них не похожи на земные.

В нашей Солнечной системе маленькие, землеподобные планеты находятся во внутренней части, а гиганты вроде Юпитера – во внешней. Судя по всему, в системах четырех названных звезд планеты с юпитерианскими массами являются внутренними. Пока мы не понимаем, как это возможно. Мы даже не знаем, действительно ли эти планеты похожи на Юпитер, т. е. имеют плотную атмосферу из водорода и гелия, слой металлического водорода в глубине и каменно-железное ядро, подобное Земле. Но нам известно, что атмосфера «горячих юпитеров», находящихся настолько близко от своих звезд, не улетучивается. Кажется немыслимым, чтобы они сформировались на периферии своих систем и по каким-то причинам переместились намного ближе к звезде. Быть может, молодые массивные планеты затормозились в небулярном газе и были притянуты к звездам? Большинство экспертов утверждают, что такая планета, как Юпитер, не может возникнуть вблизи звезды.

Почему? Вот как нам видится зарождение Юпитера. Во внешней зоне небулярного диска, при очень низкой температуре, конденсировались массивы льда и камня, такие как кометы и ледяные луны внешних планет Солнечной системы. Эти обледенелости сталкивались друг с другом на малых скоростях, слипались и постепенно увеличились настолько, что притянули преобладающий в облаке водород и гелий. Таким образом, Юпитер формировался от ядра вовне, обрастая слоями. Вблизи звезды, предположительно, все происходило иначе. Там слишком жарко для образования ледяного ядра, и процесс должен быть не столь многоэтапным. Хотя, кто знает! Возможно, встречаются звезды, у которых даже ближайшая область небулярного диска имеет температуру ниже точки замерзания воды.

Как бы то ни было, обнаружение планет земной массы у пульсара и четырех «юпитеров» у звезд, похожих на Солнце, наводит на мысль, что наша Солнечная система нетипична. Это исключительно важно в плане создания общей теории происхождения планетных систем: она должна учитывать их разнообразие.

Впоследствии методом астрометрии удалось обнаружить две, а то и три землеподобные планеты у звезды Лаланд 21185, очень близкой к Солнцу. Очень точные многолетние наблюдения за перемещениями звезды позволили заметить ее слабое движение по круговой или эллиптической траектории, вызванное гравитацией окружающих ее планет. Итак, вот она, планетная система, подобная – хотя бы отчасти подобная – нашей[22]22
  Существование планетной системы у звезды Лаланд 21185 пока не подтвердилось. – Прим. науч. ред.


[Закрыть]
. В ближнем межзвездном пространстве находятся планетные системы еще как минимум двух разновидностей.

Существование жизни на экзопланетах юпитерианского типа не более вероятно, чем на «нашем» Юпитере. Возможно, однако, у них имеются спутники – у Юпитера их 16. Если гигантские планеты приближены к своим звездам, температура на их спутниках может быть пригодной для жизни (особенно обнадеживает в этом плане звезда 70 Девы). До этих миров 35–40 световых лет – достаточно близко, чтобы мечтать в один прекрасный день отправить к ним сверхбыстрый корабль, который принесет информацию нашим отдаленным потомкам.

Тем временем разрабатываются новые методы поиска экзопланет. Помимо фиксации сбоев в периоде обращения пульсаров и измерений радиальных скоростей звезд (метод Доплера) применяются интерференционные телескопы – наземные или, что лучше, космические, а также наземные телескопы, нейтрализующие турбулентность земной атмосферы, и наземные обсерватории, наблюдающие эффект гравитационного линзирования дальних массивных объектов. Орбитальное оборудование позволяет с огромной точностью измерять, как меняется яркость звезды из-за прохождения планеты перед ее диском. Все эти исследовательские инструменты обещают принести значимые результаты в ближайшие годы. Мы начинаем обшаривать ближние окрестности Вселенной в поисках спутниц многих тысяч звезд. Я полагаю, что в грядущие десятилетия мы получим данные, самое меньшее, о сотнях других планетных систем в огромной галактике Млечный Путь[23]23
  К 2017 г. надежно обнаружено более 3500 экзопланет, причем одна из них находится у ближайшей к нам звезды – Проксимы в созвездии Кентавр, на расстоянии четыре световых года от Солнца. – Прим. науч. ред.


[Закрыть]
. Возможно, среди них отыщутся и маленькие синие шарики с жидкой водой, кислородосодержащей атмосферой и красноречивыми свидетельствами наличия неведомой жизни.

Часть II
Чему противятся консерваторы?

Глава 7
Мир, присланный по почте

Целый мир?

Капли лунного света

С листьев герани.

– Догэн (1200–1253)

Мир мне прислали по почте. На упаковке была надпись «хрупкий предмет» и картинка-предупреждение – разбитый бокал. Я осторожно вскрыл посылку, боясь услышать звон осколков или напороться на стекло. Но мир прибыл невредимым. Обеими руками, чтобы не уронить, я извлек его на свет божий. Это был прозрачный шар, наполовину заполненный водой. В неприметном месте значился порядковый номер – 4210. Мир № 4210. Оказывается, их много. Я бережно поместил его на прилагавшуюся пластмассовую подставку и рассмотрел хорошенько.

Внутри обнаружилась жизнь: переплетение веточек, некоторые с зеленой порослью нитчатки, и шесть или восемь мелких розовотелых созданий, на первый взгляд, бездумно резвившихся в зарослях. Там обитали и представители сотен других видов, столь же многочисленные в этих водах, как и рыба в Мировом океане. Но все они были микроорганизмами и невооруженным глазом не различались. Розовые создания оказались креветками какой-то крайне неприхотливой разновидности. Невероятно активные, они моментально приковывали внимание. Некоторые высаживались на растения и прогуливались на 10 ногах, размахивая прочими придатками, которых у них было множество. Одна особь направила весь свой пыл – и немалую часть конечностей – на то, чтобы закусить зеленой нитью водоросли. Среди веточек, обросших нитчаткой как флоридские деревья испанским мхом, спешили по нескончаемым срочным делам ее сородичи. Со сменой антуража порой менялся и их цвет. Одна была бледная до прозрачности, другая оранжевая с красными пятнами, будто сгорала от стыда.

В каком-то смысле они, разумеется, отличаются от нас. Вместо внутреннего скелета имеют наружный панцирь, умеют дышать в воде и не видят неудобства в соседстве органа выделения со ртом. (Между прочим, к своей внешности и гигиене они относятся с большим пиететом, благо располагают парой особых щупалец со щеточками и время от времени самозабвенно чистятся.)

И в то же время они во многом на нас похожи. Имеют мозг, сердце, кровь, глаза. Лихорадочно перебирая многочисленными отростками, они носятся в воде не просто так, а с очевидной целеустремленностью и смыслом. Прибыв к месту трапезы, принимаются за водоросли с изяществом и увлеченностью заправских гурманов. Две самые предприимчивые оставляют родные заросли далеко внизу и неспешно бороздят просторы океана, обозревая пределы обитаемого мира.

Понаблюдав немного, я начал их различать. Креветки линяли, сбрасывая старый экзоскелет и расправляя другой, более просторный. После процедуры оставалась оболочка, прозрачная, точь-в-точь креветка, но безжизненная, а былой обитатель отправлялся по своим делам в шикарном новом панцире. Одна где-то лишилась ноги. Возможно, в жестокой схватке за благосклонность красотки на выданье?

Под определенным углом поверхность воды работает как зеркало, и креветка может видеть собственное отражение. Узнает ли она себя? Скорее всего, отражение кажется ей другой креветкой. При некоторых положениях толстые выпуклые стенки стеклянной сферы превращаются в линзы, и увеличение раскрывает передо мной истинный облик этих существ. Так, я заметил у них усы. Две креветки понеслись вверх, и казалось, выскочат из воды, но поверхностное натяжение оказалось сильнее, и они мягко осели на дно – думаю, несколько ошеломленные. Порой они скрещивают «руки на груди» с видом супермена, для которого любой подвиг – обыденность. Занятные существа.

Если я могу ясно видеть креветку через выпуклое стекло, полагаю, и она должна видеть меня. По крайней мере мой глаз – сверхъестественный черный диск с каре-зелеными протуберанцами. Действительно, иной хлопотливый поедатель водорослей под моим пристальным взглядом вдруг замирает и засматривается на меня. Наши взгляды встречаются. Хотел бы я знать, как мой визави интерпретирует увиденное.

Дня два я был слишком загружен и наконец, едва проснувшись, проведал стеклянный мир. Никого! Я винил себя, хотя не должен был давать им корм или витамины, менять воду и показывать ветеринару. Разве что не оставлять надолго под прямым солнцем или в тени и следить, чтобы температура не опускалась ниже пяти и не поднималась выше 30 по Цельсию (иначе вместо экосистемы получился бы креветочный суп). Но что, если я все-таки убил их, поскольку был невнимателен? Вдруг из-за ветки высунулся щуп, и я понял, что с ними все в порядке. Всего-навсего креветки – но вот прикипел душой! Как они там, все ли в порядке?

Если на вашем попечении оказался такой мирок и вы добросовестно стараетесь обеспечить ему правильную температуру и освещенность, то со временем неизбежно, независимо от первоначальных намерений, привязываетесь к его обитателям. К сожалению, вы бессильны им помочь, когда они болеют или умирают. С одной стороны, вы обладаете несопоставимо бо́льшими, чем они, возможностями, с другой – они умеют то, что вам не под силу, например дышать в воде. При всем своем могуществе вы до беспомощности ограничены. «Не жестоко ли было заключить их в эту стеклянную тюрьму?» – задумываетесь вы. И утешаетесь тем, что здесь они по крайней мере не рискуют угодить в желудок кита, задохнуться в нефтяном пятне или украсить чье-нибудь застолье.

Сброшенные при линьке призрачные покровы, а изредка и тельце погибшей креветки недолго тревожат ваш взор. Они становятся кормом как для самих креветок, так и для невидимых микроорганизмов, которыми кишит этот Мировой океан. И вы понимаете, что эти создания существуют не сами по себе. Они нуждаются друг в друге. Они заботятся друг о друге – лучше, чем вы можете о них позаботиться. Креветки поглощают из воды кислород и выделяют углекислый газ. Водоросли усваивают растворенный в воде углекислый газ и выделяют кислород. Каждая сторона этого процесса дышит отработавшим газом другой стороны. Твердые отходы жизнедеятельности также совершают круговорот, служа и растениям, и животным, и микробам. Обитатели крохотного рая накрепко взаимосвязаны.

Существование креветок – самое эфемерное и уязвимое. Водоросли способны гораздо дольше обходиться без креветок, чем креветки без водорослей. Креветки питаются водорослями, а водоросли – преимущественно светом. С какого-то момента креветки начали гибнуть одна за другой, и я до сих пор не знаю, почему это случилось. Последняя угрюмо (так мне казалось) мусолила пучок нитчатки, пока тоже не умерла. Я оплакивал каждую, сам себе удивляясь. Наверное, потому что успел понаблюдать за их жизнью. Но дело еще и в пугающей аналогии между их миром и нашим.

В отличие от аквариума этот мирок является замкнутой экосистемой. В него поступает только свет, больше ничего – ни корма, ни воды, ни питательных веществ. Все в нем должно использоваться снова и снова. Как и на Земле. Все мы, населяющие общий большой мир, – растения, животные, микроорганизмы – живем друг за счет друга, дышим и питаемся чьими-то отходами, зависим друг от друга. И в наш мир энергия приходит со светом. Свет Солнца, проходя через прозрачный воздух, усваивается растениями и запускает в них процессы превращения углекислого газа и воды в углеводы и другие питательные вещества, которые, в свою очередь, составляют основной рацион животных.

Наш большой мир очень похож на крохотный мирок, присланный мне по почте, а мы во многом напоминаем креветок. Принципиальное отличие состоит в том, что креветки не могут менять свою среду обитания, а мы можем. Мы способны обойтись с самими собой так же, как беззаботный владелец с обитателями стеклянной сферы. Если мы будем вести себя безответственно, то рискуем перегреть планету вследствие парникового эффекта или погрузить ее в холод и тьму, устроив ядерную зиму, спровоцировав гигантский пожар на нефтяном месторождении или проморгав надвигающееся столкновение с астероидом или кометой. Кислотные дожди, разрушение озонового слоя, загрязнение химическими и радиоактивными веществами, уничтожение тропических лесов и десятки других угроз среде обитания неумолимо толкают наш мир куда-то. Куда именно, мы и сами не вполне представляем. Наша цивилизация, которую мы считаем высокоразвитой, возможно, прямо сейчас разрушает хрупкое экологическое равновесие, драгоценный результат 4 млрд лет эволюции жизни на Земле.

Ракообразные – те же креветки – намного старше людей, приматов и вообще млекопитающих. Водоросли появились 3 млрд лет назад, задолго до любых животных, можно сказать, вскоре после зарождения земной жизни. Необозримо долгое время все обитатели планеты – растения, животные, микроорганизмы – действовали сообща. Сообщество живых существ, населявших мою стеклянную сферу, имеет очень древнюю историю, несопоставимо более древнюю, чем любой известный человечеству культурный феномен. Стремление к кооперации – трудный урок, преподанный эволюцией. Организмы, неспособные к кооперации, не вступающие во взаимовыгодные отношения с другими, проиграли и погибли. Умение сотрудничать закреплено в генах победителей. Кооперация у них в крови. Это залог выживания.

Люди – новички на этой планете. Нам всего-то несколько миллионов лет. Современной технической цивилизации – несколько столетий. Наш опыт сознательной кооперации с другими видами живых существ (и даже с представителями собственного вида) весьма ограничен. Мы всецело поглощены сиюминутными заботами и почти не умеем мыслить перспективно. Нет никаких гарантий, что мы достаточно мудры, чтобы постичь устройство всепланетной замкнутой экосистемы или изменить свое поведение в соответствии с этим пониманием.

Наша планета – единый организм. Жители Северной Америки вдыхают кислород, выделенный бразильской сельвой. Кислотные дожди, вызванные «грязными» производствами американского Среднего Запада, губят леса Канады. Радиоактивные вещества, попавшие в окружающую среду из-за аварии на украинской АЭС, наносят ущерб экономике и культуре Лапландии. Сжигание угля в Китае делает более жарким климат Аргентины. Хлорфторуглерод из кондиционера в канадской провинции Ньюфаундленд грозит раком кожи жителю Новой Зеландии. Болезни стремительно распространяются по планете, проникая в самые глухие уголки, и требуют совместных усилий медиков всего мира. То, что атомная война или падение астероида затронут всех, самоочевидно. Нравится нам это или нет, мы, люди, неразрывно связаны друг с другом, а также с другими животными и растениями Земли. Наши жизни переплетены.

Нам не даровано инстинктивное знание о том, как сделать наш техномир безопасной сбалансированной экосистемой. Значит, мы обязаны добыть это знание. Нужно больше научных исследований и больше технологических ограничений. Едва ли некий Верховный Экокомиссар спустится с небес и выправит наши косяки. Это наше с вами дело.

И дело это посильное. Птицы, которых мы считаем безмозглыми тварями, знают, что не нужно гадить рядом с гнездом. Креветки, с мозгом не больше пылинки, тоже это знают. И водоросли. И одноклеточные. Пора усвоить это и нам.


Страницы книги >> Предыдущая | 1 2 3 4 5 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации