Электронная библиотека » Карл Саган » » онлайн чтение - страница 12


  • Текст добавлен: 6 сентября 2015, 01:00


Автор книги: Карл Саган


Жанр: Зарубежная образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 12 (всего у книги 26 страниц)

Шрифт:
- 100% +

Если бы, как того требует Коперник, небеса были столь непомерно велики… и заполнены бесчисленными звездами, будто они вовсе бесконечны в размерах… то почему бы нам не предположить… что все эти звезды, видимые на небесах, являются солнцами, закрепленными в своих центрах, с пляшущими вокруг них планетами, подобными тем, что окружают наше Солнце? ‹…› А отсюда следует, что существует бесконечное число обитаемых миров; почему нет? ‹…› Эти и им подобные дерзкие выводы и чудовищные парадоксы с необходимостью получаются, если согласиться с… Кеплером… и другими, кто защищает движение Земли.

И все-таки Земля движется. Живи Мертон в наши дни, он был бы просто вынужден признать «бесконечность обитаемых миров». Гюйгенс не избегал этого вывода; он радостно принял его: звезды посреди космического океана – это другие солнца. Проводя аналогии с нашей Солнечной системой, Гюйгенс заключил, что звезды должны иметь свои планетные системы и что многие из этих планет могут быть обитаемыми: «Должны ли мы допустить, что планеты просто огромные пустыни… и лишить их всех тех тварей, которые столь ясно свидетельствуют о божественном архитекторе? Тем самым по красоте и величию мы поставили бы их ниже Земли, что совершенно неразумно»[117]117
  Мало кто еще придерживался подобных взглядов. В своем труде «Harmonice Mundi» («Гармонии Мира», 1619 г.) Кеплер замечает: «Что касается пустынной поверхности этих шаров, то Тихо Браге считал, что ей не следует оставаться бесплодной, но до́лжно быть заполненной обитателями». – Авт.


[Закрыть]
.

Эти идеи были изложены в выдающейся книге с горделивым заглавием «Небесные миры открыты: предположения, касающиеся обитателей, растений и производства других планет». Написанная незадолго до смерти Гюйгенса, в 1690 году, эта работа вызывала восхищение у многих, в том числе у Петра Великого, по приказу которого в России ее опубликовали первой из произведений западной науки. В основном книга посвящена описанию природы планет и условий на них. На одной из великолепных иллюстраций первого издания в одном масштабе с Солнцем изображены планеты-гиганты Юпитер и Сатурн. В сравнении они выглядят довольно маленькими. На другой гравюре Сатурн показан рядом с Землей: наша планета выглядит крошечным кружочком.

В общем и целом Гюйгенс представлял себе условия и обитателей других планет довольно похожими на земные в XVII веке. Он допускал, что «планетяне» могут иметь «тела, в целом и в каждой части сильно отличающиеся от наших… довольно смешно думать… что мыслящий Дух не может обитать в какой-либо форме, отличной от нашей собственной». Можно быть изящным, даже если выглядишь странно, говорит он. Но затем пускается в доказательства, что обитатели планет не должны выглядеть слишком необычно: им полагается иметь руки и ноги, ходить в вертикальном положении, обладать письменностью и знать геометрию; а четыре галилеевых спутника Юпитера помогают морякам в навигации по юпитерианским океанам. Безусловно, Гюйгенс был человеком своего времени. А разве не таковы же и мы сами? Он объявлял науку своей религией, а потом доказывал, что планеты не могут быть необитаемы, поскольку в таком случае Бог сотворил бы миры без всякой пользы. Он жил раньше Дарвина, и оттого его рассуждения о внеземной жизни совершенно лишены эволюционной перспективы. И все же на основе своих наблюдений он смог построить нечто похожее на современную картину космоса:

Какую чудесную, поразительную схему видим мы в величественном пространстве Вселенной… Как много солнц, как много миров… и каждый из них изобилует травами, деревьями и животными, украшен многочисленными морями и горами! ‹…› И как же должно возрасти наше удивление и восхищение при мысли о громадных расстояниях до звезд и об их огромном числе.

Космические аппараты «Вояджер» являются прямыми наследниками парусных поисковых экспедиций и научно-философской традиции Христиана Гюйгенса. «Вояджеры» – это каравеллы, направляющиеся к звездам и по пути исследующие те миры, которые Гюйгенс так хорошо знал и любил.

Одним из главных товаров, доставлявшихся из тех давних морских экспедиций, были рассказы о приключениях путешественников[118]118
  Подобные рассказы – древняя человеческая традиция; во многие из них с начала странствий вплетаются космические мотивы. Например, Фэй Синь, один из участников китайских экспедиций в Индонезию, Шри-Ланку, Аравию и Африку, предпринятых в XV в. при китайской династии Мин, описал путешествие в подготовленной специально для императора иллюстрированной книге «Великолепные виды со звездного плота». К сожалению, иллюстрации к ней (но не сам текст) были утрачены. – Авт.


[Закрыть]
, о чужих землях и экзотических созданиях, которые всегда возбуждали удивление и подталкивали к новым исследованиям. Среди них попадались рассказы о горах, достигающих неба, о драконах и морских чудовищах, о повседневной посуде из золота, о тварях с рукой вместо носа, о народах, которые почитают глупостью теологические споры между протестантами, католиками, иудаистами и мусульманами, о черном обжигающем камне, о безголовых людях со ртом на груди, об овцах, живущих на деревьях. Некоторые из этих историй были правдой, некоторые – ложью. Иные содержали зерно истины, неверно понятой либо преувеличенной самим путешественником или его информаторами. Будучи обработаны, например, Вольтером или Джонатаном Свифтом, эти рассказы открывали перед европейским обществом новые перспективы, вынуждая его отказаться от замкнутости в своем мире.

Современные «Вояджеры» также рассказывают нам о своих приключениях: о мире, разбитом вдребезги, как хрустальная сфера; о планете, поверхность которой от полюса до полюса как будто затянута тонкой паутиной; о крохотных спутниках, похожих на картофелины; о мире с подземным океаном; о земле, которая пахнет тухлыми яйцами, а с виду напоминает пиццу, с озерами жидкой серы и вулканами, дымящими прямо в космос; о планете Юпитер, столь громадной, что наша Земля тысячу раз поместилась бы внутри него.

Галилеевы спутники Юпитера сравнимы по размерам с планетой Меркурий. Мы можем определить их массы и таким образом вычислить плотность, которая кое-что говорит об их составе и внутреннем строении. Мы обнаруживаем, что два внутренних спутника, Ио и Европа, по плотности близки к камню. Два внешних, Ганимед и Каллисто, имеют гораздо меньшую плотность, среднюю между камнем и льдом. Однако в смеси льда и камня внутри этих двух внешних спутников, как и в земных горных породах, должны встречаться следы радиоактивных минералов, которые разогревают их недра. Эта теплота, накопленная за миллиарды лет, не имеет выхода на поверхность и не рассеивается в космосе, а потому лед внутри Ганимеда и Каллисто должен плавиться за счет энергии радиоактивного распада. Можно предположить, что под поверхностью скрыт океан ледяной шуги; так, не получив еще первых снимков с близкого расстояния, мы догадываемся, что галилеевы спутники могут очень сильно различаться между собой. Это предсказание подтвердилось, когда мы глазами «Вояджера» детально рассмотрели их. Они совсем не похожи друг на друга и отличаются от всех миров, которые мы видели до сих пор.

Космический аппарат «Вояджер-2» никогда не вернется на Землю. Но вернулись добытые им сведения, повесть о его эпических открытиях, его приключениях. Возьмем, к примеру, 9 июля 1979 года. Утром, в 8.04 по тихоокеанскому стандартному времени, на Земле были получены первые изображения нового мира, носящего название Европа.

Как попали к нам эти снимки из внешних районов Солнечной системы? Солнечный свет падает на Европу, обращающуюся по орбите вокруг Юпитера, и отражается обратно в космос, где малая его часть улавливается люминофором телевизионных камер «Вояджера», создавая изображение. Изображение считывает компьютер «Вояджера» и по радио передает его через огромное пустое пространство в полмиллиарда километров на радиотелескоп наземной станции слежения. Одна из таких станций расположена в Испании, другая – в пустыне Мохаве, Южная Калифорния, третья – в Австралии. (В то июльское утро 1979 года в сторону Юпитера и Европы смотрела австралийская станция.) Затем через коммуникационный спутник на околоземной орбите информация направляется в Южную Калифорнию, где по радиорелейной линии передается для обработки в компьютер Лаборатории реактивного движения. Полученные изображения, подобно фототелеграфным снимкам в газетах, состоят из миллионов отдельных точек разных оттенков серого цвета, настолько маленьких и близких друг к другу, что издали они незаметны. Виден только совокупный эффект. Яркость каждой точки определяется информацией, получаемой с космического аппарата. После обработки точки сохраняются на магнитном диске, напоминающем граммофонную пластинку[119]119
  Здесь особенно отчетливо видно, как далеко шагнули информационные технологии за годы, прошедшие с момента написания книги. Принципам обработки растровых изображений и обращению с магнитными дисками учат в школе, а вот как работает фототелеграф и что такое граммофонная пластинка, мы уже начинаем забывать. – Пер.


[Закрыть]
. На магнитных дисках хранится около восемнадцати тысяч фотографий, сделанных в системе Юпитера «Вояджером-1», и столько же полученных «Вояджером-2». Конечным результатом всей этой замечательной коммуникационной цепочки является отпечаток на глянцевой бумаге; в данном случае – снимок деталей на поверхности Европы, впервые в человеческой истории полученный, обработанный и исследованный 9 июля 1979 года.

Увиденное нами на снимках было совершенно поразительным. «Вояджер-1» получил великолепные изображения трех других галилеевых спутников. Но не Европы. Первым запечатлеть ее поверхность с близкого расстояния, так, чтобы отобразились детали размером всего несколько километров, выпало на долю «Вояджера-2». На первый взгляд поверхность более всего напоминает ту самую сеть каналов, которая виделась Персивалю Лоуэллу на Марсе и которой, как мы знаем теперь благодаря космическим аппаратам, вообще не существует. На Европе мы наблюдаем поразительно сложную сеть пересекающихся прямых и искривленных линий. Что это? Горные хребты, то есть возвышенности? Или желоба, то есть углубления? Как они образовались? Не результат ли это глобальных тектонических движений, не разломы ли, порожденные расширением или сжатием планеты? Есть ли здесь что-то общее с тектоникой земных плит? Проливает ли это свет на природу других спутников в системе Юпитера? В момент открытия наши хваленые технологии преподнесли нам нечто диковинное. Но сделать из этого выводы предстояло другому устройству – человеческому мозгу. Если бы не эта сеть линий, Европа выглядела бы гладкой, как бильярдный шар. Отсутствие ударных кратеров может объясняться пластичностью поверхностных льдов, приобретаемой благодаря выделяющейся при ударе теплоте. Линии – это протоки или трещины, их происхождение будет обсуждаться еще долго после завершения миссии.

Если бы полет «Вояджера» был пилотируемым, а его капитан вел бортовой журнал, в который заносил бы события, связанные с обоими аппаратами «Вояджер», мы прочитали бы примерно следующее:

1-й день. После долгих сборов и хлопот с приборами, которые то и дело норовили выйти из строя, мы наконец стартовали с мыса Канаверал и отправились в долгое путешествие к планетам и звездам.

2-й день. Возникли проблемы с развертыванием штанги, которая держит платформу с научным оборудованием. Если эту проблему решить не удастся, мы лишимся большей части фотографий и других научных данных.

13-й день. Мы оглянулись назад и сделали первый снимок висящих в космосе Земли и Луны. Очень симпатичная пара.

150-й день. Двигатели успешно отработали промежуточную коррекцию траектории.

170-й день. Плановые работы по поддержанию работоспособности. Несколько месяцев без особых событий.

185-й день. Успешно сделаны калибровочные снимки Юпитера.

207-й день. Проблема со штангой решена, но вышел из строя основной радиопередатчик. Мы перешли на использование резервного. Если он испортится, то никто на Земле никогда больше нас не услышит.

215-й день. Мы пересекли орбиту Марса. Сама планета находится сейчас по другую сторону от Солнца.

295-й день. Вошли в пояс астероидов. Здесь много крупных кувыркающихся камней – космических мелей и рифов. Большинства из них нет на картах. Выставлен дозорный. Надеемся избежать столкновения.

475-й день. Мы благополучно оставили позади основной пояс астероидов, счастливые, что уцелели.

570-й день. Юпитер становится самым заметным объектом на небе. Мы различаем на нем более тонкие детали, чем те, что видны с Земли даже в самые большие телескопы.

615-й день. Нас буквально гипнотизируют грандиозные атмосферные процессы в непрерывно меняющихся облаках Юпитера. Планета громадна. Она более чем вдвое массивнее всех остальных планет вместе взятых. Здесь нет гор, долин, вулканов, рек; нет границы между воздухом и землей – лишь огромный океан плотного газа и плывущие в нем облака, мир без поверхности. Все, что мы видим на Юпитере, плывет по его небу.

630-й день. Погода на Юпитере остается захватывающим зрелищем. Эта грандиозная планета оборачивается вокруг своей оси менее чем за десять часов. Бурные атмосферные процессы вызываются этим быстрым вращением, солнечным светом и идущим из глубины теплом.

640-й день. Рисунок облаков роскошен и совершенно отчетлив. Он немного напоминает «Звездную ночь» Ван Гога или работы Уильяма Блейка[120]120
  Блейк (Blake), Уильям (1757–1827) – английский поэт и художник. Искусство Блейка тяготеет к романтической фантастике и символике, смелой игре линий. – Пер.


[Закрыть]
и Эдварда Мунка[121]121
  Мунк (Munch), Эдвард (1863–1944) – норвежский живописец и график. Для его творчества характерны вихреобразный контурный рисунок, повышенная динамика композиции, диссонирующий цветовой строй. – Пер.


[Закрыть]
. Но только немного. Ни один художник еще не изображал подобного, поскольку никто из них никогда не покидал своей планеты. Никакой живописец, прикованный к Земле, не смог бы вообразить столь странный и восхитительный мир.

Мы внимательно наблюдаем за многоцветными поясами Юпитера. Белые пояса, вероятно, являются высотными облаками, состоящими из кристаллов аммиака; коричневатые цвета соответствуют более глубоким и горячим областям, где атмосферные потоки направлены вниз. Области синего цвета, по-видимому, представляют собой просветы в облаках, сквозь которые можно видеть чистое небо.

Нам неизвестно, почему Юпитер окрашен в красновато-коричневые тона. Возможно, за это ответственны соединения фосфора или серы. А может быть, яркую окраску придают сложные органические молекулы, возникающие в результате объединения фрагментов, на которые ультрафиолетовое излучение Солнца расщепляет в атмосфере Юпитера молекулы метана, аммиака и воды. В таком случае цвета атмосферы Юпитера повествуют нам о химических процессах, которые четыре миллиарда лет назад привели к появлению жизни на Земле.

647-й день. Большое Красное Пятно. Огромный столб газа, высоко поднимающийся над соседними облаками; настолько большой, что в нем поместилось бы несколько таких планет, как Земля. Красный цвет, возможно, связан с выносимыми на поверхность сложными молекулами, которые образуются или концентрируются на большой глубине. Не исключено, что этот гигантский циклон существует уже миллионы лет[122]122
  C 2000 г. на Юпитере появилось и стало расти новое красное пятно, которое к 2008 г. достигло размера в две трети Большого. – Пер.


[Закрыть]
.

650-й день. Сближение. День чудес. Успешно прошли через коварные радиационные пояса Юпитера, поврежден только один инструмент – фотополяриметр. Пересекли экваториальную плоскость, благополучно избежав столкновений с частицами вновь открытых колец Юпитера. Удивительные снимки: Амальтея, крошечный спутник красного цвета и продолговатой формы, в самой глубине радиационного пояса; многоцветная Ио; линии на поверхности Европы; паутинообразные детали на Ганимеде; огромная депрессия на Каллисто, окруженная многочисленными кольцами. Обогнув Каллисто, мы пересекли орбиту Юпитера-13[123]123
  В астрономии были приняты две системы обозначения спутников – в порядке удаленности от планеты (обозначение состояло из названия планеты и номера, записанного арабскими цифрами) и в порядке открытия (название планеты и номер, записанный римскими цифрами). На момент пролета «Вояджеров» было известно 13 спутников Юпитера. Соответственно самый внешний из них – Ананке – носил обозначение Юпитер-13. Он же именовался Jupiter XII, так как был обнаружен в 1951 г., ранее открытой в 1974 г. Леды – Юпитер XIII.
  Теперь, когда благодаря развитию техники открытия делаются чаще, для вновь обнаруживаемых спутников применяют новую систему обозначений вида S/2000 J3, где S обозначает «спутник» (satellite), 2000 – год открытия, J – первая буква названия планеты, 3 – порядковый номер спутника данной планеты среди обнаруженных в указанном году. На сегодня самым внешним спутником Юпитера является S/2003 J2, а самым последним по времени обнаружения – S/2003 J23. Собственных имен им пока не присвоили. – Пер.


[Закрыть]
, самого внешнего из известных спутников планеты, и удаляемся.

662-й день. Наши детекторы частиц и полей говорят, что мы покинули радиационный пояс Юпитера. Гравитация планеты увеличила нашу скорость. Мы наконец освободились от власти Юпитера и направляемся в открытый космос.

874-й день. Потеря ориентации на Канопус, веками служивший путеводной звездой для парусников. В темноте космоса он ведет и нас, помогая проложить курс через неизведанные просторы космического океана. Ориентация на Канопус восстановлена. Похоже, оптический датчик по ошибке принял за Канопус альфу или бету Центавра. Наш следующий порт захода – система Сатурна, два года пути.

Среди всех путевых заметок «Вояджера» меня больше всего заинтересовали сообщения об открытиях, сделанных им на Ио, самом внутреннем из галилеевых спутников. Еще до старта нам было известно, что на Ио творятся странные вещи. Мы мало что могли различить на его поверхности, но знали: Ио красного, ярко-красного цвета, краснее даже, чем Марс, вероятно, самый красный объект Солнечной системы. В течение ряда лет казалось, что на спутнике происходят какие-то изменения, заметные в инфракрасном диапазоне и при радарном обследовании. Мы также располагали данными, что в районе орбиты Ио Юпитер окружен своего рода огромным бубликом, который состоит из атомов серы, натрия и калия, выброшенных с Ио.

Когда «Вояджер» приблизился к гигантскому спутнику, мы увидели странную многоцветную поверхность, непохожую ни на что другое в Солнечной системе. Ио находится недалеко от пояса астероидов. На всем протяжении своей истории спутник должен был подвергаться интенсивной космической бомбардировке. Ему просто полагалось быть испещренным ударными кратерами. Но не нашлось ни одного. Значит, на Ио какой-то процесс чрезвычайно эффективно стирает или заполняет кратеры. Он не может быть атмосферным, поскольку из-за низкой гравитации газовая оболочка Ио почти полностью улетучилась в космос. Его нельзя приписать и действию воды – на поверхности Ио слишком холодно. Имелось несколько мест, напоминавших вершины вулканов. Но твердой уверенности в том, что это такое, не было.

Линда Морабито из навигационной группы проекта «Вояджер», отвечавшая за точность следования космического аппарата по намеченной траектории, затребовала у компьютера более четкое изображение края Ио, чтобы разглядеть звезды позади него. К своему удивлению, она заметила яркий столб дыма, поднимавшийся в темноте над поверхностью спутника, и вскоре определила, что столб стоит как раз над одним из тех мест, где предполагалось наличие вулканов. Так «Вояджер» открыл первый действующий внеземной вулкан. Теперь мы знаем на Ио девять больших активных вулканов, выбрасывающих газ и обломки, а еще сотни (или даже тысячи) потухших. Извергнутого вещества, которое скатывается и стекает по склонам вулканических конусов, разливается по разноцветному ландшафту огромными потоками, вполне достаточно, чтобы затопить ударные кратеры. Мы видим свежую поверхность планеты, ландшафт которой постоянно обновляется. Как подивились бы этому Галилей и Гюйгенс!

Существование вулканов Ио было предсказано до их открытия группой Стентона Пила, определившей масштабы приливов, которые должны возникать в твердых недрах Ио под влиянием совокупного действия находящейся неподалеку Европы и гигантского Юпитера. Они вывели, что горные породы внутри Ио должны плавиться не под действием радиоактивного распада, а в результате приливного трения и бо́льшая часть недр Ио должна пребывать в жидком состоянии. Сейчас считается, что через жерла вулканов Ио подземный океан выплескивает наружу жидкую серу, которая при плавлении концентрируется вблизи поверхности. Когда твердая сера нагревается чуть выше температуры кипения воды, примерно до 115 °C, она плавится и меняет свой цвет. Чем выше температура, тем она темнее. Если расплавленную серу быстро охладить, ее окраска сохраняется. Цветной рисунок, обнаруженный на Ио, очень похож на то, что мы должны были бы увидеть, если бы вулканы извергали потоки серы: черная сера, самая горячая, вблизи вулканических вершин; красная и оранжевая – поблизости от них и вдоль излившихся расплавленных потоков; желтая – на огромных плато, простирающихся на большие расстояния. Поверхность Ио заметно меняется всего за несколько месяцев. Карты поверхности спутника придется выпускать с регулярностью сводок погоды на Земле. Будущие исследователи Ио должны иметь это в виду.

Обнаруженная «Вояджером» чрезвычайно разреженная и тонкая атмосфера Ио состоит в основном из диоксида серы (SO2). Но и эта тонкая газовая оболочка может приносить некоторую пользу, поскольку ее толщины, видимо, как раз хватает, чтобы защитить Ио от мощных потоков заряженных частиц радиационного пояса Юпитера, внутри которого движется спутник. Ночью температура здесь опускается настолько, что диоксид серы должен конденсироваться и оседать в виде своеобразного инея. В это время заряженные частицы интенсивно бомбардируют поверхность, и поэтому здешние ночи разумнее проводить в подземных укрытиях, пусть даже и не слишком глубоких.

Огромные султаны вулканических выбросов Ио поднимаются столь высоко, что фактически вышвыривают часть вещества прямо в космическое пространство вокруг Юпитера. Вулканы, вероятно, являются источником атомов упомянутого выше большого бублика, который окружает Юпитер вдоль орбиты Ио. Эти атомы по спирали постепенно приближаются к Юпитеру и должны оседать на поверхности внутреннего спутника, Амальтеи, придавая ему красноватую окраску. Не исключено также, что твердое вещество, которое вместе с газом выбрасывается с Ио, после многочисленных столкновений и укрупнения частиц пополняет систему колец Юпитера.

Трудно представить себе возможность появления человека на самом Юпитере, хотя, я полагаю, в далеком будущем могут появиться технологии создания огромных городов-аэростатов, постоянно плавающих в его атмосфере. При взгляде с Ио или с Европы этот громадный изменчивый мир будет заполнять бо́льшую часть неба, нависая сверху, не восходя и не заходя, поскольку почти все спутники в Солнечной системе, подобно нашей Луне, всегда повернуты к своим планетам одной и той же стороной. Для тех, кто в будущем станет осваивать луны Юпитера, эта гигантская планета послужит постоянным источником вдохновения, вечным вызовом.

Когда Солнечная система конденсировалась из межзвездного газа и пыли, Юпитер захватил львиную долю вещества, которое не было выброшено в межзвездное пространство и не упало в центр, где формировалось Солнце. Окажись Юпитер в несколько десятков раз массивнее, в его недрах начались бы термоядерные реакции, и он стал бы испускать собственный свет. Самая большая из планет Солнечной системы – это несостоявшаяся звезда. Тем не менее температура внутри Юпитера настолько высока, что он испускает в космос вдвое больше энергии, чем получает от Солнца. Если ограничиться только инфракрасным диапазоном спектра, Юпитер, возможно, следовало бы даже считать звездой[124]124
  В современной астрофизике принято считать звездами только такие объекты, энерговыделение которых обеспечивается термоядерными реакциями, по крайней мере на каком-то этапе эволюции. Поэтому говорить о том, что Юпитер (или какой-то другой объект) можно считать звездой в определенном диапазоне спектра с астрофизической точки зрения некорректно. – Пер.


[Закрыть]
. Стань он звездой в видимом диапазоне, мы сегодня жили бы в двойной системе с двумя солнцами на небе, а ночи были бы относительно редким явлением – обычное дело, я полагаю, для множества солнечных систем в нашей Галактике. Мы, несомненно, находили бы подобное положение дел естественным и приятным.

Глубоко под облаками Юпитера вес вышележащих слоев атмосферы создает давление, намного превосходящее то, что встречается где-либо на Земле, давление настолько большое, что электроны выдавливаются из атомов водорода и возникает замечательное вещество – жидкий металлический водород. Это особое физическое состояние никогда не наблюдалось в земных лабораториях, поскольку требует давления, недостижимого при современных технологиях. (Есть надежда, что металлический водород обладает сверхпроводимостью при умеренных температурах. Если бы его удалось получить в земных условиях, он произвел бы революцию в электронике[125]125
  Высокотемпературные сверхпроводники, сохраняющие состояние сверхпроводимости при температуре жидкого азота, были совершенно неожиданно открыты в 1986–1987 гг. На сегодня самая высокая температура, при которой наблюдалась сверхпроводимость, составляет 164 К (–109 °С). – Пер.


[Закрыть]
.) В недрах Юпитера, где давление примерно в три миллиона раз превышает атмосферное давление на Земле, нет почти ничего, кроме плещущегося в темноте огромного океана металлического водорода. Только в самом центре Юпитера, возможно, находится сходное по составу с Землей каменно-металлическое ядро, зажатое в тисках чудовищного давления и навсегда скрытое в сердце величайшей планеты.

Электрические токи в жидких металлических недрах Юпитера могут быть источником невероятно мощного магнитного поля планеты, самого сильного в Солнечной системе, и связанных с ним радиационных поясов из захваченных электронов и протонов. Эти заряженные частицы выбрасываются Солнцем в составе солнечного ветра, а магнитное поле Юпитера задерживает и разгоняет их. Огромное множество этих частиц, захваченных высоко над облаками планеты, обречено метаться от полюса к полюсу, пока случайное столкновение с какой-нибудь залетевшей на большую высоту молекулой атмосферы не позволит им покинуть радиационный пояс. Ио движется по орбите столь близкой к Юпитеру, что проходит через самую сердцевину радиационного пояса, порождая каскады заряженных частиц, которые, в свою очередь, вызывают мощные всплески радиоизлучения. (Они также могут влиять на вулканические процессы на поверхности Ио.) Рассчитывая положение Ио, эти всплески радиоизлучения Юпитера можно предсказывать даже точнее, чем погоду на Земле.

То обстоятельство, что Юпитер является источником радиоизлучения, было открыто случайно в 1950-х годах, в период зарождения радиоастрономии. Двое американцев, Бернард Бёрк и Кеннет Франклин, исследовали небо при помощи вновь построенного и по тем временам очень чувствительного радиотелескопа. Они искали фоновое космическое радиоизлучение, идущее от источников далеко за пределами Солнечной системы. Неожиданно для себя они обнаружили мощный и прежде не упоминавшийся источник, который, похоже, не был связан ни с одной заметной звездой, туманностью или галактикой. Более того, он постепенно смещался относительно далеких звезд, причем значительно быстрее, чем мог бы двигаться далекий объект[126]126
  По причине ограниченности скорости света (см. гл. VIII). – Авт.


[Закрыть]
. Не найдя никакого подходящего объяснения на картах дальнего космоса, они однажды вышли из обсерватории взглянуть на небо невооруженным глазом: не появилось ли там что-то необычное. Они были ошеломлены, увидев прямо на нужном месте необыкновенно яркий объект, который вскоре был идентифицирован как планета Юпитер. Надо сказать, что это случайное открытие весьма типично для истории науки.

Пока «Вояджер-1» приближался к Юпитеру, каждый вечер я наблюдал в небе сияющую гигантскую планету – вид, которым наши предки могли наслаждаться миллионы лет. А в тот вечер, когда сближение состоялось, я, направляясь в Лабораторию реактивного движения изучать переданные «Вояджером» данные, подумал, что Юпитер уже никогда не будет прежним, никогда больше не будет он просто яркой точкой на ночном небе, но навсегда станет местом, которое мы исследовали и познали. Юпитер и его спутники – это своего рода миниатюрная солнечная система с разнообразными, уникальными мирами, которые многому могут нас научить.

Сатурн по своему строению и во многих других отношениях похож на Юпитер, хотя и меньше его по размерам. Совершая один оборот за десять часов, он тоже имеет разноцветные экваториальные облачные полосы, правда не столь ярко выраженные, как на Юпитере. Его магнитное поле и радиационные пояса слабее, чем у Юпитера, зато система колец куда более впечатляющая. Он также окружен двенадцатью или более спутниками[127]127
  На сегодня у Сатурна обнаружено 60 спутников, причем 15 из них были открыты в 2004 г. Саган потому затрудняется назвать точное число спутников Сатурна, что в момент написания книги к этой планете уже приближались «Вояджеры» и к ней было приковано внимание всех астрономов мира. Уже начинали поступать сообщения о новых спутниках. В целом за 1980 г. число известных спутников Сатурна увеличилось с 10 до 17. – Пер.


[Закрыть]
.

Пожалуй, наиболее интересная из лун Сатурна – Титан, самый крупный спутник в Солнечной системе и единственный, обладающий плотной атмосферой. До встречи «Вояджера-1» с Титаном в ноябре 1980 года наши знания об этом мире остаются весьма скудными и неопределенными. Единственный газ, о присутствии которого на Титане мы можем говорить с уверенностью, – это метан (CH4), обнаруженный Г. Р. Койпером. Ультрафиолетовое излучение Солнца преобразует метан в молекулы более сложных углеводородов и газообразный водород. Углеводороды должны оставаться на Титане, покрывая поверхность коричневатым, похожим на деготь органическим осадком, вроде того, что получался в экспериментах по исследованию происхождения жизни на Земле. Вследствие низкой гравитации на Титане легкий газ водород должен быстро улетучиваться в космос в ходе катастрофического процесса, называемого на жаргоне специалистов «сдуванием атмосферы» (blowoff), который захватывает также метан и другие компоненты атмосферы. Однако атмосферное давление на Титане по крайней мере не ниже, чем на Марсе. Значит, сдувания атмосферы не происходит. Возможно, в ее составе есть какая-то значительная, но пока не обнаруженная составляющая, например азот, которая делает средний молекулярный вес атмосферы относительно высоким и тем самым предотвращает сдувание[128]128
  Эта догадка блестяще подтвердилась в 2005 г., после посадки на Титан европейского аппарата «Гюйгенс». Содержание азота в атмосфере Титана составляет 98,4 %. – Пер.


[Закрыть]
. Не исключено также, что сдувание атмосферы имеет место, однако улетучивание газов в космос постоянно компенсируется выделением их из недр спутника. Средняя плотность Титана настолько низка, что на нем должны быть большие запасы водяного и других льдов, в том числе, вероятно, и метанового, темп испарения которых под действием внутреннего нагрева нам неизвестен.

При наблюдении в телескоп Титан выглядит едва различимым красноватым диском. Некоторые наблюдатели сообщали о появлении на диске изменчивых белых облаков – скорее всего, это метановые кристаллы. Но в чем причина красноватой окраски? Большинство изучавших Титан согласны, что наиболее вероятным объяснением могут служить органические молекулы. Вопросы о температуре и толщине атмосферы Титана пока остаются открытыми. Судя по некоторым признакам, температура поверхности несколько увеличена под влиянием атмосферного парникового эффекта. Распространенность органических молекул на поверхности и в атмосфере Титана делает его замечательным и в своем роде уникальным уголком Солнечной системы. История прежних открытий дает основания ожидать, что «Вояджер» и другие разведывательные космические аппараты в корне изменят наши знания об этом месте[129]129
  Миссия «Вояджеров» позволила прояснить многие свойства атмосферы Титана. Ее толщина примерно в 10 раз превосходит толщину земной атмосферы, а давление на поверхности составляет 1,6 бар, т. е. на 60 % выше, чем на Земле. Туман на высоте около 200 км делает атмосферу почти непрозрачной для видимого излучения. Средняя температура на поверхности Титана составляет –179 °С. По-видимому, там есть океаны или моря жидкого метана, однако они не покрывают поверхность полностью, так как радар позволяет обнаружить относительно яркие участки суши. – Пер.


[Закрыть]
.

Хотя сквозь просветы в облаках с Титана, вероятно, можно заметить Сатурн и его кольца, их бледно-желтый цвет рассеивается в атмосфере. Поскольку система Сатурна в десять раз дальше от Солнца, чем Земля, интенсивность солнечного освещения на Титане составляет всего один процент от привычной нам, а температура должна быть намного ниже точки замерзания воды даже при наличии значительного парникового эффекта. Однако обилие органических веществ, солнечный свет и, возможно, вулканическое тепло не позволяют полностью исключить возможность жизни на Титане[130]130
  Гюйгенс, открывший Титан в 1655 г., писал: «Разве можно смотреть на эти системы [Юпитера и Сатурна] и сопоставлять их между собой, не поражаясь величию двух планет, а также их замечательным спутникам, в сравнении с жалкой нашей Землей? И разве можно заставить себя думать, будто мудрый Творец разместил всех своих животных и все растения здесь, что он обустроил и украсил только это пятнышко и оставил все миры пустынными и лишенными обитателей, которые могли бы поклоняться и молиться Ему; или что все эти удивительные тела были созданы лишь для того, чтобы мерцать и служить объектами исследования для немногих из нас, скромных членов ученого сообщества?» Поскольку Сатурн совершает оборот вокруг Солнца за 30 лет, длительность времен года на Сатурне и его спутниках значительно больше, чем на Земле. Предполагая, что спутники Сатурна обитаемы, Гюйгенс отмечает: «Невозможно, чтобы при таких утомительных зимах их образ жизни не отличался в корне от нашего». – Авт.


[Закрыть]
. В этих, совершенно иных условиях она, конечно, должна очень сильно отличаться от жизни на Земле. Пока нет убедительных фактов, свидетельствующих за или против существования жизни на Титане. Это не более чем возможность. Вряд ли мы получим ответы на свои вопросы, пока не осуществим посадку на Титан космического аппарата, оснащенного необходимым оборудованием[131]131
  Европейский зонд «Гюйгенс», доставленный в систему Сатурна на борту американской межпланетной станции «Кассини», совершил посадку на поверхность Титана 14 января 2005 г. Парашютный спуск в атмосфере занял 2,5 часа, а затем более часа аппарат передавал данные с поверхности спутника Сатурна. – Пер.


[Закрыть]
.

Исследование отдельных частиц, составляющих кольца Сатурна, требует тесного сближения с ними, ибо частицы эти – снежные комья, ледяные обломки и кувыркающиеся в пространстве карликовые ледники – очень малы, порядка одного метра в поперечнике. Мы знаем, что они состоят из водяного льда, поскольку спектральные характеристики отраженного кольцами солнечного света очень похожи на лабораторный спектр льда. Для сближения космическому аппарату необходимо затормозить и начать двигаться вместе с частицами вокруг Сатурна на скорости около 72 000 километров в час (20 км/с), то есть надо выйти на орбиту вокруг Сатурна, перемещаясь с той же скоростью, что и составляющие кольца. Только тогда появится возможность рассмотреть их по отдельности, а не в виде размазанных сплошных пятен или полос.

Почему вместо системы колец у Сатурна не образовался один крупный спутник? Чем ближе находится частица к Сатурну, тем выше скорость ее орбитального движения (тем быстрее она «падает» вокруг планеты по третьему закону Кеплера); внутренние частицы обгоняют внешние («полоса обгона», как видим, всегда находится слева). Хотя вся совокупность частиц движется вокруг планеты со скоростью около 20 километров в секунду, относительные скорости двух соседних частиц очень малы и измеряются сантиметрами в минуту. Тем не менее из-за этого относительного движения частицы не могут слиться под действием взаимного притяжения. Как только они сближаются, небольшие различия в орбитальных скоростях вновь их разделяют. Если бы кольца не были столь близки к Сатурну, этот эффект оказался бы слабее и частицы могли бы, объединяясь, образовывать все большего размера снежные комья и в конечном счете формировать спутники. Стало быть, по всей видимости, это отнюдь не случайность, что за пределами колец Сатурна расположена система спутников, размеры которых варьируются от нескольких сотен километров[132]132
  Большинство спутников, открытых в последние годы, имеют размер несколько километров. – Пер.


[Закрыть]
до масштабов гигантского Титана, почти равного в поперечнике планете Марс. Вещество всех спутников и самих планет первоначально могло быть рассеяно в виде колец, которые, конденсируясь и уплотняясь, образовали эти небесные тела.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | Следующая
  • 3.2 Оценок: 5

Правообладателям!

Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.


Популярные книги за неделю


Рекомендации