Текст книги "Вещи не то, чем кажутся. 100 фреймов УНИВЕРСУМА"
Автор книги: Константин Крамаренко
Жанр: Прочая образовательная литература, Наука и Образование
Возрастные ограничения: +16
сообщить о неприемлемом содержимом
Текущая страница: 2 (всего у книги 24 страниц) [доступный отрывок для чтения: 8 страниц]
Апория Зенона «Дихотомия». Предельный квант пространства
Апории Зенона были придуманы для того, чтобы обосновать идею своего учителя Парменида, который в противовес Гераклиту, утверждавшему положение о текучести бытия, рассматривал бытие как целостное и неподвижное. А движение с его точки зрения проявлялось как человеческая иллюзия.
Апория в переводе с греческого означает безысходность или безвыходное положение, являющееся хотя и вымышленным, но логически верным. Апория представляет собой правильное логическое утверждение или вывод, не соответствующий эмпирической реальности.
Апории Зенона долгое время не давали покоя философам, а потом и учёным, и только современная физика смогла разрешить эти головоломки. Рассмотрим самую простую апорию – «Дихотомия». Предположим, говорит Зенон, что путник идёт из пункта А в пункт Б. Прежде чем он пройдёт весь путь, он должен преодолеть половину этого расстояния, но до того, как он пересечёт половину, он должен пройти половину половины и так далее. Процесс деления пространства уходит в бесконечность, и движение становится невозможным [6]. Здесь не спасёт и понятие предела. Сумма бесконечно малых величин станет бесконечно большой, и чтобы преодолеть бесконечность, потребуется вечность. Действительно, если процесс деления пространства не остановится (с точки зрения математики, даже одномерный и ограниченный объект – линия, состоит из бесконечного количества точек, так как точка не имеет размера), тогда логика Зенона справедлива.
Современная физика пришла к пониманию, что существует предельный квант пространства, и он равен 10-33 см. Данный размер кванта возникает из соотношения калибровочных коэффициентов трёх миров: микро-, макро– и мегамира, являющихся физическими константами, которые представлены постоянной Планка, гравитационной постоянной и скоростью света. Это значит, что до данного уровня сохраняются все известные свойства пространства, в том числе и его делимость. Поэтому процесс, постулированный Зеноном, прекратится, как только будет достигнут уровень квантового размера, поскольку только до квантового уровня пространство обладает известными науке свойствами.
Аналогичный пример можно привести из химии. «Минимальными носителями» химических свойств являются атомы. Элементарные частицы, из которых они состоят: электроны, протоны, нейтроны и другие частицы химическими свойствами уже не обладают. Поэтому химия – это наука об атомно-молекулярных взаимодействиях. За границами атома его компоненты изучает физика элементарных частиц, и свойства этих частиц качественно иные.
Конечно, можно возразить, что же нам мешает взять ещё меньшую величину? Ответ на это возражение заключается в следующем – за границами кванта свойства пространства становятся качественно иными, и процесс деления там уже невозможен. К сожалению, наука ещё не скоро выйдет на уровень кванта пространства, это, вероятно, станет реальным только в отдалённом будущем. Тем не менее существует подход, разрабатываемый лауреатом Нобелевской премии Герардом Хоофтом. Его идея базируется на существовании параллельной Вселенной, имеющей голографическую природу, которая транслируется в наш мир. Согласно расчётам голландского физика, пространство нашей Вселенной имеет пиксельную природу по аналогии с экраном жидкокристаллического телевизора или компьютера. При этом размер пиксела, т. е. кванта пространства составляет 10-16 метра, а это уже, в принципе, доступно для современной техники.
Апория «Стрела» в свете современных физических теорий
Вопросы, поставленные древнегреческими мыслителями, остаются актуальными и в настоящее время. Логика Зенона вскрыла парадоксальную природу пространственно-временной реальности. Его апория «Стрела» обнаруживает иллюзорность обыденных представлений о свойствах пространства и времени. Зенон показывает, что рассуждения о движении постулируют вывод прямо противоположный нашему чувственному опыту. В этой апории утверждается, что летящая стрела покоится, и её движение является заблуждением, порождаемым нашими органами чувств. Его доказательство выглядит довольно необычным. Пусть стрела летит из точки А в точку С, и на своём пути она проходит точку B. Возникает вопрос, когда стрела проходит точку B, она находится в точке В? Казалось бы, ответ является очевидным: а где же ей ещё находиться… Между тем Зенон делает ошеломляющий вывод о том, что если стрела находится в точке В, значит она покоится. Тогда всё пространство на интервале АС можно представить как совокупность точек состояний покоящейся стрелы. Движение стрелы отсутствует.
Для опровержения этой логики необходимо допустить, что в какой-то момент времени стрела вообще не находится в пространстве, и что само пространство нельзя рассматривать как совокупность точек, не имеющих измерения. Самое главное, что пространство не является чем-то фундаментальным, каким оно воспринимается нашими чувствами и описывается такими теориями, как квантовая механика и теория относительности.
Каким же образом можно представить состояние стрелы, которая в определённый момент времени не должна находиться в пространстве? Ответ можно найти в квантовой механике, описывающей физику микромира. Природа микрофизической реальности носит вероятностное соотношения импульса объекта и его положения в пространстве. Поскольку положение не определено, то объект может обнаруживать себя, исчезая в одной точке пространства и возникая в любой другой, определяемой вероятностью его появления. Это так называемый туннельный эффект, являющийся следствием необычности квантового мира. За его экспериментальное подтверждение Джефферсон получил Нобелевскую премию. Он взял проводник электрического тока, разрезал его и поместил между двумя концами тончайший слой изолятора. Как известно, изолятор не проводит электрический ток, и в макромире так бы и случилось. Тем не менее ток через изолятор прошёл, электроны туннелировались через препятствие. Ещё более наглядную демонстрацию туннельного эффекта провели отечественные физики. Они поместили внутри световода тончайшее зеркало. Как известно, зеркало отражает свет, и он не может пройти через него. Однако лазерный луч миновал зеркало, сохранив закодированную в нём информацию, поскольку фотоны осуществили эффект туннелирования. Поэтому туннельный эффект частично разрешает парадокс Зенона, так как объект исчезает в одной точке пространства и появляется в другой, за счёт чего и происходит движение.
В современных физических теориях, описывающих микромир, пространство не может рассматриваться как бесконечная совокупность точек. В них постулируется существование кванта пространства и времени. Для пространства он составляет 10-35 метра, а для времени 10-44 секунды. Следовательно, пространство и время квантованы и только до этих масштабов сохраняют известные нам свойства. Более того, и само пространство состоит как бы из пикселов по аналогии с дисплеем компьютера. Исходя из голографической и информационной теорий, немецкий физик Хоофт пришёл к выводу, что кванты пространства нашей Вселенной имеют больший размер и составляют 10-16 метра. За счёт вероятностной природы возникает неопределённость на микроуровне самого пространства, что порождает «шум», который мешал регистрации гравитационных волн. Если само пространство имеет неопределённость, то и положение объекта не определено. В теории суперструн возможны нарушения непрерывности пространства, возникновения разрывов и «дырок», поскольку пространство представляет собой жёсткую и упругую среду. Попадая в такие разрывы, микрообъект может исчезать в них. Постулирование многомерности, гравитационных аномалий, возникновение червоточин также может приводить к исчезновению объекта и возникновению его в пространстве и даже в другом времени. Возможно эти механизмы и объясняют туннельный эффект, позволяющий разрешить парадокс Зенона «Стрела».
Ещё более необычными, но открывающими новые воззрения на природу пространства и времени, а также и движение, выглядят физические представления о нефундаментальности собственно пространства и времени. Пространство с этой точки зрения носит эмерджентный характер и порождается другой реальностью. В теории петлевой гравитации, альтернативной теории суперструн, пространство и время состоят из дискретных компонентов, называемых «кусками или атомами пространства-времени». При этом атомы пространства-времени объединены в сеть, соединяющую их одномерными и двухмерными поверхностями. Окружающее нас пространство выглядит как трёхмерный континуум, но на самом деле упаковано и пересекается атомами пространства-времени. Согласно струнной теории, пространство возникает из, казалось бы, несвязанной системы в виде квантовой запутанности подобно тому, как на дороге образуются пробки, благодаря коллективному решению водителей. Сами автомобили не есть движение, оно порождается движением автомобилей.
Под запутанностью понимается взаимодействие объектов, при котором между ними возникает взаимосвязь, сохраняющаяся, пока они изолированы от остального мира, и находятся независимо далеко друг от друга. Эйнштейн называл это «жутким действием на расстоянии».
Именно запутанность обеспечивает удержание пространства и не даёт рассыпаться на отдельные фрагменты [7]. Так, непрерывность и связанность обеспечивают единство и основу пространственно-временного континуума. Если разрушить запутанность, то пространство развалится, и мир исчезнет. Следовательно, само пространство возникает из основополагающего квантового явления. С другой стороны, появление пространства и времени больше похоже на коллективное поведение песчинок песчаной дюны, формирующейся на ветру. Пространство-время происходит из квантов пространства-времени, которые как зёрна песка не демонстрируют свойств самой дюны. Согласно теории суперструн и петлевой гравитации, пространство и время производятся более фундаментальной реальностью.
Данные подходы не являются единственными. Наиболее продуктивной является теория голографической Вселенной, согласно которой объекты возникают в результате постоянной проекции, своего рода «проявления» из другой двухмерной Вселенной, имеющей голографическую природу. Данный подход позволяет объяснить квантовый эффект запутанности и целостности, в том числе самого пространства. На уровне этой первичной реальности действует принцип «всё во всём», где каждая часть воспроизводит структуру целого, в том числе это относится и к самому пространству, демонстрируя инвариантность относительно масштабирования. Трансляция, своего рода проекция этой фундаментальной реальности, постоянно порождает пространство-время и объекты нашей Вселенной. Задача науки исследовать механизмы трансляции и физические способы воздействия на неё. Апории Зенона, открывшие парадоксы пространства-времени и движения привели к фантастическим теориям и поставили вопрос, насколько иллюзорна наша реальность, размышления над которым и способствовали развитию физики.
Играет ли Бог в кости?
Вопрос заключается в том, что либо объективная реальность это во многом следствие генерации случайных процессов, либо это наше незнание механизмов её порождающих. Особенностью случайности является её вероятностная природа и непредсказуемость в конкретных реализациях. Но что тогда есть реальность? Имеет ли она вероятностную природу, или Бог не знает результаты своей деятельности, поскольку Он играет в кости. Значит в действительности или не всё подконтрольно Богу, или природа случайности заключается всего лишь в нашем незнании.
Эти две сформулированные философские концепции являлись предметом спора выдающихся физиков XX века Альберта Эйнштейна и Нильса Бора о природе микромира. Бор считал, что микромир имеет вероятностную природу и объективный характер. Эйнштейн, напротив, полагал, что за фасадом случайности скрываются фундаментальные закономерные процессы, где никакая непредсказуемость существовать не может.
Спор двух гениев во второй половине XX века обрёл научно-техническую возможность выяснить, какая из этих кардинальных позиций верная. Джон Стюарт Белл сформулировал теорию скрытых параметров, позволяющую избежать схоластики и экспериментально проверить данные концепции. Французский физик Ален Аспе (Alain Aspect) и его последователи осуществили эксперименты, которые позволили установить истинность этих позиций. Если прав Эйнштейн, то степень скоррелированности процессов в микромире имеет меньше значение, если оно высокое, то прав Бор.
Два фотона, генерируемые из одного источника, находясь в состоянии суперпозиции, движутся в противоположных направлениях к поляризационным плёнкам. Вероятность успешно миновать плёнку для каждого составляет 50/50, однако в эксперименте либо они оба пролетают преграды, либо ни один из них. Третьего варианта не регистрировалось [8].
Результаты опыта Аспе и других исследователей подтвердили позицию Бора. Интересно, что на уровне макромира этот эксперимент выглядел бы следующим образом. Представим двух людей, сидящих спинами друг к другу и одновременно бросающих монеты. Если у них постоянно и одновременно выпадает, то орел, то решка – прав Бор. Если иначе, то прав Эйнштейн.
Тем не менее, не всё так однозначно. Существуют случайные процессы (правильнее их называть псевдослучайными), которые заключаются в генерации псевдослучайных чисел с помощью компьютерных алгоритмов, например, в программе Excel. Однако они не имеют никакой случайности, и всё же в конкретных последовательностях соответствуют ей. Это чёткие алгоритмы, математические формулы, в которых на самом деле нет случайности, но они проходят все тесты на её реализацию. Принимаются именно как случайные, как будто были получены в результате бросания игральных костей или оборота колеса рулетки. Эти числа имеют случайное распределение при определённых ограничениях, широко используются в науке и технике, но они детерминированы. Существует возможность, что и в природе есть некие скрытые механизмы, так же, как и в искусственной генерации псевдослучайных чисел, которых мы пока просто не знаем.
Кроме этого, есть голографическая модель реальности, согласно которой, всё, что существует в нашей Вселенной, есть проекция другой двухмерной Вселенной, имеющей голографическую природу, где случайности нет. Она имеет сложную квазипериодическую основу, состоящую из комплекса многих колебаний, но которые, в принципе, расчётны. И хаоса там нет и быть не может.
В таком случае наш мир возникает в результате трансляции параллельной Вселенной, и, зная первичную голографическую реальность, обладая алгоритмами реализации, можно понять, предсказать или устранить случайность. Тогда победа в споре остаётся за Эйнштейном, а значит, случайностей в нашем мире не существуют. Бог не играет в кости…
«Вещь в себе» и квантовомеханическая интерпретация реальности
Иммануил Кант был не только выдающимся философом, но и физиком, который на 100 с лишним лет предвосхитил основное положение физики микромира. Речь идёт о его понимании реальности и её взаимодействии с человеческим субъектом. Основные положения этого изложены в его труде «Критика чистого разума», вышедшего в свет в 1781 году.
И. Кант утверждал, что вещи существуют вне и независимо от человеческого субъекта, которые он называл «вещами в себе». На самом деле, кроме уже отмеченной, есть по крайней мере три трактовки, чем они являются. Это то, что остаётся непознанным в явлении, а также то, что лежит в трансцендентной сфере, находящейся за пределами нашего опыта и наконец то, что представляет идеал безусловного познания [9]. Почему же Кант считал, что «вещи в себе» непознаваемы?
Он исходил из положения о взаимодействии «вещей в себе» с чувственностью человеческого субъекта. Основными формами, по его мнению, являются пространство и время, а не ощущения и восприятие, т. е. пространство и время не есть атрибуты внешнего мира, присущие объектам. Поэтому «вещам в себе» нельзя приписывать их свойства. Они ими не обладают. Результат взаимодействия порождает явления, но они не открывают нам подлинного существования объектов внешнего мира. Кант приводит пример: «Предположим, что вы укололись иглой и почувствовали боль, но боль и игла – это разные вещи», т. е. формы чувственности, взаимодействующие с объектами, видоизменяют их свойства, и отделаться от этого невозможно.
При этом даже рациональные способности, такие как рассудок и разум, здесь не помогут. Они предназначены лишь для обработки материала явлений чувственной сферы и не могут выйти за её пределы. Если разум, оперирующий идеями и принципами, попытается выйти в трансцендентные сферы, то он запутается в противоречиях.
С чем же столкнулась физика на рубеже XX века, когда стала изучать микромир? Оказалось, что микрофизические объекты проявляли свойства волн или частиц в зависимости от того с какими приборами они взаимодействовали. Возник так называемый квантовый дуализм, некий кентавр, несущий в себе противоречие. Действительно, волна непрерывна, а частица дискретна. Как один и тот же объект может обладать такими двойственными свойствами?
Датский физик Нильс Бор вышел из этой ситуации, сформулировав принцип дополнительности, согласно которому всё зависит от взаимодействия микрообъекта с приборами. Приборы вмешиваются в состояния объекта и видоизменяют его. Отделаться от их влияния невозможно, поэтому разные приборы и по-разному проявляют эффект этого взаимодействия [10]. В связи с этим приписывать самим микрообъектам свойства либо волн, либо частиц неправомерно, они такими свойствами не обладают. На вопрос о том, а как же всё-таки микрообъекты выглядят без приборов, ответ Н. Бора был таков: «Мы не знаем, поскольку нет средств установить это». Ну и чем данное положение в принципе отличается от учения И. Канта о «вещах в себе»?
Формулировка немецким физиком Вернером Гейзенбергом принципа неопределённости ещё более запутало картину микрофизической реальности и привело к странным и во многом необъяснимым эффектам. Принцип неопределённости основывается на вероятностном понимании явлений микромира, в частности, пространственного и импульсного описания микрофизических явлений. Если, скажем, пространственное положение объекта не определено, то он может обнаруживать свою локализацию в определённой сфере, что ведёт к туннельному эффекту. Если поместить тонкое зеркало внутри световода, то фотоны пройдут через него и пронесут с собой информацию. Поскольку их положение не определено, то они туннелируются через препятствие. Долгое время считалось, что принципы дополнительности и неопределённости органично связаны между собой, однако в настоящее время установлено, что они имеют самостоятельное значение.
В 1936 году физики пришли к консенсусу, определившему, что оба подхода к определению микрообъектов имеют равноправный, хотя и противоречивый характер. Действительно, для описания волновых свойств используется уравнение Шрёдингера или преобразование Фурье, в то время как для описания частиц необходимо применять матричное исчисление. Математика оказывается совершенно различной.
Понимание того, что квантовые явления находятся в состоянии суперпозиции и демонстрирует их запутанность. Так, если микрообъекты находятся в этих состояниях и, даже если в пространстве они разделены огромными расстояниями, то воздействие на один объект приводит к мгновенному изменению параметров другого объекта. Это получило название принципа нелокальности. До сих пор более-менее внятного объяснения этому феномену нет, поскольку современная наука почему-то считает, что никакое физическое взаимодействие не может распространяться быстрее скорости света.
Возможно, физика XXI века сумеет разрешить эти парадоксы, и агностицизм И. Канта и Н. Бора будет преодолён. Если концепция голографической Вселенной окажется верной, то указанные противоречия могут быть легко объяснимы, и наконец удастся узнать, как выглядит микрофизическая реальность без приборов. Но это будет уже совсем другая наука.
Суперструны как предтеча новой теории Всего
Триумф физики заключается в создании теории относительности, описывающей физические процессы в макромире и квантовой механике, открывающей природу микромира. Несмотря на то, что эти концепции очень точны, попытка их объединения наталкивается на серьёзные методологические трудности, приводящие к парадоксам. Квантовая теория в лице стандартной модели универсальным образом описала и объединила три вида физических взаимодействий: электромагнитное, слабое и сильное ядерное, получив надёжное подтверждение в проведённых экспериментах. Между тем присоединить в рамках этой теории гравитацию до сих пор не удалось. В общей теории относительности гравитация рассматривается как кривизна пространства, в то же время в квантовой механике гравитационной волне как ряби пространства-времени должна соответствовать частица, называемая гравитоном. Построить объединённую теорию, базирующуюся на квантовой гравитации, до сих пор не удаётся. Дело в том, что на микроуровне из-за соотношения неопределённостей рождаются виртуальные частицы. В масштабах размеров меньше порядка 10-15 метра их энергии огромны, что приводит к резким деформациям, а по сути, к вспениванию пространства. В этих условиях математический аппарат квантовой механики перестаёт работать, поскольку в рамках данной теории предполагается, что пространство плоское, т. е. евклидово. Такое парадоксальное противоречие требует пересмотра одной из теорий или отказу от них обеих с заменой на концепцию с более фундаментальным пониманием реальности.
Перспектива в этих исследованиях появилась в 80-х годах прошлого века, когда М.Б. Грином была предложена так называемая теория суперструн. Согласно этой теории, пространство не рассматривалось как совокупность точек, что характерно для квантовомеханических представлений, а имело определённый размер, соответствующий предельному значению 10-35 метра. Другим важным концептуальным подходом явился отказ от трёхмерной пространственной метрики и постулирование многомерного пространства, в частности имеющего девять измерений и время. Более того, предполагалось, что эти пространственные измерения находятся в свёрнутом определённым способом состоянии. В момент Большого взрыва шесть измерений расширились и продолжают расширяться, что характерно и для сегодняшнего состояния Вселенной. В некоторых аспектах этой теории остальные шесть компактифицированных измерений, наоборот, продолжают сворачиваться. Вместо точечного представления частиц постулируется единый объект – суперструна, размеры которой составляют 10-35 метра, а сила натяжения, похожего на струну этого объекта, составляет 1019 Гэв или 1039 тонн. Спектр колебаний, взаимодействующей с пространством суперструны, порождает всё многообразие мира элементарных частиц и предсказывает, что если любое направление спина частицы рассматривать как отдельное с безмассовым состоянием, то всего будет 8064 безмассовых и 18 883 584 с наименьшей, отличной от нуля массой состояний. В теории суперструн гравитация действует в расширенном до девяти пространственных и одного временного измерения. Как и в теории относительности, движение совершается по кратчайшим траекториям, называемым геодезическими, только теперь это поверхность в десятимерном пространстве-времени [11].
В рамках этой теории рассматриваются два вида струн – открытых и замкнутых. Открытые струны имеют концы, с которыми связаны соответствующие заряды. Их колебания порождают безмассовые частицы со спином 1. Открытые струны могут сталкиваться своими концами, порождая третью струну. В то же время она может разорваться, породив пару новых открытых струн. Возможно соединение концов открытой струны, что приводит к образованию замкнутой струны. Колебания замкнутой струны включают безмассовый гравитон со спином 2. Любая теория с открытыми струнами предполагает наличие замкнутых струн, и теории с замкнутыми струнами не могут пренебречь гравитацией. Безмассовые состояния в теории суперструн содержат кроме гравитона частицы со спином 0 и 1/2, а также калибровочные частицы со спином 3/2, называемые гравитино. При энергиях меньше планковских безмассовые частицы тождественны объектам в квантовой теории супергравитации.
Важным моментом в теории суперструн является взаимодействие струнных объектов с пространством. Это приводит к топологическому многообразию пространственных форм. В пространстве могут возникать разрывы, нарушаться непрерывность, меняться связанность, что характеризуется возникновением «дырок». Если струна навьётся на тор, то её колебания проявятся как массивные магнитные монополи. Если теория относительности геометризировала физику, сведя гравитацию к метрическому показателю кривизны, то современная физика всё более топологизируется и требует учёта не только метрических свойств пространства, но и качественных, таких как размерность, связанность, ориентированность, включая всю палитру топологического многообразия.
В настоящее время теория суперструн критически пересматривается. Тому есть несколько причин. Прежде всего, отсутствует возможность её экспериментальной проверки, так как необходимые энергии не могут быть получены на современных ускорителях. Поэтому учёные рассматривают эту теорию как разработанный инструмент для дальнейших исследований. Так, по мнению американских исследователей, есть нечто более фундаментальное, из чего возникает пространство и время. В качестве таковой выдвигается идея параллельной голографической Вселенной, из двухмерного состояния которой в виде проекции, и возникает наш мир. Как отмечает Малдасена, для тестирования квантовой гравитации следует обратиться к космологии. Очевидно, именно там и присутствует то, что сегодня неизвестно и непонятно. В то же время лабораторные эксперименты могут пригодиться, если удастся найти удачные аналогии. А пока вопросы о том «Что есть пространство?» и «Что есть время?» остаются актуальными со времён древних греков.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?