Электронная библиотека » Крис Импи » » онлайн чтение - страница 1


  • Текст добавлен: 13 февраля 2020, 10:42


Автор книги: Крис Импи


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 1 (всего у книги 19 страниц) [доступный отрывок для чтения: 6 страниц]

Шрифт:
- 100% +

Крис Импи
Чудовища доктора Эйнштейна: О черных дырах, больших и малых

Переводчик Наталья Кияченко

Научный редактор Дмитрий Вибе, д-р физ. – мат. наук

Редактор Ирина Сисейкина

Руководитель проекта И. Серёгина

Корректоры Е. Аксёнова, О. Петрова

Компьютерная верстка К. Свищёв

Дизайн обложки Ю. Буга

Иллюстрация на обложке из фотобанка shutterstock.com


Все права защищены. Данная электронная книга предназначена исключительно для частного использования в личных (некоммерческих) целях. Электронная книга, ее части, фрагменты и элементы, включая текст, изображения и иное, не подлежат копированию и любому другому использованию без разрешения правообладателя. В частности, запрещено такое использование, в результате которого электронная книга, ее часть, фрагмент или элемент станут доступными ограниченному или неопределенному кругу лиц, в том числе посредством сети интернет, независимо от того, будет предоставляться доступ за плату или безвозмездно.

Копирование, воспроизведение и иное использование электронной книги, ее частей, фрагментов и элементов, выходящее за пределы частного использования в личных (некоммерческих) целях, без согласия правообладателя является незаконным и влечет уголовную, административную и гражданскую ответственность.


© Chris Impey, 2019

© Издание на русском языке, перевод, оформление. ООО «Альпина нон-фикшн», 2020

* * *

Посвящается Дине, любимой и вдохновляющей



Эта книга издана в рамках программы «Книжные проекты Дмитрия Зимина» и продолжает серию «Библиотека «Династия». Дмитрий Борисович Зимин – основатель компании «Вымпелком» (Beeline), фонда некоммерческих программ «Династия» и фонда «Московское время».

Программа «Книжные проекты Дмитрия Зимина» объединяет три проекта, хорошо знакомые читательской аудитории: издание научно-популярных переводных книг «Библиотека «Династия», издательское направление фонда «Московское время» и премию в области русскоязычной научно-популярной литературы «Просветитель».

Подробную информацию о «Книжных проектах Дмитрия Зимина» вы найдете на сайте ziminbookprojects.ru.

О звезды, с неба не струите света

Во мрак бездонный замыслов Макбета![1]1
  Пер. Ю. Корнеева.


[Закрыть]

Уильям Шекспир. Макбет. Акт 1, сцена 4


Предисловие

Черные дыры – самые известные и самые загадочные объекты Вселенной. Используя этот термин в обычной жизни, мы представляем нечто втягивающее в себя все вокруг. О черных дырах говорят в фильмах и романах, этот образ освоила и поп-культура. Черная дыра стала олицетворением тайны – зловещей тайны. Я метафорически называю их «чудовища Эйнштейна». Это мощные силы, не подвластные никому. Черные дыры придумал не Эйнштейн, но именно он предложил лучшую на сегодняшний день теорию гравитации, которую мы используем для того, чтобы понять их суть[2]2
  Это также отсылка к сборнику коротких рассказов британского писателя Мартина Эмиса об угрозе ядерной войны. Имеется в виду уравнение Эйнштейна E = mc2, описывающее колоссальную мощь, заключенную в ядре атома. См.: Martin Amis, Einstein’s Monsters (London: Jonathan Cape, 1987).


[Закрыть]
.

Распространенное среди большинства людей понимание черных дыр в корне неверно. Это не космические пылесосы, поглощающие все вокруг. Черные дыры лишь искривляют пространство и время в непосредственной близости у горизонта событий. На черные дыры приходится малая доля массы Вселенной, и ближайшие находятся в квинтиллионах километров от нас. Едва ли их можно использовать для путешествий во времени или полетов в другие вселенные. Мало того, черные дыры – даже не черные! Они испускают поток излучения и элементарных частиц и, по сути, являются частями бинарных систем, в которых газ, падающий в черную дыру, нагревается и ярко светится. Черные дыры необязательно опасны. Оказавшись в центре одной из многочисленных галактик, вы провалитесь в черную дыру и, скорее всего, ничего не почувствуете, хотя вряд ли вам удастся рассказать об увиденном.

Эта книга познакомит вас с черными дырами, большими и малыми. Черные дыры кажутся простыми объектами, но математика, необходимая для их понимания, невероятно сложна. Мы познакомимся с учеными, рассказавшими человечеству о черных дырах: от смелых мыслителей прошлого, которые сотни лет назад задумались о существовании черных звезд, до физиков, ломающих голову над общей теорией относительности – и не только.

Понять, что такое черные дыры, невозможно без общей теории относительности Эйнштейна, разработанной более 100 лет назад. Согласно этой теории, пространство и время искривляются материей. В случаях экстремально высокой концентрации массы область пространства буквально «выдавливается» из Вселенной и ничто не может прорваться наружу, даже свет. Это и есть черные дыры. Однако сам Эйнштейн сомневался в их реальности. И не он один – многие выдающиеся физики оспаривали их существование.

Тем не менее они существуют. В течение 40 лет накапливались доказательства того, что никакие силы природы не могут противостоять гравитационному коллапсу ядра умершей массивной звезды. Газовый шар – в десятки раз больше Солнца – схлопывается в темный объект размером с небольшой городишко. Не так давно выяснилось, что в центре каждой галактики имеется массивная черная дыра – массы таких дыр могут различаться в миллиарды раз.

Изучая «места обитания» черных дыр, мы познакомимся с бинарными системами, где черная дыра кружится в гравитационном вальсе с нормальной звездой. Мы узнаем, что самое убедительное доказательство существования черных дыр находится в центре нашей Галактики, где десятки звезд роятся, как разъяренные пчелы, вокруг темного объекта весом 4 млн солнечных масс. Когда массивные черные дыры, имеющиеся во всех галактиках, выходят из спячки и начинают расти, их видно с расстояния в миллиарды световых лет. Эти гравитационные механизмы являются самыми мощными источниками излучения во Вселенной.

Недавно физики научились смотреть «глазами гравитации», регистрируя гравитационные волны. При столкновении две черные дыры вызывают колебания пространственно-временного континуума, распространяющиеся повсюду со скоростью света и несущие информацию о случившейся катастрофе. Появился новый метод изучения черных дыр – как и любых других ситуаций, для которых характерна сильная и изменчивая гравитация. Существование гравитационных волн доказывает – если вам еще нужны какие-то доказательства – тот факт, что природа создает черные дыры. Каждые пять минут где-то во Вселенной сливается пара черных дыр, и гравитационные волны распространяются по космосу.

Наши знания о черных дырах все еще довольно скудны. Эти объекты продолжают изумлять и восхищать нас. Благодаря черным дырам появляются новые способы проверки общей теории относительности. Никто не знает, подтвердится ли в итоге теория – или будет опровергнута. Вопросы, касающиеся потери информации в черных дырах, ее возможного кодирования на горизонте событий вызывают яростные споры. С помощью черных дыр физики-теоретики надеются подтвердить теорию струн, завершить наконец попытку Эйнштейна объединить квантовую механику и общую теорию относительности.

Книга состоит из двух частей. В первой рассматриваются доказательства существования черных дыр всех размеров: от тех, что слегка больше Солнца, до гигантов массой с небольшую галактику. Вторая часть рассказывает о том, как рождаются и умирают черные дыры. В ней также приведено объяснение того, насколько применимы к небесным объектам наши теории природы. Рассказы о черных дырах перемежают и некоторые частные истории, в том числе и мои собственные, и их цель – напомнить нам, что ученые – это люди из плоти и крови, со своими недостатками и слабостями. Описываемая мною область науки стремительно развивается. И потому некоторые изыскания, приведенные в этой книге, могут не выдержать испытания временем. По этой причине могут возникнуть ошибки, упущения и неверные сведения – и я отношу их исключительно на свой счет.

Можно представить, что разумные жители миллиардов обитаемых миров логически пришли к выводу о существовании черных дыр. Возможно, некоторые научились создавать их и пользоваться их энергией. Мы, люди, хоть и молодой биологический вид, но с гордостью причисляем себя к избранным, постигшим тайны черных дыр.

Крис Импи,
Таксон, Аризона,
апрель 2018 г.

Часть I. Свидетельства существования черных дыр, больших и маленьких

Откуда ученые взяли идею черной дыры? В этой части книги мы рассмотрим, как развивалась научная мысль: начнем с ньютоновской теории гравитации и продолжим обсуждение теории общей относительности Эйнштейна. Сегодня мы знаем, что у черной дыры есть два основных компонента: горизонт событий, действующий как информационный барьер, и сингулярность – центральная точка бесконечной плотности вещества. Многие выдающиеся физики, включая самого Эйнштейна, противились самой мысли о столь причудливом состоянии материи. Но тем не менее было доказано, что ядро массивной звезды может коллапсировать до плотности, не пропускающей ни частицы, ни излучение.

Если бы физики-теоретики довольствовались красотой математического аппарата общей теории относительности, они не сомневались бы в существовании черных дыр. Однако наука эмпирична. Астрономы решили выследить этого неуловимого зверя. Но только после появления рентгеновской астрономии – и спустя десятилетие после смерти Эйнштейна – ученые сумели разглядеть горячий аккреционный диск и двойные релятивистские джеты, образующиеся при поглощении черной дырой газа из окружающего пространства Вселенной. Сложно охотиться за мертвыми темными звездами. За 50 лет работы удалось обнаружить лишь три десятка остатков звезд, которые однозначно можно считать черными дырами. Это ближайшие из предположительно десяти миллионов черных дыр, разбросанных по галактике Млечный Путь. И такие свидетельства копились и систематизировались – в итоге астрономы пришли к удивительному открытию: оказалось, что в центрах галактик прячутся массивные черные дыры. И, поглощая материю, они становятся самыми яркими объектами во Вселенной.

1. Сердце тьмы

Ученые – оптимисты. Они верят в предсказательную силу теорий, например теории относительности и естественного отбора. Они полагают, что стремительное развитие физики, астрономии и биологии – чему мы были свидетелями в течение нескольких десятилетий – продолжится и тогда наука сможет объяснить непознанное в мире природы.

Но что, если на пути ученых возникнет непреодолимое препятствие? Возможно ли, чтобы космос прятал от нашего пытливого взгляда, допустим, криптообъекты? Более того, что, если таинственные сущности, о которых мы имеем представление благодаря выдающимся теориям в сфере физики, продемонстрировали бы свойства, ставящие под сомнение верность этих теорий? Добро пожаловать в мир черных дыр.

Английский священник выдумывает темные звезды

По воспоминаниям современников, Джон Мичелл был «маленьким, толстым темнолицым коротышкой». Большую часть сознательной жизни он прослужил приходским священником в маленьком городке на севере Англии. Однако в его доме часто бывали знаменитые мыслители той эпохи, такие как Джозеф Пристли, Генри Кавендиш и Бенджамин Франклин, поскольку Мичелл был к тому же разносторонним и успешным ученым. История недооценила этого скромного человека, жившего тихой жизнью священника.

В Кембриджском университете Мичелл изучал – а позднее и преподавал – математику, а также древнегреческий и древнееврейский языки. Он заложил основы сейсмологии, выдвинув предположение, что землетрясения в толще Земли распространяются в виде волн. Это открытие стало для него пропуском в Королевское научное общество. Именно Мичелл разработал оборудование для эксперимента, впоследствии позволившее Генри Кавендишу измерить гравитационную постоянную – фундаментальную физическую константу, лежащую в основе любых расчетов силы гравитации. Мичелл же первым применил статистические методы в астрономии в попытке доказать, что многие наблюдаемые пары и группы звезд связаны физически, а не просто случайно оказались рядом на ночном небе[3]3
  R. MacCormmach, Weighing the World: The Reverend John Michell of Thornhill (Berlin: Springer, 2012).


[Закрыть]
.

В полную силу научное провидение Мичелла реализовалось в его предположении, что некоторые звезды имеют мощнейшую гравитацию – непреодолимую даже для света. Он описал эту идею в статье 1784 г. с неудобочитаемым названием «О средствах открытия удаленности, величины и прочего неподвижных звезд посредством уменьшения скорости их света в случае, если будет обнаружено, что таковое уменьшение имеет место для любой из них, и если будут получены путем наблюдения другие данные, потребные для этой цели»[4]4
  J. Michell, Philosophical Transactions of the Royal Society of London 74 (1784): 35–57.


[Закрыть]
.

Для пересказа статьи понадобится немногим больше слов, чем использовано в ее названии. Мичелл принял идею второй космической скорости и тот факт, что она определяется массой и размером звезды. Как и Исаак Ньютон, он полагал, что свет – это частица, и, решив, что свет замедляется гравитацией звезды, он задумался: что, если звезда настолько массивна, а ее гравитация настолько сильна, что вторая космическая скорость равна скорости света? На основе этого Мичелл предположил, что существует множество «темных звезд», которые невозможно обнаружить, потому что их не покидает свет[5]5
  S. Schaffer, “John Michell and Black Holes,” Journal for the History of Astronomy 10 (1979): 42–43.


[Закрыть]
.

Рассуждения Мичелла были ошибочны – но только потому, что он работал с ньютоновской физикой. В 1887 г. Альберт Майкельсон и Эдвард Морли доказали, что свет всегда распространяется с одинаковой скоростью, независимо от движения Земли[6]6
  Опыт Майкельсона и Морли представлял собой попытку обнаружить эфир – пронизывающую космос диффузную среду, гипотеза существования которой была предложена для объяснения распространения силы гравитации и электромагнитных волн. Этот знаменитый «неудачный» физический эксперимент показал, что свет приходит с одинаковой скоростью, независимо от движения Земли, перемещающейся вокруг Солнца со скоростью 30 км/с. Нулевой результат эксперимента сыграл основополагающую роль в формулировании специальной теории относительности. Новые данные исключают наличие переносящей свет среды с точностью до 1 из 1017.


[Закрыть]
. Лишь в 1905 г. Эйнштейн положил это открытие в основу своей специальной теории относительности, предположив, что скорость света не зависит от локальной силы гравитации. Ошибочным было и предположение Мичелла о том, что темные звезды в 500 раз больше Солнца, но имеют такую же плотность. Настолько массивных звезд просто не существует. Экстремальные эффекты гравитации проявляются лишь при высокой плотности, что случается, когда звезда типа Солнца сжимается до крошечных объемов.

Вклад великого французского математика

Спустя десятилетие после того, как Мичелл выдвинул свое предположение о темных звездах, французский ученый и математик Пьер-Симон Лаплас высказался на ту же тему в своей книге «Изложение системы мира»[7]7
  Лаплас П. С. Изложение системы мира. – Л.: Наука, 1982.


[Закрыть]
. Лаплас был более известен, чем Мичелл, – он значился президентом Института Франции и советником Наполеона, удостоился титула графа, а затем маркиза. Как и Мичелл, Лаплас изучал теологию и происходил из религиозной семьи, но зов математики оказался сильнее зова Бога.

Лаплас, очевидно, не знал о работе Мичелла. В двухтомном труде по астрономии он кратко упоминает идею темной звезды, и, по его мнению, гравитация этой гипотетической звезды намного сильнее, чем у Солнца: «…Следовательно, не исключено, что самые большие из светящихся тел являются по этой причине невидимыми». Коллега потребовал у Лапласа математическое доказательство этой гипотезы, и три года спустя, в 1799 г.[8]8
  C. Montgomery, W. Orchiston, and I. Whittington, “Michell, Laplace, and the Origin of the Black Hole Concept,” Journal of Astronomical History and Heritage 12 (2009): 90–96.


[Закрыть]
, оно было представлено. Расчеты Лапласа – как и расчеты Мичелла – оказались ошибочными, причем по одной и той же причине. Самой плотной субстанцией, известной в те времена, было золото – в пять раз плотнее Земли и в 14 раз плотнее Солнца. Вероятно, ученый того времени с трудом мог представить, каким будет состояние в миллионы раз более плотной материи, а это необходимо для современного понимания черной дыры (илл. 1). В 1799 г. Томас Юнг сумел доказать, что свет ведет себя как волна, но то, что гравитация может замедлить волну, представлялось невероятным. Возможно, именно поэтому Лаплас исключил всякое упоминание о темных звездах из последующих изданий своей книги.



Концепция черных дыр не могла появиться без новой теории гравитации. Теория Ньютона проста: пространство равномерно и линейно и простирается бесконечно во всех направлениях. Время равномерно и линейно и течет в бесконечное будущее. Пространство и время самостоятельны и независимы. Звезды и планеты движутся в пустом пространстве, управляемые силой, которая зависит от их масс и расстояний между ними. Такова красивая модель Вселенной Ньютона[9]9
  В студенческие годы, изучая физику в Лондоне, я ездил в Кембридж, пытаясь постичь личность Исаака Ньютона. Я хотел понять, что за человек стоит за уравнениями. Коллега провел меня в комнаты Ньютона в Тринити-колледже. В его кабинете с узкими арочными окнами и панелями из темного дерева было сумрачно даже в полдень. Я читал, что он решал проблемы, «непрестанно размышляя о них», и мой сопровождающий рассказал об одном из редких случаев, когда Ньютон принимал гостей. Он пошел в кладовую за бутылкой портвейна, заметил на столе неоконченные расчеты и занялся ими. Забытые гости тихонько удалились.
  Во дворе я прошел по засыпанным гравием дорожкам, где 300 лет назад Ньютон чертил схемы тростью. Члены колледжа привыкли перешагивать через них, если заставали гения за работой. Во второй половине дня я поехал в дом в Вулсторп Мэнор, где прошло детство Ньютона. Его часто отправляли в соседнюю деревню с поручениями или просили отвести подковать коня. Через несколько часов мать находила его на мосту, где он стоял, уставившись на воду, уйдя в свои мысли: поручения забыты, конь куда-то убрел. Я был рад увидеть за домом яблоневый сад.


[Закрыть]
.

Ричард Уэстфолл, биограф Ньютона, и сам был блестящим ученым. Он сказал: «Окончательный результат моего изучения Ньютона привел меня к убеждению, что к нему неприменима никакая мерка. Он стал для меня совершенно особым человеком, одним из малого числа величайших гениев, определивших категории человеческого интеллекта, человеком, неподвластным критериям, по которым мы оцениваем своих ближних»[10]10
  Из предисловия к кн.: Richard S. Westfall, Never at Rest: A Biography of Isaac Newton (Cambridge, UK: Cambridge University Press, 1983).


[Закрыть]
. Однако даже Ньютон – со своим исключительным мышлением – не сумел до конца разгадать загадку гравитации. Он не мог объяснить, каким образом она работает в вакууме, будучи невидимой и действуя мгновенно. Ньютон признал это в своем великом труде о гравитации «Математические начала натуральной философии» (1687)[11]11
  Ньютон И. Математические начала натуральной философии. – М.: Наука, 1989.


[Закрыть]
: «Я не смог обнаружить причины этих свойств гравитации в наблюдаемых феноменах, и я не формулирую никакой гипотезы».

Понимание ткани пространства и времени

Альберт Эйнштейн, 26-летний клерк патентного бюро в Берне, опроверг систему Ньютона. В 1905 г. Эйнштейн написал четыре статьи, которым суждено было изменить устоявшиеся представления о физике[12]12
  J. Stachel et al., Einstein’s Miraculous Year: Five Papers That Changed the Face of Physics (Princeton: Princeton University Press, 1998).


[Закрыть]
. В одной из статей он рассмотрел фотоэлектрический эффект – высвобождение электронов под воздействием солнечного света на вещество. Он утверждал, что свет ведет себя как частица, перенося энергию дискретными порциями – квантами. Именно эта работа принесла Эйнштейну Нобелевскую премию, а не его более знаменитые теории относительности (илл. 2). Эксперименты Томаса Юнга и других ученых достоверно подтвердили, что для света характерны явления дифракции и интерференции, и физикам пришлось согласиться с тем, что свет одновременно подобен и волне, и частице.

В другой небольшой статье было предложено самое краткое уравнение физики: E = mc2. Это означает, что масса и энергия эквивалентны и взаимозаменяемы. Поскольку скорость света с очень велика, крохотная масса может быть превращена в колоссальную энергию. Масса представляет собой своего рода «замороженную» форму энергии – этим объясняется невероятная мощь ядерного оружия. И наоборот, энергии соответствует крохотная эквивалентная масса. Согласно этому уравнению, фотоны действительно могут испытывать влияние гравитации.

В третьей статье изложена специальная теория относительности. Теория строится на идее Галилея, гласящей, что законы природы должны быть одинаковыми для всех наблюдателей, движущихся с постоянной скоростью относительно друг друга. Эйнштейн добавляет второе положение: скорость света не зависит от движения наблюдателя. Второе положение является фундаментальным, в подтверждение его можно провести мысленный эксперимент[13]13
  Мысленный эксперимент – мощный инструмент развития науки, восходящий к древнегреческой философии, способ задать гипотетический вопрос Природе. Галилей осуществил один из первых мысленных экспериментов в физике, размышляя о том, с какой скоростью падали бы разные тела, сброшенные с башни (вопреки расхожему мнению, он никогда не ставил его на практике). Эйнштейн с помощью мысленных экспериментов прорабатывал вопросы относительности, и ученые-физики начала XX в. часто использовали этот метод, пытаясь понять следствия квантовой теории материи.


[Закрыть]
. Вы направляете свет фонарика в сторону человека, находящегося очень далеко от вас. Он отмечает, что фотоны движутся к нему со скоростью 300 000 км/с – скоростью света. Предположим, теперь вы мчитесь навстречу ассистенту со скоростью, равной половине скорости света. Он по-прежнему будет наблюдать фотоны, движущиеся со скоростью света, а не со скоростью 450 000 км/с. Теперь предположим, что вы удаляетесь с той же огромной скоростью, – и снова наблюдаемые фотоны летят со скоростью света, а не со скоростью 150 000 км/с. Свет не подчиняется простой арифметике. Скорость света – универсальная постоянная, что подразумевает весьма важные выводы. Скорость есть расстояние, деленное на время; если скорость постоянна, то пространство и время должны изменяться. Когда объекты перемещаются очень быстро и приближаются к скорости света, они сжимаются в направлении движения и их время замедляется. Теория Эйнштейна утверждает, что свет – самое быстрое, что есть во Вселенной, и из этого следует, что объекты становятся массивнее, приближаясь к скорости света, что увеличивает их инерцию, вследствие чего они так и не смогут достичь или превзойти скорость света.



Но даже столь блестящая работа была для Эйнштейна лишь разминкой перед эпохальным трудом – общей теорией относительности. Общая теория позволила ученому перейти от идеи постоянного движения к движению с ускорением с учетом гравитации, отталкиваясь от другой догадки Галилея. Энциклопедист эпохи Возрождения доказал, что все объекты падают с одной и той же скоростью, независимо от массы. Это значит, что инертная масса (сопротивление объекта изменению его движения) равна гравитационной массе (тому, как объект реагирует на силу гравитации). Для Галилея это было случайным и необъяснимым совпадением, в котором Эйнштейн усмотрел ключ к новому пониманию гравитации.

Представьте, что находитесь в закрытом лифте, стоящем на первом этаже. Вы ощущаете свой нормальный вес; любой предмет, который вы уроните, ускорится до 9,8 м/с2. Так работает гравитация. Теперь представьте себя в герметичном ящике в космосе (внутри он выглядит как кабина лифта), которому космический корабль придал ускорение в 9,8 м/с2. В одной ситуации участвует гравитация, в другой – нет, но Эйнштейн понял, что никакой эксперимент не позволит их различить (илл. 3). Рассмотрим еще две ситуации. В одной вы заперты внутри лифта в глубоком космосе – вы парите в кабине в невесомости. В другой – лифт находится в высоком здании и после обрыва троса вертикально падает на дно лифтовой шахты. Эти две ситуации также невозможно отличить друг от друга. Гравитация неотличима от любой другой силы. Этот «принцип эквивалентности» является центральным в общей теории относительности Эйнштейна. Оказаться в оборвавшемся лифте, стремительно несущемся к земле, – катастрофа, но для Эйнштейна мысль о том, что падающий человек не почувствует своего веса, стала «счастливейшей».



Новая концепция гравитации Эйнштейна является геометрической. Уравнения общей теории относительности в определенной области соотносят массу и энергию с искривлением пространства. Плоское линейное пространство Ньютона с находящимися в нем объектами заменяется пространством, которое искривлено находящимися в нем объектами (илл. 4)[14]14
  Теория носит математический характер и устрашающе сложна, но имеется ряд научно-популярных введений в нее. К лучшим относятся R. Geroch, General Relativity from A to B (Chicago: University of Chicago Press, 1978); D. Mermin, It’s About Time: Understanding Einstein’s Relativity (Princeton: University of Princeton Press, 2005 и конечно, классическая работа Альберта Эйнштейна: Relativity: The Special and General Theory (New York: Crown, 1960). Биография Эйнштейна: A. Pais, Subtle is the Lord: The Science and Life of Albert Einstein (Oxford: Oxford University Press, 1982).


[Закрыть]
. Пространство и время связаны, следовательно, гравитация может искажать и время, и пространство. Физик Джон Уилер, который, как мы в дальнейшем узнаем, ввел термин «черная дыра», нашел лаконичную формулировку: «Материя указывает пространству, как искривляться. Пространство указывает материи, как двигаться». Эта идея отражена и в словах поэта Роберта Фроста, который неоднозначно воспринял открытия теории относительности. В сонете «Нам по сердцу любая геометрия» он приходит в ужас при мысли о бесконечности космоса, но искривление, характеризующее черную дыру, видится ему утешением:

 
Там мрак и холод – настоящий ад,
особенно рукам, пока раздельны.
Будь эта даль хоть чуть искривлена,
так руки – вместе – грелись бы, как братья.
Упрямая теория вредна
и не велит схватить себя в объятья[15]15
  Пер. Владимира Кормана. – Прим. пер.


[Закрыть]
[16]16
  The Sonnets of Robert Frost, edited by J.M. Heley (Manhattan, KS: Kansas State University, 1970).


[Закрыть]
.
 

Три эффекта общей теории относительности напрямую соотносятся с ситуациями, когда речь идет о плотной материи, то есть о черных дырах. Первый эффект – отклонение света в соответствии с волнистой структурой пространства-времени, что обусловлено концентрацией массы. Это стало первой и классической проверкой общей теории относительности Эйнштейна в 1919 г., через три года после публикации. Группа под руководством великого английского астрофизика Артура Эддингтона измерила слабое искривление света звезды, проходящего вблизи края диска Солнца. Измерение не было особенно точным, но подтверждение теории относительности сделало Эйнштейна знаменитым и вознесло его на вершины науки. В 1995 г. более точное измерение дало результат, совпавший с предсказанием Эйнштейна с точностью до 0,01 %[17]17
  D.E. Lebach et al., “Measurement of the Solar Gravitational Deflection of Radio Waves Using Very-Long-Baseline Interferometry,” Physical Review Letters 75 (1995): 1439–42.


[Закрыть]
.

Второй эффект – потеря энергии по мере того, как свет покидает массивный объект, так называемое гравитационное красное смещение. Это выглядит так, как если бы фотоны боролись с гравитацией. Эффект был впервые измерен экспериментальным путем в 1960 г. Непосредственное отношение ко второму имеет и третий эффект – замедление времени. Предполагается, что при более сильной гравитации часы идут медленнее. Замедление времени было впервые зарегистрировано в 1971 г.: выяснилось, что атомные часы, перемещаемые на самолете с высокой скоростью, идут чуть быстрее точно таких же атомных часов, оставленных на земле. В 2010 г. замедление времени было зарегистрировано при разнице положения по вертикали всего один метр, для чего потребовались часы исключительной точности, с погрешностью в одну секунду за 4 млрд лет[18]18
  C.W. Chou, D.B. Hume, T. Rosenband, and D.J. Wineland, “Optical Clocks and Relativity,” Science 329 (2010): 1630–33.


[Закрыть]
. Измерения эффекта замедления времени также согласуются с предсказаниями теории с точностью 0,01 %. Общая теория относительности блестяще выдержала все экспериментальные проверки.



Общая теория относительности кажется тайным знанием, оторванным от повседневной жизни, но, если бы расчеты не учитывали замедление времени, мы вряд ли могли пользоваться системами GPS. Для установления местонахождения телефона на Земле в пределах метра нужны предельно точные данные орбитальных спутников, на борту которых установлены атомные часы[19]19
  N. Ashby, “Relativity and the Global Positioning System,” Physics Today, May 2002, 41–47.


[Закрыть]
. Релятивистские расчеты выполняются компьютерными чипами в мобильном телефоне, без таких корректировок отклонения систем GPS достигали бы 10 км за день. Эффекты относительности малозаметны в Солнечной системе и везде, где гравитация слаба, но, как мы скоро узнаем, невероятно усиливаются при коллапсе звезд и сильной гравитации.


Страницы книги >> 1 2 3 4 5 6 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации