Электронная библиотека » Линн Фостер » » онлайн чтение - страница 3


  • Текст добавлен: 31 января 2014, 03:33


Автор книги: Линн Фостер


Жанр: Зарубежная образовательная литература, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 3 (всего у книги 36 страниц) [доступный отрывок для чтения: 12 страниц]

Шрифт:
- 100% +
1.6. Будущее нанотехнологии

Только дурак может заниматься предсказаниями будущего

(древнекитайская поговорка)

Предсказание будущего действительно является рискованным и неблагодарным занятием. Для предвидения возможностей развития в любой области человеческой деятельности недостаточно иметь только обширные знания и опыт, а необходимо еще обладать интуицией, позволяющей угадывать фантастические возможности, скрытые в парадигмах существующей науки и технологии. Речь действительно идет об угадывании, а не о расчете, прежде всего потому, что физические законы окружающего нас мира могут «изменяться» при переходе к другим условиям или другому окружению. Особенно заметны такие изменения в ситуациях, когда технология используется в иных масштабах (например, в атомномолекулярных). В мире нанометровых объектов и процессов зачастую совершенно теряют смысл привычные физические понятия типа массы, инерции и т. п., так что обычная механика (используемая, например, для создания и вождения автомобиля в нашем мире) становится бесполезной.

Представим, например, что мы опускаем соломинку в стакан с водой или коктейлем. В привычном нам макромире уровень воды в соломинке совпадает с общим уровнем в стакане (или, строго говоря, близок к нему). Однако если вместо соломинки использовать капиллярную трубку, то уровень жидкости в ней будет значительно превышать общий, поскольку внутри очень тонких трубок начинают проявляться капиллярные свойства жидкости, связанные с молекулярными взаимодействиями. Говоря проще, изменение масштабов объекта или процесса приводит к резкому изменению правил физической «игры» и проявлению новых свойств, которые нельзя было предвидеть заранее. Именно это и происходит в науке и технологии, как только исследователи начинают работать в диапазоне наноразмеров.

Вообще говоря, для успешного исследования явлений природы от ученого требуется прежде всего здравое понимание фундаментальных принципов науки и границ их применения. Ученый должен проверять применимость этих принципов на каждом этапе исследований, что, кстати, наглядно демонстрирует упоминавшаяся выше история с синтезом инсулина группой Бойера, Риггза и Итакуры. Отказавшие в гранте специалисты Национального института здоровья вовсе не были недобросовестными или неквалифицированными экспертами, но им просто не хватило опыта и «фантазии», чтобы представить себе процессы, основанные на совершенно новых принципах. Таким опытом и интуицией обладал Бойер, которому удалось убедить в своей правоте (попросту говоря, «продать» идею) Свансона, взявшего на себя практическую организацию новой технологии. Ему удалось найти финансирование для исследований по синтезу соматостатина, что и привело в дальнейшем к успеху в производстве инсулина.

Приведенные выше примеры и концепции из истории биотехнологий, конечно, весьма упрощают картину развития, которая в действительности выглядит значительно более сложной, однако наличие S-образных кривых и разрывов на них является фундаментальным и общим явлением для развития любой научной или технической отрасли. Кстати, эта закономерность прекрасно подтверждается и на современном этапе перехода от привычных биотехнологий к нанотехнологиям. Например, существующие биотехнологии основаны на использовании природных ферментов, которые химики и биологи (благодаря своим знаниям и мастерству) научились «вырезать» и «вставлять» в нужные места на молекулах ДНК. Такие генные манипуляции с естественными ферментами и являются основой технологии, превращающей бактерии в своеобразные фабрики или химические реакторы для производства требуемых препаратов и веществ. Однако сейчас становится ясным, что дальнейший прогресс в этой области будет связан с множеством новых явлений, наблюдаемых в нанометрической области. Для коммерциализации новых методик ученым необходимо получить более достоверные сведения об этих процессах и научиться уверенно управлять ими. Любое серьезное открытие в этой области имеет шанс найти свой «рынок», получить инвестиции и быстро развиться в полноценное и высокоэффективное коммерческое производство.

В качестве интересного и поучительного примера можно привести следующий. Еще в 1905 году Вильям Кобленц из Национального бюро стандартов США (Вашингтон, округ Колумбия) сумел обнаружить и изучить связь между химической структурой молекул и их спектром поглощения в инфракрасном диапазоне излучений[13]13
  W. Coblentz, Investigations of Infrared Spectra (Washington, DC: National Bureau of Standards, 1905).


[Закрыть]
. Это замечательное научное открытие долгое время оставалось лишь базой для красивых теоретических работ, и лишь в 1942 году на его основе был создан первый коммерческий образец инфракрасного спектрометра. В настоящее время такие приборы (позволяющие измерять поглощение света в виде функции от длины волны) используются практически в любой лаборатории, но их развитие сдерживалось отсутствием спроса. Острая потребность в таких спектрометрах возникла только в годы Второй мировой войны (в связи с развитием производства синтетического каучука), в результате чего почти немедленно было создано мощное коммерческое производство, удовлетворяющее постоянно растущую потребность рынка. Возможно, в случае нанотехнологий мы столкнемся не с бурным развитием, а с постепенным, эволюционным расширением рынков и производств.

Прогнозирование будущего – сложная и рискованная затея, но я предложу читателям простой мысленный эксперимент. Попробуйте представить себе историю развития и постепенного улучшения свойств волокон. Когда-то человечество пользовалось только натуральными волоконными материалами (пенька, шелк и хлопок). Улучшение характеристик описывалось одной S-образной кривой до тех пор, пока не появились синтетические волокна типа нейлона. Количество и качество таких волокон постоянно увеличивается, а общие тенденции их развития описываются другой, но тоже S-образной кривой. В настоящее время нанотехнология позволяет создавать совершенно новые материалы и волокна на их основе, так что я предлагаю читателю (опираясь на технический опыт, интуицию и фантазию) попробовать представить следующую S-образную ветвь развития, а также подумать о необычных применениях таких волокон, возможной технологии их производства и коммерческой ценности в различных областях.

Именно такие размышления можно назвать прогнозом развития нанотехнологий, и им посвящена данная книга.

Глава 2
Нанотехнология и глобальная энергетика
Ричард Смолли

Знаменитый ученый Ричард Э. Смолли, выпускник Принстонского университета, прославившийся своими работами в новейших областях химической физики, долгое время (1996–2002) возглавлял Центр нанонауки и технологии в университете Райса, а затем до своей смерти (октябрь 2005 года) был директором Лаборатории нанотехнологии углеродных материалов в этом университете. Он получил огромное число научных премий и наград, включая Нобелевскую премию 1996 года по химии. Наибольшую известность Р. Смолли принесло открытие молекулы Ctio (более известной под названием бакминстерфуллерен или просто бакиболл и фуллерен), представляющей собой сферу типа футбольного мяча из 60 атомов углерода. Эта молекула и другие ее модификации стали еще одной формой существования углерода в природе (помимо алмаза и графита). Фуллерены не только стали объектом для множества интересных физико-химических исследований, но и позволили организовать производство самых разнообразных материалов нового типа, на основе чего уже возникла новая отрасль производства. Р. Смоли основал в феврале 2000 года весьма успешно развивающуюся инновационную компанию Carbon Nanotechnologies Inc.


В последнее время я все более утверждаюсь в мысли, что основной проблемой, стоящей перед мировым сообществом или даже человечеством вообще, станет то, что мне хочется назвать «тераваттным вызовом». Я хочу сказать, что изучение всех материалов, связанных с развитием энергетики, показывает, что в ближайшем будущем нам понадобятся тераватты энергии (напомню, что приставка тера означает триллион, то есть увеличение в 1012 раз). Население планеты в ближайшем будущем достигнет десяти миллиардов человек, и для обеспечения достойного существования и развития этого огромного количества людей мы должны существенно повысить объем используемой энергии.

Собственно говоря, энергетический вызов всегда стоял перед человечеством. Энергетика обеспечивает существование человечества, и нам нельзя забывать, что объемы запасов нефти и природного газа уже сейчас вызывают серьезное беспокойство специалистов. Жизнь должна продолжаться, и это диктует настоятельную необходимость поиска новых источников энергии для начинающегося столетия. Даже самые простые расчеты демонстрируют, что к середине XXI века уровень энергопотребления человечества возрастет по меньшей мере вдвое, так что мы должны срочно научиться производить большие количества энергии за счет новых процессов. Задача осложняется и тем, что источники энергии должны быть не только воспроизводимыми, но и экологически чистыми, то есть не связанными, например, с дальнейшим повышением уровня двуокиси углерода в атмосфере, что уже сейчас становится крайне опасным. Источники энергии должны быть также дешевыми, хотя бы для того чтобы человечество могло сохранить международный мир и процветание, а не погрязнуть в войнах за природные ресурсы.

Энергетика представляет собой сейчас наиболее крупный и основной сектор мировой экономической системы вообще, и годовые расходы на нее можно оценить примерно в 3 триллиона долларов. Следующим по размеру сектором выступает сельское хозяйство, на которое человечество затрачивает примерно в два раза меньше (несмотря на его важность и распространенность), а глобальные расходы всех стран (включая США) достигают примерно 0,7 триллиона долларов в год. Человечество стоит перед настоятельной проблемой нахождения новых источников энергии, которые должны заменить нефть, бывшую основой развития в прошлом столетии.

Мне приходится довольно часто выступать перед публикой, и я обычно прошу слушателей составлять списки проблем, которые они считают наиболее важными для развития человечества вообще. На основании многочисленных опросов разных аудиторий я составил приведенный ниже общий список, который возглавляет слово энергия, практически всегда упоминаемое в таких перечнях одним из первых. Вот как выглядит перечень важнейших мировых проблем на основе моих простых опросов:

1. Энергия

2. Водные ресурсы

3. Пища

4. Состояние окружающей среды

5. Бедность и нищета

6. Терроризм и войны

7. Болезни

8. Малограмотность

9. Демократия

10. Перенаселенность

Я придаю энергетической проблеме важнейшее значение еще и потому, что ее решение значительно облегчило бы нам борьбу с бедностью, нищетой, болезнями и другими трудностями. С другой стороны, я также убежден, что без новых источников энергии мы просто не сможем справиться с большинством из перечисленных выше проблем, и попробую доказать это следующими рассуждениями.

Например, недостаток водных ресурсов является серьезнейшей проблемы для многих регионов мира. Собственно говоря, на планете полным-полно воды, но она по большей части является соленой, а во многих случаях просто находится очень далеко от тех мест, где в ней ощущается острая потребность. Сейчас мы можем с уверенностью сказать, что эффективное опреснение морской воды технически вполне осуществимо, так как некоторые нанотехнологии обеспечивают практически 100 %-ную очистку (впрочем, воду всегда можно очистить от солей, просто вскипятив ее и осадив пары). Проблемы опреснения и водоснабжения упираются только в возможности энергетики, так как, имея достаточно энергии, мы могли бы спокойно перекачивать воду из одних районов (где она в избытке) в другие, тем самым гарантируя процветание целых регионов. Столь же очевидно, что решить проблему водных ресурсов без достаточного количества производимой энергии невозможно.

Следующей проблемой в списке обычно выступает обеспечение населения Земли питанием, что очевидно связано с сельским хозяйством и проблемой водоснабжения. Для повышения урожайности требуются удобрения, производство которых тоже зависит от энергетики, не говоря уже о пищевой промышленности, транспортировке продуктов и т. п. Во всех случаях решение большинства задач упирается в возможности производить и передавать энергию.

Столь же очевидно значение энергетики для экологии, так как состояние окружающей среды в огромной степени определяется способами производства, хранения, передачи и потребления энергии. Собственно говоря, именно создание экологически безопасных источников энергии является важнейшей задачей почти для всех природоохранных мероприятий и действий.

Производство дешевой, экологически чистой и доступной энергии и является сейчас основной проблемой человечества. Только новые источники энергии могут обеспечить процветание человечества и дальнейший прогресс науки. Возвращаясь к списку, отмечу, что ни одна из других проблем не является столь объединяющей и важной, как энергетическая.

Таким образом, человечество просто вынуждено срочно искать новый источник энергии, который помимо всех указанных требований должен быть чрезвычайно мощным, поскольку речь идет о тераваттах энергии. Как ни странно, такой источник существует и его использование зависит только от нашего таланта и изобретательности. Я говорю о солнечной энергии, которая превращает в безлюдные пустыни обширные участки нашей планеты. Именно эту задачу я называют «тераваттовым вызовом» человечеству – для дальнейшего роста и развития оно должно в ближайшие десятилетия найти методы утилизации солнечной энергии.

О других источниках энергии не стоит даже говорить серьезно. Запасы полезных ископаемых (например, каменного угля) незначительны, а их добыча представляется малоэффективной. Чудовищное количество необходимой человечеству энергии (десятки тераватт!) может быть обеспечено только ядерной энергетикой. Источником энергии Солнца также являются ядерные и термоядерные реакции, так что в настоящий момент ее использование представляется единственным выходом из положения. Каждый день наша планета получает от Солнца 165 000 тераватт энергии, а для решения всех энергетических проблем необходимо лишь 20 тераватт. Природа создала огромный источник энергии, но человечество еще не научилось достаточно эффективно им пользоваться.

2.1. Транспортировка и хранение энергии

Я потратил много времени, пытаясь придумать какую-либо глобальную схему энергоснабжения планеты, разумную с точки зрения экономики и технологии. Основная идея заключается в том, что к 2050 году человечество должно прекратить совершенно бессмысленную транспортировку огромных масс топлива (угля, нефти и т. д.) по всей планете, а должно научиться передавать энергию именно в виде «энергии». Для этого нам следует прежде всего создать нечто вроде глобального «хранилища» энергии в виде сетки или «паутины» (из сотен миллионов соединенных друг с другом энергетических сайтов), позволяющей наиболее эффективным образом перераспределять потоки электрической энергии.

Рассмотрим, например, существующую сейчас систему электроснабжения всей Северной Америки, от Полярного круга до Панамского канала. К 2050 году эта система будет действительно включать в себя сотни миллионов узлов или сайтов, так что для создания реальной сети хранения энергии нам необходимо решить лишь технические вопросы, из которых существенными являются два. Во-первых, необходимо существенно снизить потери при передаче тока на большие расстояния, а во-вторых – мы должны как-то обеспечить само «хранение» электроэнергии в узлах.

Принципиально важными для функционирования и надежности такой энергетической сети являются именно вопросы хранения энергии в узлах, особенно если нам удастся создать устройства, вырабатывающие электричество на основе энергии солнечного света или ветра. Естественно, что хранение получаемой при этом энергии выгоднее организовывать вблизи центров потребления. В качестве заманчивой перспективы можно представить, что к 2050 году каждый дом, производственное помещение или организация будут снабжены собственным локальным устройством хранения электроэнергии, работающим круглые сутки. В идеале такие устройства должны быть небольшими по размеру и достаточно дешевыми, чтобы владельцы могли менять их на новые модели каждые несколько лет, поддерживая развитие такой сети и обновляя оборудование.

К сожалению, существующие устройства хранения электроэнергии еще очень далеки от предлагаемого идеала и являются очень громоздкими и дорогими (даже самые современные свинцовые аккумуляторы мощностью 1000 киловатт/час занимают несколько квадратных метров и стоят около 10 000 долларов). Однако в последние годы (во многом благодаря достижениям в нанотехнологиях) появилась реальная возможность существенного уменьшения размеров и стоимости батарей. Разработки продолжаются, и уже в близком будущем можно ожидать появления на рынке батарей такой же мощности, имеющих размеры небольшой стиральной машины стоимостью лишь около 1000 долларов. Массовое использование таких батарей будет иметь огромное значение для стабильности и надежности работы всей энергетической сети в целом, поскольку позволит снизить влияние местных флуктуаций, аварий и нарушений режима работы. Особую ценность такие устройства приобретут при внедрении новых источников энергии, связанных с использованием энергии ветра и Солнца.

Еще одно очень важное изобретение необходимо для того, чтобы мы могли передавать электроэнергию в огромных количествах (сотни гигаватт) на очень большие расстояния, например, от солнечных батарей в штате Нью-Мексико к потребителям в Новой Англии, что позволило бы производителям энергии на месте не беспокоиться об удаленности потребителей. Другими словами, необходимо создать достаточно обширную и связную энергетическую систему, объединяющую самых разных производителей энергии: экологически чистые угольные шахты в Вайоминге, ветряные установки в Северной Дакоте, газовые месторождения на Аляске, гидроэнергетические установки на севере Британской Колумбии, установки по выработке энергии из биомассы в Миссисипи, ядерные станции Хэнфорда, солнечные батареи на обширных пространствах западных пустынь и т. п. В такой сети удаленные производители и потребители энергии из самых разных областей континента могут свободно соединяться, несмотря на разделяющие их пространства. Пока такая единая электрическая система выглядит фантастикой, однако в последние годы возник проект создания нестандартной системы передачи электроэнергии, основанной на достижениях нанотехнологии. В узлах связи такой сети планируется использовать устройства из нанотрубок особого вида (так называемые а£а-нанотьюбы, образующие квантовые соединения в виде «кресла»). Научные открытия во всех отраслях энергетики (производство, передача и хранение энергии) и инновационные проекты на их основе в сочетании со здоровой конкуренцией и свободным предпринимательством производителей позволят не только решить перечисленные выше проблемы, но и создать рынки новых товаров и услуг в глобальном масштабе.

Наиболее важной технической задачей остается, по моему мнению, проблема локального хранения получаемой энергии, причем обеспечение «локальности» имеет ключевое значение. Дело в том, что основным недостатком любых установок, использующих энергию солнца и ветра (а именно эти источники рассматриваются сейчас в качестве основы будущей энергетики) является естественная неравномерность режима их работы и связанные с этим большие колебания в объеме вырабатываемой энергии, что особенно заметно при эксплуатации ветряных установок. Для таких устройств проблема хранения вырабатываемой энергии зачастую является основной, что вновь приводит нас к научным проблемам, решением которых может и должна заниматься нанотехнология. Напомню, что практически все физико-химические процессы в устройствах, обеспечивающих аккумулирование и хранение энергии (батареи, конденсаторы, топливные элементы, химические системы со связанным водородом и т. п.), происходят именно за счет наномасштабных процессов. Почти во всех случаях конечный процесс передачи заряда осуществляется группой из нескольких атомов на какой-либо поверхности. Поэтому, почти наверняка следующее поколение устройств хранения энергии будет создано на основе нанотехнологической модификации поверхностей, наноразмерных частиц катализаторов и т. д. Именно в энергетике (и особенно в решении проблем хранения энергии) нанотехнологии могут проявить свою исключительную эффективность.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации