Электронная библиотека » Леонард Млодинов » » онлайн чтение - страница 3


  • Текст добавлен: 28 мая 2014, 09:29


Автор книги: Леонард Млодинов


Жанр: Зарубежная образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 3 (всего у книги 18 страниц) [доступный отрывок для чтения: 5 страниц]

Шрифт:
- 100% +
Глава 5. Манифест Евклида

Приблизительно в 300-е годы до н. э. на южном побережье Средиземного моря, чуть левее Нила, жил в Александрии человек, чья работа может потягаться по влиятельности с Библией. Его подход наполнил философию смыслом и определил суть математики вплоть до XIX века. Эта работа стала неотъемлемой частью высшего образования практически на все это время – и остается до сих пор. С восстановлением этого труда началось обновление средневековой европейской цивилизации. Ему подражал Спиноза. Им зачитывался Абрахам Линкольн. Его защищал Кант[45]45
  Спиноза, знаковый философ XVII века, писал «Этику» – свой главный труд – в стиле евклидовых «Начал», вплоть до определений и аксиом, с помощью которых, как он считал, строго доказывал теоремы. См. также «Историю западной философии» Бертрана Расселла: Bertand Russell, A History of Western Philosophy (New York: Simon & Schuster, 1945), стр. 572. Авраам Линкольн, еще будучи никому не известным юристом, изучал «Начала» с целью улучшить свои навыки логики, см.: Hooper, стр. 44. Кант читал евклидову геометрию неотъемлемой частью человеческого мозга, см. Расселл. [На рус. яз.: Бенедикт Спиноза, «Этика», М., СПб, Азбука, Азбука-Аттикус, 2012, пер. Я. Боровского, Н. Иванцова; Бертран Рассел, «История западной философии», М.: Академический проект, 2009, пер. В. Целищева. – Прим. пер.]


[Закрыть]
.

Имя этого человека – Евклид. О его жизни нам неизвестно почти ничего. Ел ли он оливки? Ходил ли в театр? Был ли коренаст или росл? История не знает ответов на все эти вопросы. Нам ведомо лишь[46]46
  Heath, стр. 354–355.


[Закрыть]
, что он открыл школу в Александрии, у него были блестящие ученики, он осуждал материализм, был довольно милым человеком и написал не менее двух книг. Одна из них, утерянный труд по коническим сечениям, стала основой для позднейшей исключительно важной работы Аполлония[47]47
  Kline, стр. 89–99, 157–158.


[Закрыть]
, сильно продвинувшей науку навигации и астрономии.

Другая его знаменитая работа, «Начала», – одна из самых читаемых «книг» всех времен. История «Начал»[48]48
  Heath, стр. 356–370, см. также: Hooper, стр. 44–48. В 1926 году Хит лично продолжил историю «Начал», опубликовав свое издание, перепечатанное издательством «Доувер»: Sir Thomas Heath. The Thirteen Books of Euclid’s Elements (New York: Dover Publications, 1956).


[Закрыть]
заслуживает детективного романа не хуже «Мальтийского сокола»[49]49
  «Мальтийский сокол» (1930) – детектив-нуар американского писателя Сэмюэла Дэшилла Хэммета (1894–1961). – Прим. пер.


[Закрыть]
. Во-первых, это не книга в буквальном смысле, но собрание из тринадцати свитков папируса. Ни один оригинал не сохранился – они передавались из поколения в поколение чередой переизданий, а в Темные века чуть было не исчезли совсем. Первые четыре свитка Евклидова труда в любом случае – не те самые «Начала»: ученый по имени Гиппократ (не врач-тезка) написал «Начала» где-то в 400-х годах до н. э., и они-то, судя по всему, являются содержимым этих первых свитков, хотя оно никак не атрибутировано. Евклид никак не претендовал на авторство этих теорем. Свою задачу он видел в систематизации греческого понимания геометрии. Он стал архитектором первого осмысленного отчета о природе двухмерного пространства, созданного одной лишь силой мысли, без всяких отсылок к физическому миру.

Важнейший вклад Евклидовых «Начал» сводился к передовому логическому методу: во-первых, Евклид объяснил все термины введением точных определений, гарантирующих понимание всех слов и символов. Во-вторых, он прояснил все понятия, предложив для этого прозрачные аксиомы или постулаты (эти два термина взаимозаменяемы), и отказался от применения неустановленных выводов или допущений. И наконец, он выводил логические следствия всей системы лишь с использованием правил логики, примененной к аксиомам и ранее доказанным теоремам.

Вот зануда и привереда, а? Зачем уж так настаивать на доказательстве малейшего утверждения? Математика – вертикальное сооружение, которое, в отличие от архитектурной постройки, рухнет, если хоть один математический кирпичик окажется битым. Допусти в системе невиннейшую погрешность – и пиши пропало, в ней уже ничему нельзя доверять. По сути, теорема логики утверждает:[50]50
  Kline, стр. 1205.


[Закрыть]
если в систему вкралась хоть одна ложная теорема – неважно, о чем она, – этого будет достаточно для доказательства, что 1 = 2. Говорят, однажды некий скептик припер к стенке логика Бертрана Расселла, желая возразить против этой уничтожающей теоремы (хотя в итоге говорил об обратном). «Вот что, – рявкнул усомнившийся, – допустим, один равно два, докажите, что вы – Папа Римский». Расселл, по свидетельствам, задумался на миг, после чего ответил: «Папа и я – двое, следовательно, Папа и я – одно».

Доказательство каждого утверждения означает, среди прочего, еще и то, что интуицию, хоть она и ценный поводырь, следует проверять на пороге доказательства. Фраза «это интуитивно понятно» – неподходящий шаг для доказательства. Слишком уж мы падки на всякую очевидность. Представим, что мы разматываем клубок шерсти вдоль экватора Земли, все 25 000 миль. А теперь представим то же самое, но в футе над экватором. Насколько больше ниток нам потребуется для этого? На 500 футов больше? Или на 5000? Упростим задачу. Представим теперь, что раскатываем один клубок вдоль поверхности Солнца, а второй – в футе над его поверхностью. К какому клубку нужно добавить больше ниток – к тому, что мы разматываем в футе от Земли или в футе от Солнца? Большинству из нас интуиция подсказывает «вокруг Солнца», однако ответ на самом деле таков: одинаковое количество, равное 2 футам, т. е. примерно 6 футов 3 дюйма.

Давным-давно была такая телевизионная программа «Поспорим»[51]51
  «Let’s Make A Deal» – американская телевикторина телеканала «Эн-би-си», транслировавшаяся с 1963 по 1968 гг. – Прим. пер.


[Закрыть]
. Участника помещали напротив трех подиумов, скрытых занавесами. На одном подиуме находился какой-нибудь ценный объект – автомашина, к примеру, а на двух других – какая-нибудь ерунда, утешительный приз. Допустим, участник выбирал второй подиум. Ведущий затем открывал один из двух оставшихся занавесов, скажем – третий. За ним, положим, находится утешительный приз, следовательно, настоящий приз – либо за первым занавесом, либо за вторым, который участник выбрал изначально. Ведущий далее спрашивает участника, станет ли он менять свой выбор – т. е. выберет ли теперь первый занавес. Вы бы изменили решение? Интуитивно кажется, что вероятность выигрыша – пятьдесят на пятьдесят, хоть так, хоть эдак. Оно было бы так, если бы у нас не было никаких предварительных вводных, но они у нас есть: предыдущий выбор и действия ведущего в этой связи. Внимательный анализ вероятностей, начиная с исходного выбора и далее, или применение нужной формулы, называемой теоремой Байеса [Бейза][52]52
  Трудный выбор, на котором основана программа «Поспорим», часто называют задачей Монти Холла, по имени ведущего программы. Проще всего разобраться в решении, нарисовав диаграмму-дерево, последовательно иллюстрирующую возможные варианты выбора. Этот метод применяется для наглядного описания теоремы Байеса в: John Freund, Mathematical Statistics (Englewood, Cliffs, NJ: Prentice-Hall, 1971), стр. 57–63. [Здесь и далее по тексту в квадратных скобках имена собственные даются в соответствии с произносительной нормой в тех случаях, когда она расходится с привычным написанием. – Прим. пер.]


[Закрыть]
, показали бы, что шансов больше, если выбор изменить. Таких примеров в математике – когда интуиция подводит нас, а выручает лишь произвольная формальная логика, – навалом.

Точность – еще одно свойство, необходимое математическому доказательству. Наблюдатель может измерить диагональ квадрата с единичной стороной и получить результат 1,4, а с более точными приборами – 1,41 или даже 1,414, и как бы нам ни хотелось принять подобное приближение как достаточное, оно не даст нам получить эпохальное прозрение: это значение длины – величина иррациональная.

Крошечные количественные изменения могут иметь громадные качественные последствия. Вспомним государственные лотереи. Не теряющие надежду неудачники частенько пожимают плечами и говорят: «Не сыграешь – не выиграешь». Это правда, не поспоришь. Но правда и то, что шансы на выигрыш у тех, кто покупает лотерейный билет, и у тех, кто нет, отличаются на малюсенькую долю процента. Что произойдет, если лотерейная комиссия за явит, что решила округлить ваши шансы на выигрыш с 0,000001 % до нуля? Изменение почти неприметное, но поток наличности от продаж оно изменит еще как.


Фокус Пола Карри


Трюк, изобретенный фокусником-любителем Полом Карри[53]53
  Martin Gardner, Entertaining Mathematical Puzzles (New York: Dover Publications, 1961), стр. 43. [На рус. яз.: Гарднер М., «Математические досуги», М: «Мир», 1972, пер. Ю. Данилова. – Прим. пер.]


[Закрыть]
(см. предыдущую страницу), жившим в Нью-Йорке, – отличный геометрический пример. Возьмем квадратный лист бумаги и нарисуем на нем сетку из меньших квадратов семь на семь. Разрежем лист на пять частей и переложим их так, как показано на рисунке. В результате получим «квадратный пончик» – квадрат того же размера, что и исходный, однако по центру не будет хватать одного квадратика. Куда подевался этот квадратик? Мы что же, доказали теорему о том, что цельный квадрат равен по площади пончику?

Фокус состоит в том, что при пересборке квадрата фрагменты ложатся чуточку внахлест, и фигура в результате получается слегка жульнической – или, скажем так, приблизительной. Второй сверху ряд клеток получается чуть-чуть выше, а весь квадрат – на 1/49 длиннее по вертикали, чем должен быть, и этого как раз достаточно, чтобы набралась площадь недостающего квадратика. Но если бы нам доступно было измерение длин с точностью лишь до 2 %, мы бы не уловили разницу между этими двумя фигурами и впали бы в искушение сделать мистический вывод, что площади квадрата и «квадратного пончика» равны друг другу.

Учтены ли как-то подобные малые расхождения в теориях пространства? Одной из путеводных идей в создании общей теории относительности, гениальной теории об искривлении пространства, послужило Альберту Эйнштейну именно отклонение перигелия Меркурия от классической ньютоновской теории[54]54
  История про трудности с перигелием Меркурия изложена в: John Earman, Michael Janssen, and John D. Norton, eds., The Attraction of Gravitation: New Studies in the History of General Relativity (Boston: The Center for Einstein Studies, 1993), стр. 129–149. А еще есть хорошее, хоть и краткое, изложение этой же темы в: Abraham Pais, Subtle Is The Lord (Oxford: Oxford University Press, 1982), стр. 22, 253–255; цитата Леверье дана на стр. 254; «высшая точка» – на стр. 22. Геометрия всей этой истории изложена в: Resnikoff and Wells, стр. 334–336.


[Закрыть]
. Согласно теории Ньютона, планеты движутся по идеальным эллиптическим орбитам. Точка, в которой планета ближе всего к Солнцу, называется перигелием, и, если теория Ньютона верна, планета должна ежегодно проходить строго через эту точку. В 1859 году в Париже Урбен Жан Жозеф Леверье сообщил, что перигелий Меркурия постоянно смещается – самую малость, всего 38 секунд в столетие, что, конечно же, никаких практических последствий не имеет. И тем не менее такое отклонение почему-то происходит. Леверье назвал это «чудовищным затруднением, достойным внимания астрономов». К 1915 году Эйнштейн достаточно развил свою теорию – и вычислил орбиту Меркурия; в эти расчеты обнаруженное отклонение вполне вписалось. По словам биографа Эйнштейна Абрахама Пайса, это открытие стало «высшей точкой его научной жизни. Он был так взбудоражен, что три дня не мог работать». Каким бы малым ни было это отклонение, его объяснение привело к падению классической физики.

Целью Евклида было построить систему так, чтобы в ней не оставалось места для нечаянных допущений, основанных на интуиции, угадывании или приблизительности. Он ввел двадцать три определения[55]55
  Три хороших современных обзора «Начал» Евклида есть в: Kline, Mathematical Thought, стр. 56–88; Jeremy Gray, Ideas of Space (Oxford: Clarendon Press, 1989), стр. 26–41; Marvin Greenberg, Euclidean and Non-Euclidean Geometries (San Francisco: W. H. Freeman & Co., 1974), стр. 1–113.


[Закрыть]
, пять геометрических постулатов и пять дополнительных постулатов, которые он назвал «Общими утверждениями». На этом фундаменте он доказал 465 теорем – практически все геометрическое знание его времени.

Евклид дал определения точке, линии (которая, согласно определению, может быть искривленной), прямой линии, окружности, прямому углу, поверхности и плоскости. Некоторые понятия он определил довольно точно. «Параллельные прямые, – писал он, – это прямые линии, которые, находясь на одной плоскости, продолженные до бесконечности в обоих направлениях, ни в одном из этих направлений не пересекаются».

Окружность, по словам Евклида, есть «плоская фигура, обозначенная одной линией (кривой) так, что все прямые линии, пересекающие ее и еще одну из точек внутри ее, называемую центром, равны друг другу». О прямом угле сказано так: «Когда прямая линия пересекает другую прямую линию, а образующиеся соседние углы равны друг другу, любой из этих углов – прямой».

Некоторые другие Евклидовы определения – например, точки или прямой – довольно расплывчаты и бесполезны: прямая – это «та, что лежит равномерно на всех точках, что на ней помещены». Это определение, вероятно, возникло из строительной практики – там прямоту линий проверяли, глядя из некой точки вдоль проверяемой прямой. Чтобы вникнуть в это определение, нужно загодя иметь в уме понятие прямой. Точка есть «то, у чего нет частей» – еще одно определение, граничащие с бессмыслицей.

Евклидовы общие утверждения более элегантны. Эти внегеометрические логические утверждения[56]56
  Kline, стр. 59.


[Закрыть]
, судя по всему, Евклид считал проявлениями бытового здравого смысла – в отличие от постулатов, что были вполне геометричны. Эту разницу обозначил ранее еще Аристотель. Всесторонне взвесив эти интуитивные допущения, Евклид, по сути, добавил их к постулатам, однако явно желал отличать их от чисто геометрических утверждений. Одно то, что Евклид счел необходимым вообще эти утверждения предъявить, указывает на глубину мысли:

1. Равные одному и тому же равны и между собой.

2. И если к равным прибавляются равные, то и целые будут равны.

3. И если от равных отнимаются равные, то остатки будут равны.

4. И совмещающиеся друг с другом равны между собой.

5. И целое больше части[57]57
  Здесь и далее – пер. с греч. Д. Д. Мордухай-Болтовского. – Прим. пер.


[Закрыть]
.

Если же отложить в сторону эти предварительные замечания, геометрическая суть евклидовой геометрии покоится на пяти постулатах. Первые четыре просты и могут быть сформулированы не без изящества. В современных терминах они звучат так:


Евклидов постулат параллельности

1. От всякой точки до всякой точки можно провести прямую.

2. Ограниченную прямую можно непрерывно продолжать по прямой.

3. Из всякого центра всяким раствором может быть описан круг.

4. Все прямые углы равны между собой.

Постулаты 1 и 2 вполне совпадают, похоже, с нашим житейским опытом. По ощущениям – да, мы понимаем, как нарисовать отрезок между двумя точками, и никогда не утыкались ни в какие препятствия в конце пространства, которые не дали бы нам продолжить прямую. Третий постулат несколько мудренее: он предполагает, что расстояния в пространстве заданы так, что длина отрезка при перемещении его с места на место не меняется, где бы ни рисовали круг. Четвертый постулат на вид прост и очевиден. Чтобы постичь его тонкости, вспомним определение прямого угла: это возникающий при пересечении двух прямых угол, равный всем остальным возникшим. Мы такое видели много раз: одна линия перпендикулярна другой, и все углы со всех сторон равны 90°. Но само определение этого не утверждает – оно даже не говорит нам о том, что значение этих углов всегда одно и то же. Можем вообразить мир, в котором эти углы будут равны 90°, если линии пересекаются в некой заданной точке, а если в какой-нибудь другой, то углы получатся другие. Постулат, утверждающий, что все прямые углы равны между собой, гарантирует, что такого быть не может. Это означает в некотором смысле, что линия выглядит одинаково по всей длине – своего рода условие прямизны.

Пятый же постулат Евклида, называемый постулатом параллельности, не настолько очевиден – в отличие от остальных. Это личное изобретение Евклида, а не часть великого корпуса знаний, который он документировал. Но ему, со всей очевидностью, собственная формулировка не нравилась – он изо всех сил старался избегать ее. Позднейшие математики ее тоже невзлюбили: она была недостаточно проста для постулата и требовала доказательства, как теорема. Вот она, в стиле, близком к оригиналу:

5. Если прямая, пересекающая две прямые, образует внутренние односторонние углы, меньшие двух прямых, то, продолженные неограниченно, эти две прямые встретятся с той стороны, где углы меньше двух прямых.

Постулат параллельности (стр. 61) предлагает проверочный критерий тому, сходятся две расположенные на одной плоскости прямые, расходятся или параллельны. Рисунок в этом смысле очень помогает пониманию.

Существует множество разных, но эквивалентных друг другу формулировок постулата параллельности. Одна особенно наглядно демонстрирует то, что постулат говорит нам о пространстве:

Если есть прямая и не лежащая на ней точка, то через эту точку можно провести одну и только одну прямую (в той же плоскости), параллельную данной.

Постулат параллельности может быть нарушен в двух случаях: несуществование параллельных прямых вообще или существование более чем одной линии, проведенной через данную точку параллельно данной прямой.

* * *

Нарисуйте на бумаге прямую, поставьте где-нибудь вне ее точку. Как на ваш взгляд – возможно ли, что провести ни одной параллельной линии через эту точку не удастся? А больше одной – возможно? Описывает ли постулат параллельности наш мир? Вообразима ли геометрия, в которой этот постулат можно нарушить – и при этом остаться в пределах математического смысла? Два последних вопроса в конце концов подвели нас к революции мышления: первый – в наших представлениях о Вселенной, второй – в понимании природы и смысла математики. Но 2000 лет подряд ни в одной области человеческого знания практически не существовало представления более общепринятого, чем «факт», зафиксированный в постулате Евклида: есть одна и только одна параллельная прямая.

Глава 6. Красавица, библиотека и конец цивилизации

Евклид – первый великий математик в длинной и, увы, обреченной череде александрийских ученых. Македоняне[58]58
  H. G. Wells, The Outline of History (New York: Garden City Books, 1949), стр. 345–375. Линию времени см.: Jerome Burne, ed., Chronicle of the World (London: Longman Chronicle, 1989), стр. 144–147.


[Закрыть]
– греки, обитавшие на севере континентальной Греции, – в 352 году до н. э. начали покорение и объединение эллинских земель под властью Филиппа II Македонского. После разгромного поражения афинские властители в 338 году до н. э. подписали мир на условиях Филиппа, фактически отказавшись от независимости греческих городов-государств. Всего два года спустя, посещая официальную церемонию, на которой была представлена статуя Филиппа в образе нового бога Олимпа, сам Филипп пал жертвой паршивой кадровой политики: его убил один из телохранителей. Его сын Александр – который Великий, – двадцати лет отроду, принял бразды правления.

Александр высоко ценил знания – возможно, благодаря либеральному образованию, в котором геометрия играла важную роль. Он с почтением относился к чужестранным культурам, чего нельзя сказать о его отношении к их независимости. Вскоре он покорил остальную Грецию, Египет и Ближний Восток вплоть до Индии. Александр поддерживал межкультурное общение и смешанные браки, и сам женился на персиянке. Посчитав, что одного личного примера недостаточно, он повелел и всем македонским вельможам тоже взять в жены по персидской женщине[59]59
  Russell, стр. 220.


[Закрыть]
.

В 332 году до н. э. в центре свой империи Александр взялся строить роскошную столицу – Александрию. В этом отношении император был Уолтом Диснеем своего времени: ему представлялась тщательно «спланированная» метрополия, центр культуры, торговли и управления. Даже проектируя бульвары Александрии, император словно бы делал математическое заявление: его архитектор устроил из них сетку, что само по себе занятное предвосхищение геометрии координат, которую не изобретут еще восемнадцать веков.

Александр скончался от неведомого недуга через девять лет после начала строительства – и до того, как возведение великого города завершилось. Империя его распалась, но Александрию все-таки достроили. Геометрия города оказалась вполне благоприятной: он стал центром греческой математики, науки и философии после того, как македонский военачальник по имени Птолемей подмял под себя египетский край империи Александра. Сын Птолемея, изобретательно названный Птолемеем II, когда пришло его время править, построил в Александрии громадную библиотеку и музей. Термин «музей» возник оттого, что эту постройку посвятили семи музам, но по сути это был исследовательский институт, первое государственное научное учреждение в мире.

Наследники Птолемея ценили книги и добывали их довольно интересным способом. Птолемей II, пожелав себе перевод Ветхого Завета на греческий, «заказал» эту работу, взяв в плен 70 еврейских грамотеев и поселив их в кельях на острове Фарос. Птолемей III написал всем мировым владыкам и попросил одолжить ему книги, после чего решил их не возвращать[60]60
  Афиняне одолжили Птолемею III драгоценные манускрипты Еврипида, Эсхила и Софокла. Хоть он их и не вернул, ему хватило щедрости отдать сделанные им копии. Греки, скорее всего, не слишком удивились. Они запросили с Птолемея III (и оставили себе) целое состояние. См.: Will Durant, The Life of Greece (New York: Simon & Schuster, 1966), стр. 601.


[Закрыть]
. В итоге такой агрессивный метод формирования библиотечных фондов оказался продуктивным: в библиотеке Александрии насчитывалось от 200 000 до 500 000 свитков – в зависимости от того, чьей истории верить, – и библиотека стала хранилищем практически всего мирового знания.

Музей и библиотека сделали Александрию непревзойденным интеллектуальным центром планеты, местом, где величайшие ученые бывшей империи Александра изучали геометрию и свойства пространства. Если бы журнал «Новости Соединенных Штатов и мира»[61]61
  «U.S. News & World Report» (с 1933) – американский новостной журнал. В последние годы стал особенно известен своей системой ранжирования и ежегодным отчетам об американских колледжах, университетах, школах и медицинских центрах. – Прим. пер.


[Закрыть]
расширил свой обзор академических вузов на всю историю человечества, Александрия обскакала бы в гонке за первое место и Кембридж Ньютона, и Геттинген Гаусса и Принстон Эйнштейна. Буквально все великие греческие мыслители-математики после Евклида трудились в этой невообразимой библиотеке.

В 212 году до н. э. главный библиотекарь Александрии Эратосфен Киренский[62]62
  Геометрия его расчетов объяснена в: Morris Kline, Mathematics and the Physical World (New York: Dover Publications, 1981), стр. 6–7.


[Закрыть]
, человек, преодолевший за всю жизнь не более нескольких сотен миль, первым в истории рассчитал обхват Земли. Эти расчеты потрясли его сограждан, показав, сколь малую часть нашей планеты знала в те поры цивилизация. Купцы, первооткрыватели и провидцы, вероятно, мечтательно размышляли о том, есть ли разумная жизнь по ту сторону океана. Подвиг современности, сопоставимый по масштабам с эратосфеновским, – первым обнаружить, что Вселенная не ограничивается пределами нашей Солнечной системы.

Эратосфену озарение насчет нашей планеты далось без всяких дальних странствий. Как и у Эйнштейна, у него получилось применить геометрию. Эратосфен заметил, что в полдень в городе Сиене (ныне Асуан) во время летнего солнцестояния палка, воткнутая в землю, не отбрасывает тени[63]63
  Бытует несколько разных вариантов этой истории. Согласно некоторым, Эратосфен замечает отсутствие тени, глядя в колодец, и определяет расстояние до Сиена по рассказам странников. Версия, приведенная здесь, есть в: Carl Sagan, Cosmos (New York: Ballantine Books, 1981), стр. 6–7. [На рус. яз.: К. Саган, Космос, СПб: Амфора, 2008, пер. А. Сергеева. – Прим. пер.]


[Закрыть]
. Для Эратосфена это означало, что палка, воткнутая в землю, оказывалась параллельна солнечным лучам. Если представить Землю в виде окружности и нарисовать прямую из центра через точку на поверхности, представляющую Сиене, и далее в пространство, она окажется тоже параллельной лучам солнца. Теперь двинемся по прямой на поверхности Земли прочь из Сиене – в Александрию. Там вновь нарисуем линию, проведенную из центра Земли через точку-Александрию. Эта линия уже не будет параллельна лучам солнца – она пересекает их под некоторым углом, оттого и появляется видимая тень.

Эратосфену для вычисления части земной окружности – арки между Сиене и Александрией – хватило длины тени от палки, воткнутой в Александрии, и теоремы из «Начал» о линии, пересекающей две параллельные прямые. Он обнаружил, что эта дуга составляет одну пятидесятую от длины обхвата Земли.

Подтянув к делу, вероятно, первого в истории научного ассистента, Эратосфен нанял некого безымянного гражданина, чтобы тот прошел пешком от одного города к другому и замерил расстояние. Нанятый субъект прилежно доложил, что оно составляет примерно 500 миль. Умножив это расстояние на 50, Эратосфен определил обхват Земли в 250 000 миль – с четырехпроцентной погрешностью, а это фантастически точный результат, за который ему бы наверняка дали Нобелевскую премию, а его безымянному ходоку, быть может, – постоянную ставку в библиотеке.

Эратосфен оказался не единственным александрийцем своего времени, кто внес значительный вклад в понимание мира. Астроном Аристарх Самосский, также трудившийся в Александрии, применил гениальный, хоть и довольно затейливый метод, объединивший тригонометрию и простенькую модель небес, для расчета вполне осмысленной приблизительной величины Луны и расстояния до нее. Еще раз подчеркнем: у греков возникло новое представление об их месте во Вселенной.

Еще одна знаменитость, привлеченная Александрией, – Архимед. Родившись в Сиракузах, городе на острове Сицилия, Архимед приехал в Александрию учиться в великой школе математиков. Мы, быть может, и не знаем, кем был тот гений, что впервые обточил камень или дерево до округлой формы и поразил изумленных зевак явлением первого колеса, но мы точно знаем[64]64
  Kline, Mathematical Thought, стр. 106.


[Закрыть]
, кто открыл принцип рычага: Архимед. Он, кроме того, открыл принципы гидростатики и много разного привнес в физику и инженерное дело. Математику он поднял на такую высоту, выше которой без инструментария символьной алгебры и аналитической геометрии забраться было невозможно еще около восемнадцати веков.

Одно из достижений Архимеда в математике – доведение до совершенства методов матанализа, не слишком далеких от предложенных Ньютоном и Лейбницем. С учетом отсутствия картезианской геометрии это достижение смотрится еще более впечатляющим. Главной победой, одержанной с помощью его метода, сам Архимед считал определение объема сферы, вписанной в цилиндр (т. е. сферы, радиус которой равен радиусу и высоте цилиндра), – он равен двум третям объема этого цилиндра. Архимед так гордился этим открытием[65]65
  Morris Kline, Mathematics in Western Culture (London: Oxford University Press, 1953), стр. 66.


[Закрыть]
, что потребовал высечь изображение шара в цилиндре на своем надгробии.

Когда римляне захватили Сиракузы, Архимеду было семьдесят пять. Он был убит римским солдатом, когда изучал рисунок, вычерченный на песке. На его надгробие нанесли изображение, о котором он просил. Спустя более сотни лет римский оратор Цицерон посетил Сиракузы и нашел захоронение Архимеда рядом с воротами в город. Заброшенная могила заросла колючкой и вереском. Цицерон распорядился восстановить могилу. Увы, ныне ее уже не найти.

И астрономия в Александрии тоже достигла пика развития[66]66
  Kline, Mathematical Thought, стр. 158–159.


[Закрыть]
: во II веке до н. э. – стараниями Гиппарха, а во II веке н. э. – Клавдия Птолемея (не родственника царя). Гиппарх наблюдал небеса тридцать пять лет, сложил свои наблюдения с данными вавилонян и разработал модель Солнечной системы, согласно которой пять известных тогда планет, Солнце и Луна двигались по общей круговой орбите вокруг Земли. Ему так ловко удалось описать движение Солнца и Луны, как это видно с Земли, что он мог предсказывать лунные затмения с точностью до пары часов. Птолемей усовершенствовал и расширил эти результаты в книге «Альмагест», осуществив мечту Платона дать рациональное объяснение движению небесных тел, и она была главным астрономическим трудом вплоть до Коперника.

Птолемей также написал книгу под названием «География»[67]67
  Обзор работ Птолемея см.: John Noble Wilford, The Mapmakers (New York: Vintage Books, 1981), стр. 25–33.


[Закрыть]
, которая описывала земное мироздание. Картография – предмет крайне математичный, поскольку карты – плоские, Земля – почти сферическая, а сферу нельзя описать при помощи плоскости, сохранив при этом точными и расстояния, и углы. «География» – начало серьезной картографии.

Ко II веку н. э. значительно развились и математика, и физика, и картография, и инженерное дело. К тому времени мы уже знали, что материя состоит из неделимых кусочков под названием атомы. Мы изобрели логику и доказательство, геометрию и тригонометрию, а также некоторую разновидность матанализа. В астрономии и науке о пространстве мы владели знанием, что мир очень стар и что мы обитаем на шаре. Мы даже располагали размерами этого шара. Мы начали понимать свое место во Вселенной. Мы изготовились двигаться дальше. Сейчас-то мы знаем, что есть и другие солнечные системы – всего-то в десятках световых лет от нас. Продлись Золотой век без заминок, мы, быть может, уже послали бы к ним исследовательские корабли. Может, мы бы оказались на Луне в 969-м, а не в 1969-м году. Может, мы бы поняли о пространстве и жизни то, что у нас сейчас и в голове не укладывается. Однако обстоятельства сложились так, что прогресс, начатый греками, задержался на тысячелетие.

Не исключено, что о причинах средневекового интеллектуального заката написано больше слов, чем было в свитках Александрийской библиотеки. Простого ответа нет. Династия Птолемеев пришла в упадок за два века до рождения Христа. Птолемей XII передал царствование сыну и дочери, унаследовавшим власть после смерти правителя в 51 году до н. э. В 49 году до н. э. его сын устроил заговор против сестрицы и прибрал всю власть к рукам. Сестрица же и сама была не промах – нашла способ добраться до самого римского императора и попросить о помощи (в те времена, хоть формально и не завися от Рима, империя Птолемеев уже находилась под римским господством). С этого начался роман Клеопатры с Юлием Цезарем. В итоге Клеопатра заявила, что собирается родить Цезарю сына. Римский император – мощный союзник египтянам, однако этот альянс был обречен – вместе с самим Цезарем. После того, как двадцать три римских сенатора напали на своего императора и закололи его во время Мартовских ид 44 года до н. э., внучатый племянник Цезаря, Октавиан, подчинил Риму и Александрию, и Египет.

Поскольку Рим завоевал Грецию, римляне получили доступ к интеллектуальному достоянию греков. Наследники греческих традиций покорили бо́льшую часть мира и столкнулись со многими техническими и инженерными трудностями, однако их императоры не поддерживали математику так, как это делали Александр или Птолемей Египетский, и цивилизация их не произвела на свет ни одного математического гения масштабов Пифагора, Евклида или Архимеда. За 1100 лет их правления – с 750 года до н. э. – история не помнит ни одной доказанной римлянами теоремы и ни одного математика. Для греков определение расстояний было математической задачей с участием равных и подобных треугольников, параллакса и геометрии. В римских учебниках[68]68
  Kline, Mathematics in Western Culture, стр. 86.


[Закрыть]
в словесно сформулированной задаче от читателя требовалось найти метод определения ширины реки, когда другой берег занят врагом. «Враг» – понятие, чья полезность в математике довольно спорна, зато оно – ключевое для римской манеры мышления.

В абстрактной математике римляне не разбирались – и гордились этим. Цицерон сказал: «Греки держали геометров в высочайшем почете. Потому и более всего развили они математику. Но мы положили предел этому искусству его пользой в измерении и счете». Вероятно, о римлянах можно было бы сказать: «Римляне держали воинов в высочайшем почете. Потому более всего развили они насилие и мародерство. Но мы положили предел этому искусству его пользой в покорении мира».

Нельзя сказать, что римляне не были образованы. Были. Они даже писали на латыни всякие технические методички, но те были исковерканными работами, одолженными у греков. К примеру, главный переводчик Евклида на латынь, римский сенатор из почтенной семьи Аниций Манлий Северин Боэций[69]69
  Kline, Mathematical Thought, стр. 201.


[Закрыть]
– своего рода редактор «Ридерз Дайджест» римских времен. Боэций разбил работы Евклида на части, создав некоторый конспект для студентов, готовящихся к тестам с вариантами ответов. На современном жаргоне можно было бы назвать этот труд «Евклид для “чайников”» или рекламировать по телевизору с подписью «ЗВОНИТЕ 1-800-ДОКАЖИ-КА», но во времена Боэция это была вполне авторитетная работа.

Боэций приводил лишь определения и теоремы и, похоже, считал аппроксимации точными результатами. И это еще цветочки. В некоторых случаях он попросту ляпал ошибки – вот где ягодки-то. За перевирание идей греков Боэция не секли, не распинали, не жгли на костре и вообще не подвергали ни одному из популярных наказаний, применявшихся к умникам в Средние века. Его падение произошло из-за увлечения политикой. В 524 году ему отрубили голову за «заговорщические связи» с Восточной Римской империей. Лучше бы портил математику.

Еще одна показательная в своем головотяпстве книга того периода была написана бывалым купцом из Александрии. «Земля, – писал этот римлянин, – плоская. Необитаемая ее область имеет форму прямоугольника, длинная сторона которого вдвое длиннее его короткой… На севере размещается конического вида гора, вокруг которой вращаются солнце и луна». Его книга «Topographia Christiana»[70]70
  Kline, Mathematics in Western Culture, стр. 89.


[Закрыть]
была основана не на логике и наблюдении, а на Писании. Видимо, ничего так чтиво, сгодится полистать, потягивая вкусное, насыщенное свинцом римское вино: «Топография» была бестселлером аж до XII века, покуда сами римляне не стали историей.

Последним великим ученым, работавшим в Александрийской библиотеке, оказалась Гипатия[71]71
  Историю Гипатии см.: Maria Dzielska, Hypatia of Alexandria, trans. F. Lyra (Cambridge, MA: Harvard University Press, 1995). См. также: Kramer, стр. 61–65, и Russell, стр. 367–369.


[Закрыть]
, первая великая женщина-ученый, чье имя сохранила для нас история. Она родилась в Александрии около 370 года н. э. в семье знаменитого математика и философа Теона. Теон выучил дочь математике. Она стала его ближайшим сотрудником и в конце концов полностью затмила его. Один из ее учеников Дамаский, со временем превратившийся в ее сурового критика, писал о ней: «Она по натуре своей была изощренней и талантливей отца своего». Ее судьба и ее более широкое значение долго обсуждались множеством великих вроде Вольтера или Эдварда Гиббона в «Истории упадка и разрушения Римской империи»[72]72
  Edward Gibbon, The Decline and Fall of the Roman Empire (London: 1898), стр. 109–110. [На рус. яз.: Эдвард Гиббон, «История упадка и разрушения Римской империи», в 7 т., М.: Наука, 2006, пер. В. Неведомского. – Прим. пер.]


[Закрыть]
.


Страницы книги >> Предыдущая | 1 2 3 4 5 | Следующая
  • 4.2 Оценок: 5

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации