Автор книги: Максим Франк-Каменецкий
Жанр: Биология, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 3 (всего у книги 23 страниц) [доступный отрывок для чтения: 8 страниц]
Генетический код
На рубеже 1950-х и 1960-х годов Фрэнсис Крик и его сотрудники выяснили основные свойства генетического кода. Было доказано, что код триплетный, т. е. одной аминокислоте соответствует последовательность из трех нуклеотидов на мРНК. Эта тройка нуклеотидов была названа кодоном. Текст, записанный в мРНК, считывается рибосомой последовательно, кодон за кодоном, начиная с некоторого начального инициирующего кодона по следующей схеме:
На этой схеме а0, а1… обозначают аминокислотные остатки белка. Напомним, что их может быть 20 типов. А сколько типов кодонов? Легко подсчитать, что всего существует 43 = 64 различных кодона. Так что же, не всякому кодону соответствует аминокислота? Да, не всякому.
Но таких бессмысленных, или незначащих, кодонов очень немного, и они выполняют специальную функцию – служат стоп-сигналами, обозначают конец белковой цепи. Поэтому их еще называют терминирующими кодонами. Подавляющее же большинство кодонов соответствует какому-либо аминокислотному остатку. А это значит, что код вырожден – большинству, если не всем, аминокислотным остаткам должно отвечать несколько кодонов.
К 1961 году стало ясно, что код триплетный, вырожденный и неперекрывающийся (т. е. считывание происходит кодон за кодоном) и что он содержит инициирующие и терминирующие кодоны. Дело было за тем, чтобы установить соответствие каждого аминокислотного остатка конкретным кодонам и узнать, какие кодоны обозначают начало и конец синтеза белковой цепи. Было совершенно ясно, что именно для этого требуется. Нужно «только» прочесть параллельно два текста – ДНКовый (или РНКовый) текст гена и аминокислотный текст соответствующего этому гену белка. Затем сличить эти два текста – и дело сделано.
Вспомним, что именно так были когда-то расшифрованы египетские письмена. Но беда в том, что если белковые последовательности к этому времени умели расшифровывать, то ни последовательности ДНК, ни последовательности РНК читать не умели. Поэтому пришлось пойти по иному пути.
Представьте себе, что вместо Розеттского камня, на котором один и тот же текст был написан египетскими иероглифами и по-гречески, откопали бы во время наполеоновского похода в Египет живого древнего египтянина. Тогда не потребовался бы гений Шампольона, чтобы составить французско-древнеегипетский словарь. Достаточно было бы показывать египтянину различные предметы, а он рисовал бы соответствующие иероглифы.
Именно этим принципом дешифровки кода и воспользовались американский биохимик и генетик из Национального института здравоохранения Маршалл Ниренберг и его немецкий постдок[1]1
Постдокторантура (постдокторат, постдок) – в странах Западной Европы, Америки, в Австралии научное исследование, выполняемое ученым, недавно получившим докторскую степень PhD.
[Закрыть] Генрих Маттеи. Ведь клетки-то знают код! Значит, надо предложить им распознавать разные последовательности нуклеотидов, лишь бы было точно известно, что это за последовательности. К этому времени как раз научились синтезировать кое-какие искусственные РНК (но отнюдь еще не любые!). Ниренберг и Маттеи использовали не живые клетки, а клеточные экстракты, которые сохраняли способность синтезировать белок на РНК. Эти экстракты не умели, разумеется, многого другого, что умеет делать клетка, но важно лишь одно – они были способны синтезировать белок по внесенной извне РНК. Такие экстракты назвали бесклеточной системой.
Ниренберг и Маттеи получили экстракт из кишечной палочки и добавили к нему искусственную РНК, состоящую только из урацилов. Так бесклеточной системе был задан первый вопрос: «Какой аминокислоте соответствует кодон УУУ?» Ответ был однозначен: «Кодону УУУ отвечает фенилаланин». Этот ответ, о котором Ниренберг сообщил на Международном биохимическом конгрессе в Москве в 1961 году, произвел настоящую сенсацию. Путь к расшифровке кода был открыт!
Очень быстро удалось сделать подобный перевод для многих аминокислот. Однако определять последовательность нуклеотидов в искусственных мРНК было довольно трудно. В то время еще не умели синтезировать даже короткие фрагменты с заданной последовательностью. Умели лишь получать полинуклеотиды со случайной последовательностью из смеси мономеров, да и то не из любой смеси. Начали думать, как попытаться иными способами расшифровывать кодоны. Но неожиданно произошел новый прорыв, и ситуация резко изменялась.
Мы видели, что у истоков проблемы кода стоял физик, общие свойства кода были выяснены генетическими методами, после чего за дело взялись биохимики. Окончательно проблема была решена, когда на помощь биохимикам пришли химики-синтетики. Главный вклад внес Хар Гобинд Корана.
К 1965 году Корана научился синтезировать короткие фрагменты РНК с заданной последовательностью – сначала двойки (динуклеотиды), а потом тройки (тринуклеотиды). Из таких двоек и троек с помощью ферментов синтезировали длинные полинуклеотиды, в которых эти двойки или тройки повторялись много-много раз. Затем полинуклеотиды со строго определенной и известной последовательностью добавляли в бесклеточную систему и определяли их соответствие белковым цепям.
А к 1967 году расшифровка генетического кода была окончательно завершена. Этот код изображен на рис. 7. В центральном круге таблицы обозначены первые нуклеотиды кодонов, в следующем – вторые, а затем – третьи. На внешней части круга указаны соответствующие кодонам аминокислотные остатки.
Символ Тер обозначает терминирующие кодоны. А где же инициирующие кодоны? Специальных инициирующих кодонов не существует. Эту роль в определенных условиях играет кодон АУГ, обычно отвечающий аминокислоте метионину.
Даже беглого взгляда на рис. 7 вполне достаточно, чтобы заметить определенную закономерность. Вырожденность кода носит явно не случайный характер; то, какой аминокислоте будет соответствовать данный кодон, определяют главным образом два первых нуклеотида. Каков третий нуклеотид – не так уж важно, т. е., хотя код и триплетный, главную смысловую нагрузку несет дублет, стоящий в начале кодона. Иными словами, код квазидуплетный.
Рис. 7. Генетический код. Первая буква кодона расположена в центральном круге, вторая – в первом кольце и третья – во втором. В наружном кольце записаны сокращенные названия аминокислот
Эта главная особенность кода была замечена еще на самой ранней стадии его расшифровки. Конечно, дублетами нельзя закодировать все 20 аминокислот, так как различных дублетов может быть всего 42 = 16. Поэтому третий нуклеотид в кодоне должен нести некоторую смысловую нагрузку.
Существует, однако, правило, которому код подчиняется почти строго. Чтобы его сформулировать, нам надо вспомнить, что четыре нуклеотида – урациловый, цитозиновый, адениновый и гуаниновый – принадлежат по строению к двум разным классам – пиримидиновому (У и Ц) и пуриновому (А и Г) (рис. 6). Так вот, правило вырожденности кода можно сформулировать следующим образом: если два кодона имеют два одинаковых первых нуклеотида и их третьи нуклеотиды принадлежат к одному классу (пуриновому или пиримидиновому), то они кодируют одну и ту же аминокислоту.
Взгляните еще раз на таблицу кода (рис. 7), и вы убедитесь, что это правило выполняется очень хорошо. Но два исключения все же существует. Если бы сформулированное выше правило выполнялось совсем строго, то кодон АУА должен был бы отвечать метионину, а не изолейцину, а кодон УГА – триптофану, а не быть сигналом окончания синтеза.
Универсален ли код?
«Но позвольте, – вправе спросить читатель, – ведь бесклеточная система получена из конкретного организма. Где гарантия, что опыты по расшифровке кода в бесклеточной системе, взятой из другого организма, дадут тот же результат?» Вопрос совершенно резонный. И естественно, он возник уже в ходе работ по расшифровке кода.
Первоначально авторы исследований аккуратно оговаривали, что речь идет не о коде вообще, а о коде Escherichia coli (кишечной палочки). Именно из этой бактерии была впервые получена бесклеточная система, и именно с ней вели работы, о которых рассказано выше. Однако все свидетельствовало о том, что код других организмов не отличается от кода Е. coli. М. Ниренберг повторил опыты, взяв бесклеточные системы из организмов жабы и морской свинки. Никаких отличий от кода Е. coli эти исследования не выявили. Итак, сомнений как будто бы не оставалось – код универсален.
Правда, были получены мутанты кишечной палочки с некоторыми отклонениями в коде: отдельные терминирующие кодоны читались в них как значащие, т. е. отвечали определенным аминокислотам. Такое явление было названо супрессией.
Было ясно, однако, что структура генетического кода должна быть весьма консервативной, устойчивой в ходе эволюции. В самом деле, представим себе, что код внезапно изменился. Пусть даже совсем немного – один из кодонов поменял свой смысл, т. е. стал соответствовать другой аминокислоте. Но этот кодон определенно встречается не в одном гене, а во многих генах. И на всех этих генах будут синтезироваться белки, в которых одна аминокислота заменена на другую. Для некоторых белков такая замена пройдет безнаказанно, они сохранят свои функции. Но очень трудно представить себе, что ни в одном случае не произойдет порча какого-то важного белка. Ведь хорошо известно, что замена одной аминокислоты в одном белке может полностью нарушить его функции и как следствие привести к гибели всего организма.
Ставший классическим пример такой мутации – серповидно-клеточная анемия (СКА). Это очень тяжелое наследственное заболевание, вызванное, как совершенно точно установлено, заменой лишь одной аминокислоты в одном белке – гемоглобине. Молекула гемоглобина представляет собой агрегат из четырех сцепленных межмолекулярными силами полиаминокислотных цепей – двух идентичных α-цепей и двух идентичных β-цепей. Так часто бывает, что функциональный белок получается слипанием нескольких цепей. Так вот, мутация, о которой идет речь, приводит к тому, что шестой аминокислотой в β-цепи становится не глютаминовая кислота (Глу), как в нормальном гемоглобине, а аминокислота валин (Вал). Из таблицы генетического кода на рис. 7 можно заключить, что в кодоне, отвечающем шестой аминокислоте β-цепи, в ДНК больного СКА произошла замена А на Т во втором положении.
Такая замена меняет структуру гемоглобина, и он в значительной степени теряет свою способность переносить кислород. Название болезни СКА, о которой мы еще будем говорить в главе 12, обусловлено тем, что это изменение, происшедшее на молекулярном уровне, приводит к изменению формы клеток – переносчиков кислорода в крови (красных кровяных шариков); они становятся серповидными, а не круглыми.
Такие примеры оставляют мало сомнений в том, что код должен сохраняться неизменным в ходе эволюции, а это означает, что он должен быть универсальным для всей живой природы.
3
Знакомьтесь: самая главная молекула
Мы полагаем, что ген или, может быть, целое хромосомное волокно представляет собой апериодическое твердое тело.
Э. Шрёдингер. Что такое жизнь с точки зрения физики? (1944)
Она похожа на… штопор
План того, каким получится каждый из нас, готов в тот момент, когда половые клетки наших родителей, мамы и папы, сливаются в одно целое, называемое зиготой, или оплодотворенной яйцеклеткой. План заключен в ядре этой одной-единственной клетки, в ее молекулах ДНК, и в нем значится очень многое: и то, каким будет цвет наших глаз и волос, и насколько высоким будет рост, и какой формы нос, и насколько тонким – музыкальный слух и многое, многое другое. Конечно, наше будущее зависит не только от ДНК, но и просто от превратностей судьбы. Но очень, очень многое в нашей судьбе определяется качествами, заложенными от рождения, нашими генами, т. е. последовательностью нуклеотидов в молекулах ДНК.
ДНК удваивается при каждом делении клеток, так что каждая клетка несет в себе информацию о строении всего организма. Это как если бы в каждом кирпичике здания хранился миниатюрный план всего здания. Вот бы архитекторы с давних времен так поступали! Тогда реставраторам не пришлось бы ломать себе голову, скажем, над тем, как выглядел когда-то Пергамский алтарь, даже если бы от него сохранился один-единственный камень.
То, что специализированная клетка целого организма на самом деле знает, как устроен весь организм, было впервые продемонстрировано в конце 1950-х годов британским биологом Джоном Гёрдоном. Он брал ядро клетки из взрослой лягушки и, используя тончайшую микрохирургическую технику, пересаживал его в лягушачью икринку, в которой собственное ядро было убито ультрафиолетовым облучением. Из гибридной икринки вырастал нормальный головастик или даже лягушка – абсолютно идентичная той, чье клеточное ядро было взято. Природа сама иногда создает таких двойников. Это получается, когда после первого деления зиготы дочерние клетки не остаются вместе, а расходятся, и из каждой получается свой организм. Так рождаются однояйцовые, или идентичные, близнецы. У близнецов совершенно одинаковые молекулы ДНК, поэтому они так похожи.
В самом конце прошлого века британским зоологам удалось применить методику Гёрдона к млекопитающим: началась эра клонирования. Первой методом клонирования была успешно получена овца по имени Долли, ставшая настоящей знаменитостью. ДНК для Долли была взята в виде клеточного ядра, изъятого из вымени некой овцы, которая не дожила до рождения своего двойника. Это ядро было пересажено в яйцеклетку, извлеченную из другой овцы, из которой (яйцеклетки) свое ядро было удалено. Затем такую гибридную клетку, несущую чужое ядро, поместили назад, откуда ее извлекли. В результате и родилась Долли, полная копия той овцы, которая поставила ДНК. Долли прожила шесть лет и скончалась. Тем временем были получены клоны многих других животных, и время от времени мир облетает новость о клонировании человека. Но пока ни одно из этих сверхсенсационных сообщений (о клонировании человека) не подтвердилось, да и исходили эти сообщения от явных шарлатанов.
Так или иначе, успех опытов по клонированию не оставляет ни малейших сомнений в том, что ДНК ядра полностью определяет то, кто получится в ходе развития организма из одной-единственной клетки. Мы продолжим обсуждение клонирования и смежной темы репрограммирования клеток в главе 11.
Как же устроена молекула ДНК, эта королева живой клетки? Она вовсе не простая веревочная лестница, как можно подумать, глядя на рис. 4. Эта лестница завита в правую спираль. Она напоминает штопор, но штопор двойной; такие редко, но встречаются. Каждая из нитей ДНК образует правую винтовую линию, точь-в-точь как на штопоре (рис. 8). Азотистые основания четырех типов, в последовательности которых и заключена генетическая информация, образуют как бы начинку этого штопорообразного кабеля. На поверхности кабеля располагается сахарофосфатный остов полимерных цепей, из которых состоит ДНК. Мономерные звенья, из которых строится ДНК, очень похожи на мономерные звенья РНК, химическое строение которых показано на рис. 6. Мы не будем поэтому снова рисовать все четыре нуклеотида, покажем только, как выглядит нуклеотид Т (рис. 9), который больше всего отличается от своего РНКового аналога – У. Отметим, что верхнее кольцо называется азотистым основанием, пятичленное кольцо – сахаром, а слева расположена фосфатная группа.
Рис. 8. ДНК – это веревочная лестница, завитая в правую спираль
Каковы главные размеры ДНК? Диаметр двойной спирали 2 нм, расстояние между соседними парами оснований вдоль спирали – 0,34 нм. Полный оборот двойная спираль делает через 10 пар. Ну а длина? Длина зависит от того, какому организму ДНК принадлежит. ДНК простейших вирусов содержит всего несколько тысяч звеньев, бактерий – несколько миллионов, а высших – миллиарды.
Если выстроить в одну линию все молекулы ДНК, заключенные лишь в одной клетке человека, то получится нить длиной около 2 м. Следовательно, длина этой нити в миллиард раз больше ее толщины. Чтобы лучше представить себе, что это значит, вообразите, будто ДНК на самом деле вдвое толще, чем на рис. 8, – около 4 см. Такой ДНК, взятой всего из одной клетки человека, можно было бы опоясать земной шар по экватору. В этом масштабе клеточное ядро имеет размеры стадиона, а человек – это уже земной шар.
Рис. 9. Тимидинмонофосфат – тиминовый нуклеотид. входящий в состав ДНК, Остальные три нуклеотида ДНК имеют сходное строение, только у каждого – свое азотистое основание (верхняя группировка). Эти три основания (аденин, гуанин и цитозин) одинаковы для ДНК и РНК (см. рис. 6). Правое верхнее кольцо – азотистое основание, нижнее пятичленное кольцо – сахар, левую группу РО, называют фосфатом
Ясно, что одна из весьма серьезных проблем, особенно в многоклеточных организмах, где молекулы ДНК очень длинные, это укладка молекулы, чтобы она поместилась в клеточном ядре. Уложить-то ее надо так, чтобы ДНК была доступной по всей длине для белков, например для РНК-полимеразы, считывающей нужные гены.
Другая проблема – репликация столь длинных молекул. Ведь после удвоения ДНК две комплементарные цепи, которые первоначально были многократно закручены одна относительно другой, должны оказаться разведенными. Это значит, что молекула должна прокрутиться вокруг своей оси миллионы раз, прежде чем закончится репликация. Из этого следует, что вопросы, порожденные работой Уотсона и Крика, отнюдь не ограничивались проблемой генетического кода и связанными с ней вещами.
Эти вопросы порождали и сомнения. А верна ли модель Уотсона—Крика? Насколько надежен тот фундамент, на котором строятся все данные молекулярной биологии? Модель Уотсона—Крика была столь конкретна, столь детализирована, что прямо-таки дразнила своей уязвимостью. Достаточно было найти хотя бы один четкий факт, противоречащий ей, чтобы двойная спираль оказалась сброшенной с пьедестала. Это была задача для физиков, и они принялись за работу.
Если каждая молекула ДНК действительно состоит из двух полимерных цепочек, рассуждали одни, и эти цепочки связаны друг с другом слабыми нековалентными силами, то они должны расходиться при нагревании раствора ДНК, что можно четко зафиксировать в опыте. Если азотистые основания в ДНК действительно образуют друг с другом водородные связи, рассуждали другие, то это можно проверить, измеряя спектры ДНК в инфракрасной области или исследуя скорость обмена обычного (легкого) водорода на тяжелый (дейтерий). Если внутри двойной спирали и впрямь запрятаны азотистые основания, рассуждали третьи, то можно выяснить, действуют ли на ДНК те вещества, которые способны реагировать только с этими, запрятанными группами. И эти, и многие другие опыты были поставлены. К концу 1950-х годов стало ясно – модель выдержала первое испытание. Попытки опровергнуть ее терпели неудачу одна за другой.
Она похожа на оконное стекло
Физики занялись изучением ДНК не только потому, что понимали важность проверки всех деталей ее структуры. Молекула ДНК привлекла их внимание и сама по себе.
В книге Э. Шрёдингера «Что такое жизнь?» есть слова (они взяты эпиграфом к этой главе), оказавшиеся пророческими. ДНК действительно похожа на твердое тело. Пары оснований уложены в ней как в кристалле. Но это кристалл линейный, как бы одномерный – каждая пара оснований имеет только двух соседей. Кристалл ДНК – апериодический, так как последовательность пар оснований нерегулярна, как нерегулярна последовательность букв в осмысленном тексте книги. Но подобно буквам в печатном шрифте, пары оснований А•Т и Г•Ц имеют одинаковые размеры как в ширину, так и в высоту.
Конечно же, кристалл совершенно нового типа, одномерный кристалл ДНК, страшно заинтриговал физиков. Не полупроводник ли он? А может быть, сверхпроводник, да еще при комнатной температуре? ДНК была подвергнута очередному обследованию. Нет, она не полупроводник и уж подавно не сверхпроводник. Она оказалась обыкновенным изолятором, вроде оконного стекла. Да она и прозрачна, как стекло. Водный раствор ДНК (а в воде она растворяется очень хорошо) просто прозрачная жидкость. Этим сходство со стеклом не заканчивается. Обычное стекло, в том числе и оконное, прозрачно для видимого света и очень сильно поглощает ультрафиолетовые лучи. ДНК тоже поглощает в этой части спектра. Но в отличие от стекла, которому ультрафиолетовые лучи не вредны, ДНК к ним очень чувствительна.
Ультрафиолетовые лучи настолько губительны для молекулы ДНК, что клетка выработала в ходе эволюции специальную репарирующую систему, которая залечивает повреждения, нанесенные этими лучами. Что же это за повреждения?
Когда квант ультрафиолетового излучения (фотон) попадает в ДНК, то он передает свою энергию азотистому основанию. Основание оказывается в возбужденном состоянии. Далее события могут развернуться по-разному. Если фотон поглощен пурином (аденином или гуанином), то ничего особенного не произойдет – поглощенная энергия быстро превратится в тепло (как это бывает в оконном стекле), а ДНК останется такой же, какой была. Другое дело, если фотон поглотится пиримидином (тимином или цитозином), причем не любым, а тем, который соседствует в цепи с другим пиримидином. В этом случае поглощенная энергия не успевает еще превратиться в тепло, как два соседних пиримидина вступают в химическую реакцию. Этот процесс особенно эффективен, если по соседству оказываются два тимина. Результат – новое химическое соединение, называемое фотодимером тимина Т◊Т (рис. 10).
Рис. 10. Тиминовый димер
Строение димера довольно необычно. В самом деле, углерод обыкновенно бывает либо тетраэдрическим, когда его связи с соседними атомами идут из центра тетраэдра в его вершины, либо треугольным, когда связи лежат в одной плоскости и направлены из центра в вершины правильного треугольника. Но в фотодимере две связи у каждого атома углерода, участвующего в сцеплении тиминов, образуют прямой угол! А все четыре атома углерода образуют квадрат (он носит название циклобутана).
Итак, в ДНК возникло повреждение – вместо двух тиминов образовалось совершенно новое химическое соединение, дойдя до которого ферменты, работающие на ДНК, остановятся. Они знают только четыре буквы: А, Т, Г и Ц, а тут какой-то новый значок Т◊Т. Им он не известен. Если эту помарку не выправить, не убрать из текста, то ферменты не смогут ни снять с ДНК копию, ни считать с нее информацию (синтезировать РНК). Вся жизнь клетки остановится, и она погибнет.
Ультрафиолетовые лучи представляют столь серьезную угрозу для молекулы ДНК, что в ходе эволюции клетка выработала специальную систему, чтобы бороться с повреждениями ДНК, вызванные этим излучением. Ферменты этой репарирующей системы приходят на помощь. Сначала фермент УФ-эндонуклеаза узнает тиминовый димер и рвет в этом месте сахарофосфатную цепь. Далее фермент экзонуклеаза расширяет возникший разрыв. В одной из нитей ДНК, там, где образовался тиминовый димер, получается огромная брешь – в несколько тысяч нуклеотидов. При этом оказываются удаленными не только тиминовый димер, но и масса нормальных нуклеотидов, как говорится, на всякий случай. Но это не беда – другая, комплементарная нить остается целой, и по ней специальный фермент, ДНК-полимераза I, надстраивает вторую нить, создавая нормальную двойную спираль, идентичную исходной, неповрежденной ДНК.
Так вот, оказывается, в чем смысл двунитчатости ДНК! Она нужна не только для создания двух идентичных копий генетического материала, но и для того, чтобы информацию, заключенную в ДНК, можно было уберечь от повреждений. Если бы между циклами удвоения ДНК была однонитевой, то ее невозможно было бы починить.
Репарирующие системы есть во всех клетках, от простейших до человека. Это неудивительно – жизнь зародилась под Солнцем. Может показаться странным, что репарирующая система активна даже в таких клетках, которые никогда не испытывают действия солнечного излучения – например, клетки кишечника. Остроумное объяснение этому предложил Г. М. Баренбойм. Он предположил, что ДНК защищается от излучения Вавилова—Черенкова, возникающего в клетках при распаде естественной примеси радиоактивных элементов.
Если же в результате мутации репарирующая система выйдет из строя – это настоящее бедствие. Иногда рождаются дети с дефектом, который называется ксеродерма пигментозум. Они совершенно не могут быть на свету – их кожа покрывается язвами, которые постепенно переходят в злокачественные опухоли. Таких детей не удается спасти, даже тщательно оберегая их от солнца. Вообще, прямыми опытами на животных показано, что тиминовые димеры могут вызывать рак.
Выходит, загорать – это действительно совсем не невинное занятие. Конечно, мы не можем отказать себе в этом удовольствии, но не следует перегружать репарирующую систему. Кроме того, репарация – не вполне безобидная вещь. Считают, что ферменты репарирующей системы, в особенности ДНК-полимераза I, склонны допускать ошибки, так что репарация может приводить к мутациям. А соматические мутации (т. е. происходящие в неполовых клетках тела) также рассматриваются в качестве важного фактора, приводящего к злокачественному перерождению ткани (см. главу 11).
Вот сколько хлопот от того, что ДНК чувствительна к ультрафиолетовым лучам. А ведь эти лучи едва достигают поверхности Земли, основная их часть поглощается в атмосфере. Так что стоит ли сожалеть, что ДНК прозрачна, как оконное стекло, в отношении видимой части спектра?
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?