Электронная библиотека » М. Шурдов » » онлайн чтение - страница 6


  • Текст добавлен: 18 января 2024, 06:02


Автор книги: М. Шурдов


Жанр: Медицина, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 6 (всего у книги 31 страниц) [доступный отрывок для чтения: 10 страниц]

Шрифт:
- 100% +

Таким образом, очевидно, что технологии нейроинтерфейса – самые продвинутые технологии в нейроинженерии, и они добились самых внушительных результатов. Однако большинство ученых и больших научных коллективов выдают желаемое за действительное, и мы слышим по радио и видим с экранов телевидения и в интернете, как самыми различными путями исследователи пытаются снять объективную информацию с головного мозга человека и передать ее в компьютер и обратно.


Рис. 18. Протезы i-limb используют запатентованную технологию,

позволяющую считывать мышечные импульсы


Обобщая все вышеизложенное, можно смело утверждать, что для целей создания разных типов нейроинтерфейсов разными научными коллективами используются различные электрические сигналы, получаемые аппаратными средствами от нервной ткани человека. В одних случаях источником взаимодействия от мозга служат данные электроэнцефалографии, электрический сигнал от внутримозговых микро– и наноэлектродов, имплантированных в кору головного мозга, а также используются распределенные электромагнитные сигналы от различных типов нанонапылений (нанопыль) на кору мозга или от имплантированных в кости черепа «биоболтов» или «биопортов», у которых есть расположенные над корой головного мозга электроды. В других случаях осуществляется отведение сигнала от нейростимулятора, имплантированного в проекции спинного мозга, или от электронейромиограммы периферических нервов, иннервирующих определенные группы поперечно-полосатых мышц. Но несмотря на столь разнообразные источники получения информационных сигналов от нервной ткани человека, пока даже близко нет реальных результатов фактического нейро-машинного взаимодействия между мозгом человека и компьютером. Технологически реализация феномена нейроинтерфейса пока не представляется реальной! Постоянные информационные «вбросы» о том, что где-то наконец-то осуществлена реальная установка интерфейса между мозгом обезьяны, находящейся в США, и компьютером, находящимся в Японии, на другом конце Земного шара, и при этом биопотенциалы мозга американской обезьяны управляются биопотенциалами головного мозга японской обезьяны через осуществленный компьютерный нейроинтерфейс, – на самом деле являются очередными рекламными, фейковыми новостями. Это связано с большими надеждами человечества на потенциальную возможность передачи мыслей на расстоянии. Именно поэтому это самые высокофинансируемые и самые многообещающие исследования в области нейроинженерии и считается, что именно они обеспечат тот научный прорыв, на который рассчитывает вся мировая научная общественность.


Нейротехнологии функционального объединения живых и неживых элементов нервной ткани. Эти технологии условно занимают второе место среди ведущих нейроинженерных технологий в мире. Исследователи из Института биохимии Макса Планка (Германия) соединили ряд живых нервных клеток с элементами кремниевого чипа. Так была образована схема «кремний – нейрон – нейрон – кремний». Входной электрический импульс приводил в возбужденное состояние первый нейрон, тот посылал сигнал второму, второй подхватывал сигнал и «передавал» его на транзистор. В эксперименте использовались нейроны улитки Lymnaea stagnalis из-за больших размеров ее нервных клеток, доступных для манипуляций обычными инструментами.

Нейроинженерия давно пыталась достичь подобного результата: гибридные схемы из живых и неживых элементов в будущем позволят заменять поврежденные биомеханизмы на искусственные имплантаты, управляемые нервной системой. Нейрофизиологи из Технологического института Джорджии (США) совместно с искусствоведами из Университета Западной Австралии научили крысиные нейроны «рисовать». Для исполнения эксперимента американцы взяли кусок мозга грызуна и подсоединили его нейроны к 60 электродам, а те подключили к компьютеру. ПК читает нейронные сигналы в Америке. Переданные по электронной почте потоки сознания крысиных нейронов изливаются на бумагу при помощи 3 цветных фломастеров уже на Австралийском континенте (Петренко, Светлова, 2014). Можно ли это явление назвать нейроинтерфейсом? Наверное, нет. Хотя сам принцип соединения живой нервной ткани и неживой материи соответствует духу фундаментальных нейроинженерных исследований.

Европейские ученые разрабатывают инвалидное кресло, управляемое импульсами мозга. Пользователи таких кресел будут надевать на голову «шапку» – специальное устройство, снабженное электродами, улавливающими малейшие электрические колебания на поверхности головы. Современные технологии позволяют преобразовать эти импульсы в команды, управляющие движением кресла. Разработка такого инвалидного кресла началась недавно, но опыты ученых уже дают положительные результаты. Пока вся система построена на основе простейшего робота на колесах, подобного радиоуправляемым игрушкам. При помощи специальной электронной «шапки» ученым удалось заставить его двигаться в 3 направлениях – налево, направо и вперед, как сообщает BBC.

Когда человек хочет двигаться в каком-то направлении, его мозг порождает определенные импульсы. Эти импульсы всегда одинаковы для одного и того же направления движения. Электронная «шапка» улавливает эти импульсы при помощи электроэнцефалографии (ЭЭГ) и передает полученные данные в компьютер. Специальная программа, разработанная учеными, анализирует полученные данные и преобразовывает их в команды, которые затем передаются роботу (http://news.proext.com/tech/11999.html). Сам робот запрограммирован так, что он начинает движение или поворачивает куда бы то ни было не сразу, а только когда есть такая возможность. Таким образом, он никуда не врезается. Кроме того, в робота встроены инфракрасные датчики, которые распознают различные объекты и помогают роботу избежать столкновения с ними.

Британский проф. Кевин Уорвик (K. Warwick) сообщил фонду «Наука за продление жизни», что на факультете кибернетики Университета Рединга (Великобритания) появилось необычное существо по имени Гордон, который в буквальном смысле является крысороботом. Внутри искусственной конструкции содержится питательная среда с десятками тысяч нейронов, выделенных из мозга живой крысы. Гордон – очередной продукт знаменитого редингского проф. Кевина Уорвика, который в этом эксперименте объединился с биологом, проф. Школы фармацевтики того же университета Беном Уорлли (B. Worlly). Потенциальные возможности «квазимозга» Гордона соответствуют лишь уровню продвинутых насекомых (скажем, пчел или ос). Однако даже такая, сильно облегченная версия крысиного мозга, представленная британскими учеными, не может не будоражить воображение всех ценителей жанра science fiction, хотя это уже не первая попытка создания подобных гибридов. Американец Стив Поттер из лаборатории нейроинженерии Технологического института штата Джорджия (Атланта) еще в 2003 г. сконструировал гибридное устройство (hybrot), содержащее несколько тысяч крысиных нейронов, а годом позже Томас Де Марс из Университета Флориды создал «мозг в чашке», состоявший уже из 25 тыс. крысиных нейронов.

Крысоробот Гордон из Рединга по количеству нейронов в мозге значительно умнее своих собратьев, но главная новизна эксперимента Уорвика – Уолли в том, что им впервые удалось установить непосредственный контакт с живым мозгом, находящимся в искусственной оболочке. Непосредственным показателем биоэлектрической активности нервных клеток при передаче нейронных импульсов выступают спонтанные перепады напряжения (т.н. биоэлектрический потенциал), определяемые разностью электрических потенциалов между 2 точками живой ткани. И именно такие электрические сигналы четко фиксировались на компьютерных экранах наблюдателей. Ключевой аспект исследований, по мнению авторов, заключался в понимании того, что же такое память. На данной модели исследователи по-разному экспериментируют с «маленьким живым мозгом», находящимся внутри робота. Они помещают робота в различные положения, заставляют его познавать окружающую среду и выясняют, насколько хорошо сохраняются эти воспоминания в мозге. Следующий шаг должен усилить эти воспоминания – в перспективе это может помочь в лечении болезни Альцгеймера, а также людям, пораженным инсультом. Мозг имеет приблизительно 100 тыс. нейронов, которые растут на множестве электродов. Коммуникация происходит как через эти электроды, которые фиксируют сенсорную информацию от тела робота, так и через «двигательные» команды, исходящие от мозга и поступающие на его колеса. Авторы эксперимента действительно находятся в контакте, потому что мозг удается стимулировать и он отвечает на их стимулы. Постепенно, по мере того как мозг учится управлять «телом» – роботом, у него возникает привычка к этой деятельности, и эта привычка усиливает образование связей между нейронами.


Нейротехнологии искусственного протезирования участков головного и спинного мозга. Обсуждая эти нейротехнологии, обратим внимание на нейроинженерные работы проф. Теодора Бергера (Theodore W. Berger) (рис. 19), который считается основоположником искусственного нейропротезирования в современной нейроинженерии.

Он проводит эксперименты по клеточным (молекулярным) механизмам пластичности синаптических связей и влиянию этой пластичности на функциональную динамику гиппокампа на сетевом и системном уровнях; является руководителем группы разработчиков технологии протезирования мозга в Центре нейроинженерии Университета Южной Калифорнии. Считается, что он якобы первым заменил гиппокамп крысы чипом в 2009 г. (рис. 20). Другими словами, считается, что именно он и его группа создали «искусственный гиппокамп». Эта технология где-то граничит с технологиями нейроинтерфейса. В настоящее время его группа разрабатывает технологию «нейронно-кремниевого интерфейса», используя многоабонентскую электродную матрицу на основе кремниевых соединений и методы выращивания тканевой культуры для последующей имплантации аппаратных моделей в мозг и замены поврежденной или дисфункциональной нервной ткани.


Рис. 19. Теодор В. Бергер (Theodore W. Berger), проф. инжиниринга Фонда Дэвида Паккарда (David Pakkard), проф. биомедицинской инженерии и нейробиологии, директор Центра нейроинженерии (CNE) Университета Южной Калифорнии (USC), доктор философии по физиологической

психологии Гарвардского университета


Чтобы понять масштаб проекта, на который нацелились Томас Бергер и его команда, нужно сделать определенное отступление и дать небольшие пояснения. Работа Т. Бергера направлена на протезирование функции памяти и на искусственное восстановление утерянной памяти. И хотя считается, что он «создал и имплантировал первый в мире искусственный гиппокамп», полученный им и его командой, результат лишь условно можно считать реальным восстановлением утраченной памяти.

При этом надо понять, что в современных науках о мозге не существует четкого понимания и строго научного объяснения феномена, которое мы называем памятью, и нет точного научного описания того, где она локализуется. Современные нейрофизиологические представления о памяти очень нечеткие, и большинство нейроспециалистов считают, что память равномерно распределена по коре головного мозга и локализована про всему мозгу и в гиппокампе. Человеческая память бывает двух видов – кратковременная и долговременная.


Рис. 20. Схема протезированния гиппокампа с заменой его на нейронные коды, представленная Томасом В. Бергером в целом ряде специализированных журналов по нейроинженерии (Neuronal Engineering, 2013;

J. Neural Eng. – 2012. №9; 2011. №8)


Кратковременная память характеризуется малым объемом и небольшим (порядка 30 с) временем хранения, причем главную роль в образовании кратковременной памяти играют лобные доли головного мозга. У долговременной памяти и объем, и время хранения информации практически не ограничены. В качестве кладовых этого вида памяти выступают уже височные отделы коры. Впрочем, выделить участки коры, где хранится память о тех или иных специфических событиях, никому пока так и не удалось. В качестве возможного объяснения этих безуспешных попыток учеными было сделано предположение, что записи о том или ином конкретном событии дублируются в разных участках коры головного мозга. Косвенно это подтверждают эксперименты американца Карла Лешли (Karl Lashley), проведенные в конце 1950-х гг.: сначала он обучал крыс проходить через лабиринт, а затем поочередно удалял различные части их мозга. Как оказалось, вне зависимости от того, какая часть головного мозга удалялась, крысы всегда сохраняли способность ориентироваться в лабиринте (проверять их реакцию на полное удаление мозга дотошный исследователь не стал). Удивительно, но именно эти научные представления являются доминирующими в нейрофизиологии, нейропсихологии и клинической медицине последние 60—70 лет. Тогда с Карлом Лешли работал Карл Прибрам (Karl Pribram), известный американский нейрофизиолог и экспериментатор. Они вместе изучали поведение экспериментальных крыс, обученных правильной навигации в лабиринте, он тоже хирургическим путем удалял постепенно разные части головного мозга этих животных, и, к его удивлению, память животных на выполнение программы прохождения лабиринта практически не страдала от объема удаленного мозга. И только тогда, когда он пересекал гиппокамп, животные теряли ориентацию и не могли выполнить заученную программу прохода по лабиринту. Он пришел к заключению, что количество удаленного головного мозга у животных не влияет на объем памяти и что память равномерно распределена по всему мозгу и локализована преимущественно в гиппокампе, т.к. при его повреждении (удалении) полностью теряется способность что-либо запоминать.

Данный фундаментальный вывод К. Прибрама стал краеугольной догмой в нейронауках последние 7 десятилетий. Якобы он был подтвержден К. Прибрамом с помощью клинического факта глобарного выпадения памяти у одного больного с ишемическим повреждением, локализованным в гиппокампе. Обнаруженный К. Прибрамом у одного из пациентов в неврологической клинике феномен нарушения памяти при ишемии гиппокампа определил на последующие годы научное представление о том, что память локализуется именно в гиппокампе, и стал неопровержимым клиническим подтверждением его экспериментальных данных. При этом уже был неважен тот факт, что у целого ряда других больных с ишемией в проекции гиппокампа нарушений памяти не было выявлено. Догма была принята научной общественностью и в последующем якобы постоянно получала экспериментальные подтверждения.

Еще один постулат о том, что высшие мыслительные функции человека (включая память) осуществляются в коре головного мозга – сравнительно небольшом образовании толщиной около 1/3 см, и сегодня считается более чем очевидным. Пожалуй, самое убедительное свидетельство его справедливости – опыты канадского нейрофизиолога и нейрохирурга Уайлдера Пенфилда, проведенные в 1950-х гг. в Монреале. В ходе исследований по выявлению очага эпилепсии он обнажал поверхность мозга больных (иначе говоря, трепанировал их черепа) и раздражал определенные участки коры полушария мозга пациента с помощью электродов. Больные при этом находились в сознании, под местным наркозом и могли описывать свои ощущения. Как оказалось, при раздражении тех или иных участков коры пациенты переживали яркие воспоминания различных моментов своего прошлого. К. Прибрам в дальнейшем тоже участвовал в изучении памяти у больных с эпилепсией и подтвердил свои данные прямой электростимуляцией различных отделов коры мозга у больных во время операций на открытом мозге; он показал, что способен вызывать одинаковые воспоминания при стимуляции определенных зон в коре мозга. Несмотря на это, он остался на позициях равномерного распределения памяти по всему головному мозгу человека и локализовал память в коре мозга. В дальнейшем у многих больных с повреждением гиппокампа не было выявлено подобных нарушений памяти, но на самом деле это уже было неважным и никого не интересовало. Истина была установлена, и дилемма решена на долгие времена! Была сформулирована научная гипотеза, что краткосрочная память расположена во всей коре головного мозга и голографически распределена по всему объему мозга, а долговременная память сосредоточена именно в гиппокампе (Прибрам, 1968). Но каким образом конкретно голографическая память распределена по мозгу, Карл Прибрам так и не смог объяснить.

Современные исследования с использованием МРТ показали, что гиппокамп играет важную роль в процессе запоминания, и имеются доказательства, что именно гиппокамп имеет определяющую роль в поиске кратчайших путей и прокладке маршрутов между уже хорошо известными местами. К примеру, таксистам из Лондона необходимо знать большое количество мест и наиболее коротких путей между ними. Исследование одного из университетов Лондона в 2003 г. показало, что гиппокамп у таксистов больше, чем у большинства людей, и что наиболее опытные таксисты имеют больший гиппокамп, чем таксисты, не имеющие большого опыта. Томография мозга показывает, что гиппокамп наиболее активен у людей во время успешного перемещения в пространстве, и те же пространственные клетки у человека задействованы в поиске пути во время навигации по виртуальным городам. Поэтому попытка создания искусственного гиппокампа и его имплантация – это больше претензия на прорыв в наших научных представлениях и в доказательстве локализации памяти в данном анатомическом образовании. Это важно еще и потому, что установлено, что память бывает двух типов: кратковременная – сохраняющаяся лишь до тех пор, пока мы удерживаем внимание на объекте, и локализующаяся в префронтальной коре – долговременная. Последняя, в свою очередь, делится на сознательную, или декларативную, память о событиях, фактах, ощущениях и бессознательную, имплицитную, или процедурную, память (например, о двигательных навыках). Установлено, что во сне происходит закрепление обоих типов долговременной памяти, причем декларативная память закрепляется в фазе медленного сна, а процедурная – в фазе быстрого сна. Запоминание во время медленного сна – процесс активный, требующий работы гиппокампа. Гиппокамп получает также входы от зрительной, обонятельной и слуховой систем. Грубо говоря, на него можно смотреть как на черный ящик со множеством входов и выходов. Разные входные комбинации сигналов приводят к тем или иным выходным комбинациям.

Теодор Бергер, директор и руководитель проекта Центра нейроинженерии Университета Южной Калифорнии, пришел к парадоксальному выводу, что работу гиппокампа можно воспроизвести в микросхеме. Нейроны, идущие на вход гиппокампа, ученые стимулировали беспорядочными сигналами, выдаваемыми компьютером, имитируя разнообразие информации, приходящей извне. Исследователи фиксировали ответные сигналы. Эта работа шла далеко не один год. Наконец компьютер смог вычислить все математические функции, которые гиппокамп крысы осуществлял с нейросигналами. Они создали микросхему, которая воспроизводила работу гиппокампа крысы с точностью 95%. Какое эта схема проф. Т. Бергера имеет отношение к памяти, не очень понятно, но то, что эта схема позволяет моделировать функции маршрутизатора и коммутатора, несомненно.

Далее T. Berger участвовал в разработке аналога сверхбольшой интегральной микросхемы – СБИМС (VLSI) экспериментальных моделей нейронов гиппокампа и нейронных сетей как для фундаментальных исследований, так и для прикладных программ. Он исследовал применение математических методов на биологической основе функциональных свойств гиппокампа, суммируя экспериментальные исследования фундаментальных электрофизиологических свойств нейронов гиппокампа. Насколько важны и актуальны эти исследования, судить трудно. Наверное, очень важны; если считать, что память человека как основная функция мозга действительно расположена в гиппокампе, тогда актуальность этих исследований огромна. Однако роль гиппокампа в процессах памяти еще точно не установлена. Реальных доказательств роли гиппокампа как вместилища долговременной памяти не существует. Все данные о том, что память сосредоточена в структурах гиппокампа, основаны все-таки на устаревших экспериментальных исследованиях прошлого века, проводимых Карлом Прибрамом, но они не имеют современного научного подтверждения. До настоящего времени, спустя 10 лет после этих разработок, так и не появилось реальных доказательств того, что ученые действительно смогли спротезировать память у крыс и человека. Поэтому сложно понять, что именно протезировал T. Berger; остается достаточно неясным и почему спустя 10 лет после этих выдающихся работ мы ничего не знаем об этих высокотехнологичных достижениях и они так и не внедрены в практику неврологической клиники до настоящего времени. А ведь больных с нарушениями памяти в любой неврологической клинике более двух третей.

Другое исследование израильских ученых поставило целью создание нейротехнологии, протезирующей функцию мозжечка человека. Мозжечок считается одной из наиболее изученных частей головного мозга. Изученной настолько хорошо, что недавно был даже создан и продемонстрирован в действии первый простейший чип – компьютерный аналог естественного мозжечка. Эксперимент был поставлен командой израильских ученых под руководством проф. М. Минца из Университета Тель-Авива. Полностью парализованную белую крысу заново научили моргать с помощью электродов, вживленных на место разрушенного мозжечка. Импульсы от неповрежденных отделов мозга грызуна поступали в ходе опыта на микроскопический компьютерный чип. Тот, в свою очередь, расшифровывал их и передавал дальше – центральной нервной системе животного. Устройство, продемонстрированное в Израиле, представляет собой пока что самую примитивную из возможных конструкцию такого рода. Однако впоследствии проф. М. Минц предполагает «обучить» микрочип распознаванию и других сигналов мозга, чтобы расширить его функциональность.

Группа исследователей под руководством Питера Фромхерца из Отделения мембран и нейрофизики (Department of Membrane and Neurophysics) Института биохимии Макса Планка тоже впервые соединила фрагмент живой ткани мозга с микрочипом. Биологи пересадили тончайший срез гиппокампа крысы на поверхность специального чипа. Известно, что в процессе запоминания и хранения информации у млекопитающих принимает участие несколько отделов головного мозга. При этом считается, что перед тем как информация попадает на долговременное хранение, она предварительно «записывается» в гиппокампе. Однако этот, как и другие традиционные методы имеют много недостатков – они требуют вмешательства (зачастую достаточно грубого, нарушающего нормальную работу мозга), ограничены небольшим количеством клеток и страдают малым разрешением. Регистрация активности большого числа клеток мозга млекопитающих стала возможной при применении чипов высокой плотности, разработанных в компании Infineon Technologies. Ученым из Мартинсрида удалось разработать «революционный подход к изучению мозга», позволяющий регистрировать активность и взаимодействие тысяч нервных клеток в срезе тканей мозга. Работа считается реальным научным прорывом в области создания связей нервной системы с микрочипами. Ранее доступные нейрофизиологам методы ограничивались небольшим количеством нейронов. Регистрирующие же активность нервных клеток чипы, разработанные в сотрудничестве с компанией Infineon Technologies AG, отличаются, в свою очередь, очень высокой плотностью, эквивалентной 16 384 транзисторам на площади в 1 мм2. Возможность осуществлять запись интегрированной активности целостного интактного фрагмента мозга млекопитающих представляет собой действительно значительный технологический прорыв. Используя новый метод, группа Питера Фромхерца смогла визуализировать влияние фармацевтических препаратов на нейронную сеть. Это говорит о возможности использования данного метода в качестве новой тест-системы для исследований мозга и в фармакологии. Последним результатам работы группы ученых из Германии предшествовали эксперименты с использованием «самодельных» чипов относительно малой плотности. С их помощью сначала регистрировались сигналы отдельных нервных клеток пиявок, а затем небольших групп нейронов моллюсков. Разработка гибридной системы, интегрирующей нервную ткань и полупроводниковое устройство, может означать огромный скачок в работах по протезированию поврежденного мозга и созданию нейрокомпьютеров.

А. В. Русанов, Ю. С. Балашов, В. А. Скляр (2012) в обзорной статье представили различные разработки интегрированных устройств на основе микроэлектродов и средств микроэлектроники в масштабах микросхем для использования в нейроинженерии и создании имплантов мозга на основе КМОП – набора полупроводниковых технологий построения интегральных микросхем (англ. CMOS – Complementary symmetry/metal-oxid semiconductor – комплементарная логика на трансзисторах метал-оксид полупроводниках, КМОП). Ими описана методика разработки аналоговых КМОП-схем со сверхнизким потреблением энергии, основанная на использовании массивов микроэлектродов, при создании имплантов мозга. Разработанная КМОП-схема включает подсхемы усиления и мультиплексирования. Приведены результаты экспериментальных исследований эффективности предложенного устройства в обнаружении псевдоспайков и измерении локальных усилений. Показана его эффективность с точки зрения потребления энергии и обеспечиваемого качества измерения входных сигналов. Описаны варианты использования нового устройства в нейроинженерии для построения интерфейсов мозга с компьютером.


Нейротехнологии для нейробиологии, анализа и моделирования мозговых цепей и понимания работы нейронной сети мозга. Очень известный нейроученый в области нейроинженерии Эд Бойден (Ed Boyden) (рис. 21) является нейробиологом-оптогенетиком, адъюнкт-профессором Института исследований мозга Патрика МакГоверна при MIT и пионером еще одного из инновационных нейроинженерных направлений. Ed Boyden разрабатывает оптогенетические инструменты для активации и отключения элементов нейронных цепей с помощью света, трехмерные изготовленные микротехнологическими методами нейронные интерфейсы для контроля и считывания информации о нейронной активности, а также робототехнические методы автоматической записи внутриклеточной нейронной активности и анализа одиночных клеток в живом мозге.


Рис. 21. Проф. Эд Бойден (Ed Boyden) из Института исследований мозга ПатрикаМакГоверна при MIT (Массачусетском технологическом институте)


Он применяет нейротехнологии для анализа и моделирования мозговых цепей и понимания работы нейронной сети мозга, а также делает возможным системное восстановление клеток мозга, поврежденного в результате таких заболеваний, как эпилепсия, болезнь Паркинсона, посттравматическое стрессовое расстройство и хронические боли.

Ed Boyden положил начало отмеченному рядом наград учебному курсу Массачусетского технологического института о принципах нейроинженерии, во время которого слушатели проходили путь от основных принципов контроля и наблюдения за нейронными функциями до стратегий запуска нанотехнологий. Ed Boyden – один из самых центровых специалистов в области современной нейроинженерии и имеет столько должностей и регалий, что обсуждение его подхода в нейроинженерии любым нейроспециалистом будет не очень корректным. Он имеет докторскую степень по нейробиологии Стэндфордского университета за открытие того, как механизмы, используемые для хранения памяти, определяют содержание нового знания. Он имеет более 250 рецензированных работ, действующих или находящихся в процессе рассмотрения патентов, статей. Ed Boyden – доцент биоинженерии и наук о мозге и когнитивных наук, руководитель группы синтетической нейробиологии в MediaLab Массачусетского технологического института. Входил в топ-35 ведущих инноваторов младше 35 лет по версии Technology Review и в топ-20 лучших умов младше 40 лет по версии Discover Magazine, обладатель награды NIH Director’s New Innovator Award, исследовательской премии «За инновации в нейробиологии» Общества нейробиологии США, премии NSF CAREER Award Национального научного фонда США, премии Пола Аллена (Paul Allen Distinguished Investigator Award), Робертсоновской премии для исследователей от Нью-Йоркского фонда стволовых клеток (New York Stem Cell Foundation – Robertson Investigator Award), премии по нейробиологии Университета Северной Каролины (Perl/UNC prize), премии Института инженерии и технологии (IET Harvey Prize). Читал лекции по оптогенетике в Фонде TED («Технология, развлечения, дизайн») и на Всемирном экономическом форуме в Давосе.

Но оптогенетические исследования – не единственное достоинство данного направления нейротехнологий. Некоторыми английскими и российскими учеными в совместном проекте предложена гипотеза о том, что временная корреляция лежит в основе увязки различных визуальных признаков, распознаваемых в разных областях головного мозга (Чик и др., 2008). Описаны методика и содержание теоретических и математических исследований синхронизма осцилляторов на нейронах с интегрирующим возбуждением. Ими рассмотрена математическая модель системы таких осцилляторов и изучено поведение вариантов такой системы. Установлено, что 2 локально связанных осциллятора указанного типа быстро втягиваются в синхронизм за время, пропорциональное логарифму их размеров. Определены параметры, позволяющие управлять скоростью синхронизации. Использованы данные о динамике релаксационных осцилляторов на нейронных сетях с локальным возбуждением и глобальным торможением. На основе этих данных установлено, что глобальное торможение может вызывать десинхронизацию в нейронной сети с осцилляторами на нейронах с интегрирующим возбуждением. Авторами описаны примеры использования синхронных осцилляторов для сегментации изображений (Там же).


Нейротехнологии ускоренного обучения. Одним из научных направлений современной нейроинженерии являются работы по созданию нейротехнологий быстрого (мгновенного) обучения (tainy.net›34225-mgnovennoe-obuchenie-realnost-ili…). Эта нейротехнология пришла в научную нейроинженерию из известного фантастического кинофильма «Матрица». «Я знаю кунг-фу» – эту фразу можно назвать одной из самых запоминающихся в фильме «Матрица» (1999). Нео, персонаж Киану Ривза, произнес ее после того, как знания о боевом искусстве за считаные мгновения загрузились в его мозг посредством футуристического компьютерного разъема в черепе. Сейчас на то, чтобы стать мастером кунг-фу, уйдут тысячи часов практики. Однако существует несколько хитростей, используя которые можно усилить обучающий процесс при помощи технологий. Возможно, в будущем будет совершен серьезный прорыв в нескольких важнейших областях и усвоение навыков и знаний будет происходить с огромной скоростью при помощи внешнего, а также хирургически имплантированного оборудования. По словам Брюса МакНотона (Bruce McNaughton), нейробиолога из канадского Университета в Летбридже, данная концепция не такая фантастическая, какой кажется на первый взгляд. Более того, он считает, что ее реализуют уже в ближайшие несколько столетий через систему замаскированной мозговой тренировки. Обучение – это довольно утомительный процесс. Постоянное повторение упражнений, неважно, математическая это задача или прыжки с шестом, постепенно закрепляется в долгосрочной ментальной и мышечной памяти. Недавно было опубликовано исследование, в котором предполагается, что процесс обучения можно ускорить таким образом, что обучающийся даже не заметит этого. У этой техники есть даже звучное научно-фантастическое название – «декодированная обратная нейрологическая связь». Используя сканер мозга, ученые вели наблюдение за паттернами активности в визуальном кортексе участвующих в эксперименте во время того, как те рассматривали различные ориентации какого-нибудь объекта. Во время многочасовых сессий в течение нескольких дней у участников было лишь одно конкретное ментальное задание – концентрироваться на зеленом диске таким образом, чтобы он начал вырастать в размере; это было назначено паттерном одной из ориентаций. С течением времени у участников стал лучше выходить процесс идентификации этой конкретной ориентации объекта, причем они даже не заметили, что их тренировали этому процессу. Другими словами, они обучились.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации