Электронная библиотека » Леонард Млодинов » » онлайн чтение - страница 5


  • Текст добавлен: 28 мая 2014, 09:29


Автор книги: Леонард Млодинов


Жанр: Зарубежная образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 5 (всего у книги 18 страниц) [доступный отрывок для чтения: 5 страниц]

Шрифт:
- 100% +
* * *

Ключевыми фигурами натурфилософии в позднем средневековье оказались схоласты – особенно из Оксфордского и Парижского университетов[99]99
  Russell, стр. 463–475. Об Абеляре см. также: Jacques LeGoff, Intellectuals in the Middle Ages, trans. Teresa Lavender Fagan (Oxford: Blackwell, 1993), стр. 35–41. [На рус. яз.: Жак Ле Гофф, «Интеллектуалы в Средние века», СПб.: Издательский дом Санкт-Петербургского государственного университета, 2003, пер. А. Руткевича. – Прим. пер.]


[Закрыть]
. Они искали гармонии ума, изо всех сил пытаясь примирить физические теории и религию. Центральной темой их философии стала не природа Вселенной, а «мета-вопрос» – возможно ли знание, данное Библией, получить или объяснить с помощью рассуждения.

Первый великий схоласт боролся за логическое рассуждение как метод выяснения истины. Им был парижанин XII века Пьер Абеляр. Его позиция в средневековой Франции была чревата неприятностями. Абеляра отлучили от Церкви, а его книги сожгли. Самый знаменитый схоласт Св. Фома Аквинский также отстаивал методы разума, но вот он оказался для Церкви удобоварим. Аквинский подошел к знанию с позиций Подлинного Верующего – или, скажем так, как человек, не желавший, чтобы у огня, разведенного на его книгах, грелись перемерзшие зимней ночью монахи. Аквинский не отправился вслед свободно ведущим его рассуждением, а начал с принятия истинности католической веры и взялся ее доказывать.

Аквинского Церковь проклинать не стала, зато ему решительно противостоял его современник, схоласт Роджер Бэкон. Бэкон первым из натур философов придал огромное значение эксперименту. Абеляру не поздоровилось лишь из-за того, что он поставил разум выше Писания, а еретик Бэкон поставил превыше всего истину, выведенную из наблюдения за физическим миром. В 1278 году его отправили в тюрьму – на четырнадцать лет. Он умер вскоре после того, как был отпущен на свободу.

Уильям Оккамский, францисканец из Оксфорда, впоследствии парижанин, знаменит той самой «бритвой», которая и по сей день актуальна для физической науки. Попросту говоря, принцип бритвы Оккама сводится к следующему: теории следует создавать, делая как можно меньше допущений, взятых с потолка. У струнной теории, например, есть намерение строго вывести фундаментальные константы – заряд электрона, число (и тип) существующих «элементарных частиц» и даже число измерений пространства. В предыдущих теориях вся эта информация принималась аксиоматически: ее включали в построения, а не выводили из них. И к математике применима такая эстетика: например, при создании геометрической теории следует опираться на минимально необходимое количество аксиом.

Оккам ввязался в свару между францисканским орденом и папой Иоанном XXII и был отлучен от Церкви. Он сбежал, получил прибежище у императора Людовика IV и осел в Мюнхене. Умер в 1349-м, в разгар чумы.

Из четверых схоластов – Абеляра, Аквинского, Бэкона и Оккама – пронесло только Аквинского. Абеляра, помимо отлучения, еще и кастрировали: его представления о браке не совпали с таковыми у дядюшки его возлюбленной, а тот оказался каноником Католической церкви.

Схоласты сделали громадный вклад в интеллектуальное возрождение Запада. Одним из наследников их учения оказался загадочный французский священник из селения Аллемань[100]100
  Jeannine Quillet, Autour de Nicole Oresme (Paris: Librarie Philosophique J. Vrin, 1990), стр. 10–15.


[Закрыть]
, подле Кана[101]101
  Ныне городок Флёри-сюр-Орн, Кальвадос, область Нижняя Нормандия. – Прим. пер.


[Закрыть]
. С точки зрения математики его работы оказались наиболее многообещающими. В современных книгах по астрономии и математике этот человек, ставший епископом Лизьё, едва упоминается. В соборе Парижской Богоматери давно уж не светят поминальные свечи, заказанные его братом Анри. Мест его памяти на Земле почти не осталось, но вполне символично, что, прибыв на Луну, вы сможете посетить кратер, названный в его честь – кратер Орем.

Глава 10. Скромное обаяние графиков

Суровая сноровистая женщина плывет в лодке по речным протокам в глубине тропических лесов Амазонии – возвращается домой к кровожадным рыбам и ордам москитов, останавливаясь в лесных хижинах, ведомых мало кому, кроме немногих одиноких местных. Она не персонаж из Средневековья. Она из нашего века. Кто она? Может, врач? Волонтер международной помощи? Нет, даже не тепло. Она везет кремы, духи и косметику компании «Эйвон».

Тем временем в нью-йоркской головной конторе ее начальники в костюмах анализируют ход своей мировой войны с сухостью кожи, применяя методы, изобретенные человеком, о котором, без сомнения, ни один из этих начальников сроду ни разу не задумался. Вообразим графики, отражающие ежегодный рост прибылей «Эйвона» по сегментам рынка: международные показатели – синим, местные – красным. Ежегодный отчет иллюстрирует общий оборот компании, объемы сбыта, прибыли отдельных торговых точек; в нем целые страницы прочих показателей во всех мыслимых видах графиков и диаграмм – и тебе столбчатых, и круговых.

Если бы средневековый торговец показал кому-нибудь результаты своей работы в таком виде, на него бы вытаращили глаза. Что означают эти разноцветные геометрические фигуры, соседствующие в том же документе с римскими цифрами? Макароны и сыр уже успели изобрести (сохранился английский рецепт XIV века[102]102
  Reay Tannahill, Food in History (New York: Stein & Day, 1973), стр. 281.


[Закрыть]
), а вот идею поженить числа и геометрические фигуры – нет. Ныне графическое представление знания настолько общепринято, что мы едва ли думаем о нем как о математическом приеме: даже самый матемафобный директор «Эйвона» понимает, что линия на графике прибылей, тянущаяся вверх, есть многая радость. Но куда бы ни тянулись графики – вниз или вверх, – изобретение их стало жизненно важным шагом на пути к теории местоположения.

Союз чисел и геометрии греки понимали, увы, неверно – аккурат в этом месте философия оказалась помехой. В наши дни любой школьник изучает, грубо говоря, числовой ряд – линию, обеспечивающую упорядоченную связь между точками на ней и положительными и отрицательными целыми числами, равно как и между всеми дробями и прочими числами на этой линии. Эти «другие числа» – иррациональные, т. е. не целые и не дроби, как раз их отказался признавать Пифагор, но они тем не менее существуют. Числовой ряд обязан включать в себя и их – без иррациональных чисел в нем возникнет бесконечное множество дыр.

Мы уже говорили, как Пифагор открыл квадрат с длиной стороны в единицу, у которого диагональ равна квадратному корню из двух, а это иррациональное число. Если эту самую диагональ отложить в числовом ряду от нуля, другой ее конец обозначит точку, соответствующую иррациональному числу – квадратному корню из двух. Запретив обсуждение иррациональных чисел – они не вписывались в его представления о том, что все числа обязаны быть либо целыми, либо дробными, – Пифагор был вынужден запретить и ассоциацию прямой с числом. Таким способом он замел эту неувязку под ковер – и придушил тем самым одну из самых плодотворных идей в истории человеческой мысли. У всех свои недостатки.

Одним из немногих преимуществ утери греческих трудов стал упадок влияния пифагоровых представлений об иррациональных числах. Теория иррациональных чисел не получила твердого фундамента аж до самого Георга Кантора и работ его современника Рихарда Дедекинда – в XIX веке. И тем не менее, со Средних веков и до Дедекинда и Кантора большинство математиков и ученых закрывали глаза на кажущееся несуществование иррациональных чисел и вполне счастливо, хоть и неумело, все равно их применяли. Очевидно, радость получения правильного ответа перевешивала неприятности работы с числами, которых не существует.

В наше время применение «нелегальной» математики – общее место науки, особенно физики. Теория квантовой механики, например, разработанная в 1920–1930-х годах, очень полагалась на нечто придуманное английским физиком Полем Дираком – дельта-функцию. Согласно математике того времени, дельта-функция попросту равнялась нулю. По Дираку же, дельта-функция равна нулю всюду, кроме одной точки, где ее значение – бесконечность, и, если применить эту функцию вместе с определенными методами счисления, она дает ответы одновременно и конечные, и (обычно) отличные от нуля. Позднее французский математик Лоран Шварц смог доказать, что правила математики можно переформулировать так, чтобы допустить существование дельта-функции, и из этого доказательства родилась целая новая область математики[103]103
  Теория распределений. Для интересующихся математикой – отличное классическое описание на студенческом уровне см.: M. J. Lighthill, Introduction to Fourier Analysis and Generalized Functions (Cambridge, UK: University Press, 1958).


[Закрыть]
. Квантовые теории поля в современной физике в этом смысле тоже можно считать «нелегальными» – во всяком случае, никто пока не смог успешно доказать, говоря математически, что такие теории существуют «по правилам».

Средневековые философы горазды были говорить одно, а записывать другое – или даже писать сначала одно, а потом другое в полном противоречии с первым, лишь бы сберечь шкуру. И вот в середине XIV века Николай Орезмский[104]104
  Работы Орема по графикам см.: Lindberg, стр. 237–241; Marshall Clagett, Studies in Medieval Physics and Mathematics (London: Variorum Reprints, 1979), стр. 286–295; Stephano Caroti, ed., Studies in Medieval Philosophy (Leo S. Olschki, 1989), стр. 230–234.


[Закрыть]
, позднее – епископ Лизьё, – изобретая графики, не слишком беспокоился о противоречиях, возникающих из-за иррациональных чисел. Орем по умолчанию игнорировал вопрос о том, достаточно ли одних лишь целых и дробных чисел для заполнения базисной прямой графика. Он сосредоточился на том, как приспособить свои новые картинки к анализу количественных отношений.

Графики можно воспринимать как изображение функции, отражающее изменение одного количества в связи с изменением другого. Прибыли компании «Эйвон» от продаж в странах третьего мира в зависимости от времени, сожженные вами калории в зависимости от пройденного расстояния, максимальная дневная температура воздуха в зависимости от географического местоположения – вот они, примеры функций. Любую можно понять, построив ее график. У графика из последнего примера есть специальное название, намекающее на некую более глубинную связь: это карта. Метеорологическая.

Любая карта – своего рода график. К примеру, «нормальная» географическая карта отражает названия городов и стран, а также, быть может, еще кое-какие данные – в зависимости от их географического положения. Греки и прочие, не отдавая себе в этом отчета, применяли такие графики – карты – тысячи лет. Неясно, отдавал ли себе отчет и Орем, но ключевой вопрос он все-таки затронул: имеет ли какой-либо географический или геометрический смысл кривая или иная геометрическая форма, образованная графиком, построенным на некотором множестве данных, т. е. функция?

Если построить график зависимости степени возвышенности земли от местоположения, получится знакомая нам топографическая карта, и ее связь с реальной географией очевидна. Гора в форме уточки на карте местности будет отражена фигурой уточки. А вот если изобразить зависимость погоды от местоположения, получится тоже некоторая поверхность, но не буквальная форма погоды, а некая геометрическая фигура, смысл которой можно изучить. Соотнеся таким образом функции с геометрией, мы получаем описание взаимосвязи между определенными типами функций и типами форм. Изучение линий и поверхностей превращается, стало быть, в изучение тех или иных функций, и наоборот; вот он, союз геометрии и числа. И именно этот шаг и делает изобретение Оремом графиков таким важным для математики.

Сила графиков, применяемых не-математиками к анализу закономерностей в данных, обусловлена все той же связью чисел с геометрией. Человеческий ум легко распознает некоторые простые формы – например, линии и окружности. Разглядывая некую совокупность точек, мы пытаемся затолкать их в эти привычные формы и в итоге можем заметить геометрические закономерности, если данные представлены в виде графика, хотя закономерности в тех же данных, представленных таблицей, можно запросто проглядеть. Искусство построения графиков в этом ключе проанализировано в классическом труде Эдварда Тафта «Наглядное представление количественной информации».

Рассмотрим три довольно скучные колонки чисел:



В каждой представлены некоторые замеры, т. е. каждая величина имеет погрешность эксперимента. Первый набор чисел назовем данными Алексея – допустим, их получил студент по имени Алексей, и, аналогично, второй и третий наборы – Николая и мамы. Если представить эти данные как функцию времени, возникнет ли какая-нибудь закономерность, а если возникнет, то какая? Вот в чем вопрос.

Глядя на числа в таблице, усмотреть закономерности непросто, но стоит построить графики, все немедленно проясняется. График, построенный на данных Алексея, – прямая, если не считать точки с координатой времени 2, где Алексей либо чихнул, либо отвлекся на приятеля и его компьютерную игру.

Данные Николая укладываются в хорошо нам известную форму под названием парабола, которая описывает, например, зависимость энергии пружины от длины ее растяжения или высоты положения летящего пушечного ядра от пройденного расстояния. Математически говоря, эта форма описывается функцией, где измеряемая величина возрастает с квадратом времени (или расстояния). Мамин график есть верхняя правая четверть окружности, одной из самых распространенных форм в нашей жизни, и, как и в случае Алексея, одной из основных евклидовых фигур. Но вот из одних лишь записанных цифр это куда как не очевидно.

Орем применил эту новую мощную геометрическую методику для доказательства одного из знаменитейших законов физики того времени – мертонского правила[105]105
  David C. Lindberg, The Beginnings of Western Science (Chicago: University of Chicago Press, 1992), стр. 290–301.


[Закрыть]
. Между 1325 и 1359 годами группа математиков из оксфордского Мертон-Колледжа, предложила понятийный аппарат для количественного описания движения. В античных дискуссиях расстояние и время рассматривались как количества, которые можно описать численно, однако «быстроту», она же «скорость», никто не считал.


Данные принимают форму


Ключевая теорема, выведенная мертонской школой, – мертонское правило – оказалась своего рода мерной линейкой в гонках черепахи и зайчихи. Вообразим некоторую черепаху, которая бежит, скажем, одну минуту со скоростью, допустим, в одну милю в час. А теперь вообразим зайчиху, стартующую еще медленнее, но с постоянным ускорением – так, что к концу минуты она несется с гораздо большей прытью, чем ее соперница, движущаяся с постоянной скоростью. Согласно мертонскому правилу, если через минуту движения с постоянным ускорением зайчиха бежит вдвое быстрее черепахи, они прошли к этому моменту одно и то же расстояние. Если скорость зайчихи больше черепашьей более чем вдвое, она окажется впереди, а если менее чем вдвое – отстанет.

Если облечь все это в ученые термины, правило звучит так: расстояние, пройденное объектом с постоянным ускорением из состояния покоя, равно расстоянию, пройденному объектом за то же время со скоростью, равной половине от максимальной. С учетом мутности представлений о местоположении, времени и скорости, а также недоразвитости инструментов измерения мертонское правило производит сильное впечатление. Однако без приемов матанализа или алгебры мертонцы никак не могли доказать своих рассуждений.

Николай Орезмский доказал это правило геометрически, применив методику графиков. Он принялся откладывать время по горизонтальной оси, а скорость – по вертикальной. Таким способом постоянная скорость отображалась в виде горизонтальной прямой, а постоянное ускорение – линией, устремляющейся вверх под некоторым углом. Орем понял, что площадь под этими линиями – прямоугольник и треугольник соответственно – есть пройденное расстояние.

Расстояние, пройденное объектом с постоянным ускорением (в мертонском правиле), таким образом, есть площадь прямоугольного треугольника, чье основание пропорционально времени движения, а высота представляет максимальную скорость. Расстояние, пройденное объектом с постоянной скоростью, задается площадью прямоугольника с таким же основанием, как и у треугольника, а высота его вполовину меньше высоты треугольника. Оставалось лишь доказать, что площади этих двух фигур равны. Например, если удвоить этот треугольник, достроив к его гипотенузе такой же, и удвоить прямоугольник, достроив к нему такой же по верхней стороне, получится одна и та же фигура.

Орем применил аналогичное графическое рассуждение[106]106
  Clagett, стр. 291–293.


[Закрыть]
при формулировке закона, который обычно приписывают Галилею: расстояние, пройденное объектом с постоянным ускорением, растет с квадратом времени. Убедиться в этом можно, представив вновь все тот же прямоугольный треугольник, чья площадь есть расстояние, пройденное с постоянным ускорением. Эта площадь пропорциональна произведению основания на высоту, а они в свою очередь пропорциональны времени.

Такое интуитивное понимание Оремом природы пространства не менее поразительно. А еще Николай Орезмский утер Галилею нос[107]107
  Lindberg, The Beginnings, стр. 258–261.


[Закрыть]
, фактически сделав вклад в эйнштейнову теорию относительности. В пределах этой теории имеет смысл лишь относительное движение. Учитель Орема в Париже, Жан Буридан, считал, что Земля не может вращаться: если бы она вращалась, стрела, пущенная вертикально вверх, падала бы в другое место. Орем возразил своим примером: мореход на корабле, вытягивая руку вдоль мачты, воспринимает это движение как вертикальное. Однако нам с суши это движение увидится как диагональное – потому что корабль движется. И кто же тогда прав? Орем считал, что сам вопрос в данном случае сформулирован неверно: невозможно выяснить, происходит ли движение объекта без соотнесения его с другим. Ныне это наблюдение иногда называют принципом относительности Галилея.

Николай Орезмский не опубликовал множество своих трудов, а многие не довел и до логического завершения. Во многих своих рассуждениях он подошел вплотную к научному перевороту, но во имя Церкви всякий раз отступал. К примеру, опираясь на свой анализ относительности движения, Орем пришел к размышлениям о том, можно ли развить астрономическую теорию, согласно которой Земля бы вращалась и даже двигалась бы вокруг Солнца, – эти революционные идеи позднее провозгласили Коперник и Галилей. Но Орем не только не смог убедить в этих представлениях своих современников, но и сам в конце концов от них отказался, и сдался он не перед доводами разума[108]108
  Lindberg, The Beginnings, стр. 260–261.


[Закрыть]
, а перед Библией. Ссылаясь на псалом 93: 1, Орем писал: «Облечен Господь могуществом [и] препоясан: потому вселенная тверда, не подвигнется»[109]109
  В русской традиции – Псалтирь, 92: 1. Сходная мысль выражена в Пс. 96: 10: «Господь царствует! потому тверда вселенная, не поколеблется» (рус. трад. Пс. 95:10). – Прим. пер.


[Закрыть]
.

Во многом Николай Орезмский обрел блистательные прозрения о природе мира, но всякий раз отшатывался от истины, открывавшейся ему. Например, у Орема были крайне скептические представления о демонах, граничившие с ересью: он утверждал, что их существование не может быть доказано законами природы. И, тем не менее, как добропорядочный христианин, он продолжал считать, что они существуют как объект веры. Быть может, умиляясь собственной противоречивости, Орем писал как-то[110]110
  Charles Gillespie, ed., The Dictionary of Scientific Biography (New York: Charles Scribner’s Sons, 1970–1990).


[Закрыть]
, следуя Сократу: «Я действительно не знаю ничего, кроме того, что я ничего не знаю». Преданность Орема религиозному ведомству оказалась вознаграждена: он рос в бедности, а стал советником короля, послом и наставником Карла V. Благодаря поддержке монарха в 1377 году Орема за пять лет до смерти возвели в сан епископа.

Хотя нет никаких доказательств того, что Галилей использовал какие-либо труды Орема, интеллектуальное наследование очевидно. Увы, революция Николая Орезмского в математике так и не произошла, и миру пришлось подождать еще 200 лет, а пока Церковь слабела, двое других французов украдкой приняли эстафету и на сей раз изменили математику навсегда.

Глава 11. Солдатская сказка

31 марта 159 6 года[111]111
  Лучшая современная биография Декарта: Jack Vrooman, Rene 2 Descartes (New York: G. P. Putnam’s Sons, 1970). Описание сплетения его жизни с математикой см.: Muir, стр. 47–76; Stuart Hollingdale, Makers of Mathematics (New York: Penguin Books, 1989), стр. 124–136; Kramer, стр. 134–166; Bryan Morgan, Men and Discoveries in Mathematics (London: John Murray, 1972), стр. 91–104.


[Закрыть]
хворая французская аристократка, сухо кашляя – возможно, туберкулез, – родила своего третьего ребенка. Младенец оказался слабым и болезненным. Несколько дней спустя мать скончалась. Врачи предсказывали, что вскоре и чадо последует за родительницей. Отцу ребенка пришлось ох как не просто, однако он не сдался. Первые восемь лет он не выпускал сына из дома, почти все время держал в кровати, приставил к нему сиделку и сам заботился о нем со всей родительской любовью. Ребенок протянет пятьдесят три года, прежде чем его доконают слабые легкие. Так был спасен для мира один из его величайших философов, архитектор следующей математической революции – Рене Декарт.

Когда Декарту было восемь (некоторые говорят, десять[112]112
  В разных источниках приводится разный возраст. Распределение этих данных выглядит равномерным.


[Закрыть]
), отец отправил его в Ла-Флеш, иезуитскую школу – тогда еще новую, но вскоре приобретшую знаменитость. Ректор школы позволял юному Декарту допоздна валяться в кровати, покуда ученик не готов был явиться на занятия. Неплохая привычка, если удается ее поддерживать, а у Декарта это получалось вплоть до последних месяцев жизни. Учился Декарт хорошо, но по окончании восьми школьных лет начал демонстрировать скептицизм, которым и прославился как философ: он пришел к убеждению, что все, чему его учили в Ла-Флеш, либо бесполезно, либо ошибочно. Вопреки этому осознанию он подчинился желанию отца и провел еще два года в бесполезной учебе, на сей раз – в соискании степени в юриспруденции.

Наконец Декарт забросил науку букв и переехал в Париж. Там он ночами вел светскую жизнь, а днем лежал в постели и изучал математику (приступая к занятиям, разумеется, после полудня). Математику он полюбил, и она даже время от времени приносила ему доход – Декарт применял ее за игровым столом. Однако довольно скоро Париж Декарту приелся.

Что делали молодые люди с некоторыми средствами во времена Декарта, если желали странствовать и искать приключений? Шли в армию. В случае Декарта – в армию принца Морица Оранского (Нассауского). То была настоящая добровольческая армия – Декарту за его службу не платили. В итоге все остались при своих: Декарт не только ни в каких военных действиях не поучаствовал – через год он присоединился к вооруженным силам противника, герцога Баварии. Странное дело: сначала вербуемся к одним и не воюем, потом к другим – и опять не воюем. Но в тот период в войне Франции и Голландии против Испано-австрийской монархии возникло затишье, а Декарт пошел в армию ради путешествий, а не из политических соображений.

Служить Декарту понравилось: он встречался с людьми из разных краев, и в то же время ему хватало уединения, чтобы посвящать его изучению математики и наук, а также размышлениям о природе Вселенной. Его странствия почти немедленно принесли плоды.

Однажды в 1618 году солдат Декарт оказался в маленьком голландском городке Бреда, где увидел толпу, собравшуюся вокруг уличного объявления. Он подошел ближе и попросил пожилого зеваку перевести ему написанное на французский. Ныне в таком объявлении можно прочесть что угодно – рекламное воззвание, запрет парковки, призыв помочь с поисками человека. Но есть такое, чего теперь в уличных объявлениях не встретишь, а именно: математическую задачку, адресованную широкой публике.

Декарт осмыслил поставленную задачу и отметил походя, что она довольно проста. Его переводчик – может, озлившись на него, а может, забавы ради – взял незнакомца на слабо и принялся подначивать: дескать, давай, реши-ка. И Декарт решил. Пожилой собеседник ученого, человек по имени Исаак Бекман, сильно изумился, что само по себе целое дело: Бекман был выдающимся голландским математиком своего времени.

Бекман и Декарт так подружились, что Декарт впоследствии писал[113]113
  Muir, стр. 50.


[Закрыть]
о Бекмане как о «вдохновителе и духовном отце» его учений. Именно Бекману Декарт четыре месяца спустя описал свои революционные взгляды на геометрию. Письма Декарта другу в следующие пару лет обильно приправлены отсылками к новым представлениям об отношениях между числами и пространством.

Всю свою жизнь Декарт относился к работам греков весьма критически, однако геометрия раздражала его пуще прочего. Она казалась ему неуклюжей и усложненной без всякой необходимости. Ему, казалось, противны были сами формулировки греческой геометрии, вынуждавшие его трудиться прилежнее потребного. Анализируя задачу, поставленную греком Паппом Александрийским, Декарт писал, что «мне утомительно уже то, сколько всего об этом надо писать»[114]114
  George Molland, Mathematics and the Medieval Ancestry of Physics (Aldershot, Hampshire, UK, and Brookfield, VT: 1995), стр. 40.


[Закрыть]
. Он критиковал их систему доказательств, потому что каждое новое оказывалось уникальным в своем роде, и одолеть его можно было «лишь при условии великого изнурения воображения»[115]115
  Kline, Mathematical Thought, стр. 308.


[Закрыть]
. Не одобрял он и того, как греки определяли кривые – описательно, что само по себе, конечно, бывало скучным, а доказательства делало путаными. Ныне ученые пишут, что «декартова математическая лень – притча во языцех»[116]116
  Molland, стр. 40.


[Закрыть]
, но самому Декарту вовсе не совестно было искать некую связующую систему, что упростила бы доказательства геометрических теорем. Таким способом он мог спать дольше и все равно больше сделать для науки, чем критиковавшие его более прилежные ученые.

Сравним для примера определение круга Евклидом (часть I «Начал») и Декартом – и убедимся в успехах последнего:

Евклид: Круг есть плоская фигура, содержащаяся внутри одной линии [которая называется окружностью], на которую все из одной точки внутри фигуры падающие [на окружность круга] прямые равны между собой[117]117
  Пер. с греч. Д. Д. Мордухай-Болтовского. – Прим. пер.


[Закрыть]
.


Декарт: Круг есть все х и у, удовлетворяющие уравнению х2 + у2 = r2 для заданного значения r.

Даже тем, кто не в курсе, что такое «уравнение», определение Декарта должно показаться проще. И вся штука не в том, чтобы определить, что такое уравнение, а в том, что в декартовом методе круг определяется им. Декарт перевел язык пространства на язык чисел и, что еще важнее, применил этот перевод к перефразированию геометрии в алгебру.

Декарт начал свой анализ с превращения плоскости в подобие графика, изобразив горизонтальную прямую и назвав ее осью х, а вертикальную – осью у. За исключением одной существенной детали, любая точка на этой плоскости описывалась теперь двумя числами: вертикальным расстоянием до горизонтальной оси, обозначенным у, и горизонтальным расстоянием до вертикальной оси, обозначенным х. Точки на плоскости с тех пор записываются в виде «упорядоченных пар» (х; у).

Но вернемся к существенной детали: если буквально отмерить расстояния, как описано выше, для каждой пары координат (х; у) найдется более одной точки. Например, рассмотрим две точки, каждая из которых на единичный отрезок выше оси х, но располагаются они по обе стороны от оси у: допустим, одна лежит на два единичных отрезка правее, а другая – на два единичных отрезка левее. Поскольку обе точки расположены на один единичный отрезок выше оси х и обе – в двух единичных отрезках от оси у, в соответствии с нашим рассуждением обе можно описать парой координат (2, 1).

Такая же неоднозначность возникает в почтовых адресах. Могут ли два человека, проживающие по адресу 80-я улица, 137, задрать нос и заявить: «Да я б никогда в том районе жить не стал». Отчего бы и нет? «Вестсайдская история» и «Истсайдская история» – однозначно две разные истории[118]118
  «Вестсайдская история» (West Side Story) – американский мюзикл 1957 года (музыка Леонарда Бернстайна, слова Стивена Сондхайма), адаптация классической пьесы Уильяма Шекспира «Ромео и Джульетта». «Истсайдская история» – вероятно, одна из серий американского телесериала «Беверли-Хиллз, 90210» (1990–2000). – Прим. пер.


[Закрыть]
. Математики избавляются от этой неоднозначности в координатах в точности так же, как градостроители – в почтовых адресах, с той лишь разницей, что первые используют знаки «плюс» и «минус», а вторые приписывают к адресу «восточный»/«западный» или «северный»/«южный». Математики подрисовывают знак «минус» к координате х всех точек, размещающихся левее оси у (т. е. «восточной стороне» – «истсайду»), и к координате у всех точек, расположенных ниже оси х (т. е. «южной стороне», или «саутсайду»). В нашем случае у первой точки координаты останутся без изменений – (2, 1), а у второй станут такие: (– 2, 1). Мы делим плоскость на четыре четверти (квадранта) – северо-восточная, северозападная, юго-восточная и юго-западная. У всех точек в «южном» квадранте значение координаты у отрицательное, а у всех точек в «западном» отрицательно значение координаты х. Эту систему обозначения принято называть декартовыми координатами. (На самом деле примерно тогда же аналогичное открытие сделал Пьер Ферма, однако если за Декартом водилась дурная привычка ни на кого не ссылаться в своих публикациях, Ферма имел худшую склонность – не публиковать свои работы вообще.)

Ясное дело – и мы в этом уже убедились – применения координат как таковых новинкой не было. Птолемей еще во II веке использовал систему координат в своих картах[119]119
  Описание работ Птолемея см.: Wilford, стр. 25–34. В 1569 г., за несколько десятков лет до рождения Декарта, у картографии случилась своя революция: Герхард Кремер, более известный под своим латинизированным именем Герард Меркатор, издал карту мира новой разновидности. Этой картой Меркатор решил задачу проекции сферы Земли на плоскую поверхность – способом, особенно удобным для навигаторов. И хотя карта Меркатора растягивала и сжимала реальные расстояния, углы между кривыми сохранялись правильные, т. е. на карте они были такими же, как и на земной поверхности. Это важно, поскольку самый простой курс для кормчего – двигаться под фиксированным углом к северу, по указанию стрелки компаса. Математически говоря, важность этой карты в том, что она трансформировала координаты. Сам Меркатор никакой математикой не занимался – он составил карту эмпирически. Картезианская геометрия позволяет производить математический анализ, и в результате понимание картографии получается гораздо глубже. Декарт знал о карте Меркатора, но нам неведомо, насколько успехи картографии повлияли на Декарта – и повлияли ли вообще, поскольку он не утруждался указывать ссылки на чужие работы в своих. О математике, стоящей за трудами Меркатора, см.: Resnikoff and Wells, стр. 155–168.


[Закрыть]
. Но работы Птолемея сводились исключительно к географии. Никакого другого значения – помимо приложимости к земному шару – он в них не видел. Подлинное новаторство идей Декарта применительно к координатам состояло не в них самих, а в том, что́ Декарту удалось из них извлечь.

Изучая классические греческие кривые, манеру определения которых Декарт столь глубоко презирал, он, тем не менее, обнаружил удивительные закономерности. Например, он изобразил несколько прямых и выяснил, что для любой прямой координаты х и у любой точки на ней всегда связаны простым отношением. Алгебраически эту связь можно выразить уравнением вида ах + by + c = 0, где а, b и с – постоянные, т. е. обычные числа вроде 3 или 41/2, и зависят они лишь от того, какую прямую в данный момент мы рассматриваем. Это означает, что любая точка, описываемая координатами (х, у), лежит на некоторой прямой тогда и только тогда, когда сумма х, взятого а раз, у, взятого b раз, и с равна нулю. Таково альтернативное – алгебраическое – определение прямой.

С точки зрения Декарта, линия есть множество точек с особым свойством: если прирастить одну координату, чтобы получить другую точку того же множества, необходимо прирастить и другую координату в строго заданной пропорции. Его определение круга (или эллипса) устроено по тому же принципу. С единственной разницей: убавляя одну координату, необходимо добавлять к другой так, чтобы (взвешенная) сумма квадратов координат, а не просто координат самих по себе, оставалась неизменной.

За триста лет до Декарта Николай Орезмский тоже подметил, что кривые можно определять через соотношение координат, и тоже вывел некоторое подобие уравнения прямой. Но во времена Орема алгебра еще не имела широкого хождения, и за отсутствием подходящей формы записи Орем не смог развить идею дальше[120]120
  Декарт не просто унаследовал всю алгебру, потребную для его работы. Он сам изобрел значительную ее часть. Во-первых, он предложил современный вид записи с применением последних букв алфавита для обозначения неизвестных переменных и первых – для обозначения постоянных. До Декарта язык алгебры не блистал изяществом. К примеру, Декарт записал бы 2x2 + x3, а до него то же выражалось так: «2Q плюс C», где через Q обозначали квадрат (carre 2), а через С – куб. Запись Декарта совершеннее, потому что она исчерпывающе фиксирует и неизвестное число, возводимое в квадрат и в куб (х), и характер степеней х (2 и 3). Применив это более изящное написание, Декарт смог складывать и вычитать уравнения и производить с ними другие арифметические операции. Он смог классифицировать алгебраические выражения согласно типу кривой, которую они представляли. Например, он опознал уравнения 3х + 6y – 4 = 0 и 4х + 7у + 1 = 0 как представляющие прямые, которые он изучил в общем случае ax + by + c = 0. Таким образом, он преобразовал алгебру из науки, изучающей мешанину отдельных уравнений, в дисциплину оформленных классов уравнений, см.: Vrooman, стр. 117–118. Более общую историю алгебраических символов см.: Kline, Mathematical Thought, стр. 259–263, и Resnikoff and Wells, стр. 203–206.


[Закрыть]
. Декартов метод ассоциирования алгебры и геометрии привел к обобщению представлений Николая Орезмского, и теперь всю греческую математику можно было описать просто и сжато. Эллипсы, гиперболы, параболы – все их, как выяснилось, можно определить через простые уравнения в координатах х – у.

Возможность определять классы кривых по виду их уравнений имеет далеко идущие последствия для науки. Взглянем еще раз, к примеру, на данные, полученные Николаем, но сдвинем запятую в числах на один десятичный знак. Теперь-то понятно, что они такое – это таблица приблизительных средневысоких температур[121]121
  По таблице, приведенной в «Нью-Йорк Таймс» 11 января 1981 г. и процитированной у Тафта.


[Закрыть]
15-го числа каждого месяца (кроме января) в Нью-Йорке. Ученый может задаться вопросом: есть ли простая взаимосвязь между этими показателями?




Как мы уже видели, отображение этих данных в виде графика дает нам простую геометрическую фигуру – параболу. Знание уравнения, описывающего параболу, дает нам кое-какие предсказательные возможности – позволяет сформулировать «закон средневысоких» для нью-йоркской погоды. Закон таков: обозначим через у температуру ниже 85 градусов по Фаренгейту, а через х – число месяцев до или после 15 июля, и тогда у равен дважды х в квадрате.

Опробуем это правило. Чтобы определить, какова будет средневысокая температура в Нью-Йорке, скажем, 15 октября, отметим, что октябрь – через три месяца после июля, т. е. х = 3. Поскольку три в квадрате – девять, средняя температура 15 октября есть дважды по девять, т. е. на 18 градусов ниже показателя 15 июля (85 градусов). Таким образом, по нашему «закону» выходит средняя температура приблизительно 67 градусов. Реальные данные – 66 градусов. Для большинства месяцев закон приложим вполне точно – и его можно применять и для других дней календаря, а не только к 15-м числам месяцев, если вам не лень возиться с дробями.

Внимание! Это не конец книги.

Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!

Страницы книги >> Предыдущая | 1 2 3 4 5
  • 4.2 Оценок: 5

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации