Электронная библиотека » Марк Мосевицкий » » онлайн чтение - страница 7


  • Текст добавлен: 8 апреля 2014, 14:20


Автор книги: Марк Мосевицкий


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 7 (всего у книги 21 страниц)

Шрифт:
- 100% +
5.2. Поиск пралинии (последнего общего предшественника)

Один из первых значимых результатов “молекулярного” подхода к изучению ранних этапов эволюции был получен Уэзом и Фоксом (Woese and Fox, 1978). Авторы анализировали нуклеотидный состав РНК малой субъединицы рибосомы у ряда прокариотических и эукариотических клеток. Они обнаружили, что по признаку присутствия или, наоборот, отсутствия в этой весьма консервативной РНК тех или иных элементов (определенных петель, палиндромов и др.) прокариоты, представлявшиеся до того единым царством, четко делятся на два царства: истинных бактерий (эубактерий) и архебактерий, ныне именуемых, соответственно, бактериями и архе. Оба эти царства происходят непосредственно от стволовой клеточной линии т. н. последнего общего предшественника (last universal common ancestor – LUCA). В настоящее время клетки последнего общего предшественника не рассматриваются как очень примитивные. Самостоятельно существуя во внешней среде (не паразитируя), они должны были иметь не менее 1000 генов (Ouzounis et al., 2006). Разделение стволовой линии на архе и бактерии произошло около 3.5 млрд лет тому назад. Согласно Уэзу и Фоксу, эукариотические (обладающие ядром) клетки ближе архе, чем бактериям, и являются ветвью архе. Этот результат был, в принципе, подтвержден данными морфологического анализа рибосом (Lake et al., 1986). Были использованы также другие подходы. Некоторые авторы (Iwabe et al., 1989; Baldauf et al., 1996) в качестве “молекулярных часов” использовали α– и ß– субъединицы АТФ-азы, а также факторы элонгации Tu и G. Эти пары полипептидов образовались в результате генных дупликаций еще в “стволовой” линии, т. к. присутствуют у всех организмов. Поэтому мутации, накопленные ими в разных линиях, также позволяли оценить самое раннее разделение видов. И в этом случае оказалось, что архе филогенетически ближе эукариотам, чем бактериям. Исследования, проводившиеся разными группами, и многочисленные, порой весьма острые дискуссии (Penny, 1988; Lake et al., 1990; Doolittle and Brown, 1994; Edgell and Doolittle, 1997; Olsen and Woese, 1997) привели к принятому тогда большинством исследователей варианту дерева жизни, основанному на концепции трех царств, впервые сформулированной Уэзом (Рис. 4Б). Самыми первыми ветвями на этом дереве (из тех, что дотянулись до нашего времени) были бактерии и архе. Согласно этой концепции, эукариоты появились как позднейшее ответвление от архе, приобретшее эволюционным путем ядро, цитоскелет и др. (Woese et al., 1990). Первый вопрос, возникающий при рассмотрении предложенного Уэзом дерева жизни с обозначенным на нем стволом, какая из двух линий (бактерии или архе) была стволовой, т. е. “последним общим предшественником”. Мутация или серия мутаций в одной из клеток этой линии инициировала первое ответвление на дереве жизни. Многие авторы полагали, что стволовой линией были архе, а ответвление сформировали бактерии. Главный аргумент – крайне суровые условия, существовавшие на ранней Земле. Бьющие вблизи вулканов насыщенные сероводородом горячие источники – типичная среда обитания современных архе, так и оставшихся анаэробами (Chyba, 1993; Nisbet and Fowler, 1996). В пользу этой версии говорит анализ способов производства энергии разными типами клеток. Самый простой аппарат у архе, использующих энергию водорода, выделяющегося при анаэробном окислении метана и сероводорода. Для грамотрицательных бактерий характерны более сложные процессы – фотосинтез (цианобактерии) и окислительное фосфорилирование (протеобактерии). В обоих случаях энергия запасается в макроэргах (АТФ, ГТФ, НАДФ и др.). Из двух этих способов производства клетками энергии более ранним следует признать фотосинтез, т. к. процесс окислительного фосфорилирования органических соединений нуждается в свободном кислороде, который стал накапливаться в атмосфере с распространением фотосинтезирующих организмов.

Однако существуют веские аргументы в пользу первенства бактерий, конкретно грамположительных бактерий, которые названы так потому, что эффективно окрашиваются (в отличие от грамотрицательных бактерий) при воздействии на них красителем Грама. Среди этих бактерий сохранились термофильные хемотрофы, использующие те же источники энергии, что и архе. С целью обнаружения очередности бактерий и архе в эволюции Р. Гупта (Gupta, 2001) выявлял определенные структурные изменения в древнейших белках, которые могли присутствовать у последнего общего предшественника (стволовая линия) или появились у самых ранних ответвлений. В весьма консервативном по аминокислотному составу белке теплового шока Hsp70 была обнаружена вставка, присутствующая у всех грамотрицательных бактерий, но которой нет ни у грамположительных бактерий, ни у архе. С другой стороны, у Hsp70, принадлежащем архе, обнаружены вставки, которых нет у обеих групп бактерий. Это означает, что стволовой линией являлись грамположительные бактерии и что архе ответвились от грамположительных бактерий еще до появления грамотрицательных бактерий (Skophammer et al., 2007; Servin et al., 2008). Для того, чтобы принять эту концепцию, не вступая в противоречие со сказанным выше, следует принять, что к моменту образования ветви архе предсуществовавшие бактерии либо еще не обладали способностью к фотосинтезу и, тем более, к окислительному фосфорилированию, либо архе утеряли эти качества, заняв ниши, где в них не было необходимости. Переход пальмы первенства к бактериям отнюдь не означал отказа от концепции высокотемпературного окружения в период формирования стволовой линии. Исследования по реконструкции аминокислотных последовательностей в белках самых ранних бактерий указывают на их высокую термофильность (Di Glulio, 2003). То, что ныне многие виды бактерий существуют при умеренных температурах, является результатом эволюции. Отметим, что обнаружены весьма значительные сообщества архе, являющихся аэробами и обитающих в холодных водах (DeLong, 1998).

Рибосомные РНК бактерий и архе, различаясь по размерам и составу оснований, весьма консервативны в каждом из этих царств. Экстраполяции, выполненные Уэзом с использованием данных о частоте мутирования рибосомных РНК, не оставляют отделившейся от стволовой линии ветви, которую мы обозначим как предархе, достаточно времени на превращение рибосомных РНК-бактерий в соответствующие РНК-архе. Однако в тот ранний период, когда аппарат репликации ДНК только формировался и механизмы репарации (исправления) ошибок репликации, как и других мутаций, были далеко не столь совершенны, как ныне, темп мутирования мог быть существенно выше.

Накопленные к настоящему времени сведения об аминокислотной последовательности белков, участвующих в синтезе нуклеиновых кислот, позволили поставить вопрос о генетической структуре “последнего общего предшественника” – клеток, функционировавших непосредственно перед образованием двух самых ранних сохранившихся поныне ветвей. Было установлено, что ферменты, осуществляющие полуконсервативную репликацию ДНК (ДНК-репликазы), у бактерий и архе не являются родственными. Следовательно, они появились уже после разделения ветвей. Из этих, а также ряда других соображений был сделан вывод о принадлежности последнего общего предшественника миру РНК (Poole and Logan, 2005). С другой стороны, было обнаружено, что многие ферменты, осуществляющие в современных клетках синтез предшественников ДНК (де-зоксирибонуклеотидов), а также синтез РНК по ДНК (транскрипцию), уже присутствовали у последнего общего предшественника (Leipe et al., 1999). Поэтому вполне обоснованным представляется мнение, что клетки последнего общего предшественника уже обладали ДНК, однако механизмом их синтеза путем полуконсервативной репликации они еще не располагали. Синтез ДНК мог осуществляться путем комплементарного копирования РНК. Этот механизм, известный как обратная транскрипция, используется ретровирусами для создания в зараженной клетке ДНК-копии их РНК-генома. Возможно, геном последнего общего предшественника был представлен гибридными РНК-ДНК биспиральными молекулами. Нить ДНК в гибридных молекулах служила матрицей для комплементарного синтеза РНК. Помимо выполнения функций, связанных с синтезом белков, эта РНК служила матрицей для образования комплементарной нити ДНК и т. д. Возможно также, что полученная обратной транскрипцией нить ДНК служила матрицей для образования комплементарной нити ДНК, т. е. геном последнего общего предшественника был образован биспиральной ДНК. Ее воспроизведение в отсутствие полуконсервативной репликации могло осуществляться через промежуточный синтез нити РНК, обратную транскрипцию и т. д. В этом случае для превращения в клетку современного типа последнему общему предшественнику, уже обладавшему современным генетическим кодом и механизмом синтеза белков на рибосомах (Harris et al., 2003), еще предстояло разработать механизм полуконсервативной репликации ДНК, когда параллельно копируются обе нити “родительской” биспирали с образованием двух “дочерних” биспиралей. Однако именно перед этим этапом эволюции произошло отделение ветви архе, и указанный механизм вырабатывался в обеих ветвях (бактерий и архе) независимо (Leipe et al., 1999). После того, как эта задача была выполнена, перестал функционировать за ненадобностью механизм обратной транскрипции. Теперь только ДНК отвечала как за синтез РНК, так и за собственное воспроизводство.

Интересно отметить, что, несмотря на независимое формирование механизмов полуконсервативной репликации, в ветвях архе и бактерий оба эти механизма при всей их сложности в большинстве деталей не только схожи, но практически одинаковы. Так, у всех организмов репликация происходит при однонаправленном протягивании обеих нитей родительской ДНК через закрепленный мультиферментный комплекс – реплисому (см. Мосевицкий, 1976; Албертс и др., 1994; Kornberg, 2000). Возникающие при этом проблемы (механические напряжения в ДНК, связанные с раскручиванием биспирали в вилке репликации, необходимость пофрагментного копирования одной из нитей и др.) также решаются сходным образом у бактерий и архе. Соответственно и функции белков, участвующих в этих процессах, весьма схожи у всех существующих ныне клеток. Некоторые белки, выполняющие близкие функции, оказались похожими также структурно, хотя возникали и эволюционировали уже в разных ветвях (Leipe et al., 1999; Giraldo, 2003). Последнее можно объяснить большим эволюционным преимуществом единственной оптимальной конформации этих белков, выполнявших определенные функции при репликации ДНК, и в других, связанных с ДНК, процессах. Однако на рассматриваемом этапе нельзя исключить взаимную корреляцию эволюционного развития бактерий и архе, которая также могла приводить к структурной близости белков, участвующих в, казалось бы, независимо формировавшихся процессах. Такие корреляции, именуемые горизонтальными переносами, являются основной темой следующего раздела.

5.3. Горизонтальные переносы и их роль в эволюционном процессе

Приведенные выше палеонтологические данные свидетельствовали, что на Земле около 3.5 млрд лет тому назад уже существовали разнообразные микроорганизмы современного типа. Это означает, что бактерии и архе разделились еще раньше. Однако основанная на этих данных хронология на какое-то время была поставлена под сомнение. “Возмутители спокойствия” явились в лице Р. Дулиттла и сотр. (R. Doolittle, не путать с W. Doolittle), опубликовавших версию дерева жизни, существенно омолаживавшую наш живой мир (Doolittle et al., 1996). Авторы анализировали 57 белков, структура которых известна у разных видов. Всего были исследованы более 500 аминокислотных последовательностей у 15 видов. Подсчет накопленных в них независимых мутаций и соответствующие экстраполяции привели к неожиданному выводу, что разделение архе и бактерий произошло всего 2 млрд лет тому назад, т. е., по крайней мере, на 1.5 млрд лет позже, чем следовало из данных палеонтологии. Большинство исследователей не приняли новую концепцию. Естественно, это неприятие следовало обосновать. К тому времени (1996 г.) были полностью или в значительной степени расшифрованы геномы многих видов, принадлежащих всем трем царствам (бактериям, архе, эукариотам). Полемика с Дулиттлом заставила заняться тщательным анализом этих данных. Результаты анализа внесли существенные коррективы в представления о факторах, оказывающих воздействие на ход эволюции, а следовательно, и на структуру дерева жизни.

Ранее эволюция рассматривалась, главным образом, как вертикальный процесс, т. е. как следствие накапливания в поколениях спонтанных мутаций, к которым относят не только замены отдельных оснований в хромосомной ДНК, но также хромосомные перестройки и транслокации мобильных элементов. Именно генетические преобразования обеспечивают прогрессивное усложнение организмов, составляющее суть вертикальной эволюции (см. Суходолец, 2003).

Однако, хотя эволюция и базируется на вертикальном процессе, фактическая ситуация оказалась многократно сложнее. Предпринятое рядом исследователей сопоставление генных последовательностей и первичной структуры белков у разных видов показало, что на ранних этапах эволюции не был редкостью и даже осуществлялся рутинно горизонтальный перенос признаков между видами, в том числе принадлежащими разным царствам (Doolittle, 1999; Gogarten et al., 1999; Aravind et al., 2000). Он позволял оперативно создавать различные комбинации признаков и вносил значительный вклад в создание новых видов. Согласно анализу, проведенному рядом авторов, осуществлявшиеся на ранних этапах горизонтальные переносы могли существенно ускорить эволюционный процесс (Doolittle, 1997, 1999; Woese, 1998; Whitman et al., 1999) и, добавим, делали его еще менее предсказуемым. Очевидно, горизонтальный перенос признаков мог быть одним из главных инструментов ранней эволюции, существенно ускоряя ее темп.

Для горизонтального переноса наследуемых признаков могли быть использованы хорошо известные ныне механизмы. У бактерий – это, прежде всего, генетическая трансформация (для обзора: Прозоров, 2000). Этот, возможно, самый архаичный путь горизонтального переноса наследуемых признаков заключается в поглощении клетками ДНК из среды и включении ее фрагментов в хромосому клетки путем гомологичной рекомбинации. В эксперименте это ДНК, выделенная из клеток другого штамма того же вида бактерий, в природе – ДНК, спонтанно освобожденная клетками, в частности при их автолизе (Виноградская и Мосевицкий, 1982). Распространенной формой горизонтального переноса является также трансдукция – перенос генетического материала от клетки к клетке (от организма к организму) вирусами, способными при формировании белковой оболочки в родительской клетке захватывать фрагменты ее ДНК. Эти “чужие” фрагменты вирус освобождает в очередной зараженной клетке. По разным причинам зараженная клетка может сохранить жизнеспособность. Застроившись в геном такой клетки, “чужая” ДНК вносит в нее новую информацию. Примером такого вируса является бактериофаг ламбда (Драбкина и др., 1967; Gingery and Echols, 1968) На ранних этапах эволюции примитивные вирусы могли быть существенно менее специфичны по отношению к клетке-хозяину и служить эффективным средством межвидового параллельного переноса генетической информации (Forterre, 2005).

Наконец, формой горизонтального переноса является половой процесс, обусловливающий обмен признаками между родителями, один из которых является донором, а другой – реципиентом генетического материала. Половой процесс присутствует уже у бактерий (например, конъюгация у кишечной палочки Escherichia coli, см. Bresler et al., 1981).

В современном живом мире горизонтальный перенос является эффективным способом обмена генетической информацией между особями одного вида. Действительно, ДНК, выделенная из бактерий Bacillus subtilis, оказалась малоэффективной при трансформации хотя и близких, но принадлежащих другой разновидности бактерий Bacillus megaterium, а при использовании в качестве реципиентов пневмококков перенос признаков полностью отсутствовал.

В основе видовой специфичности генетической рекомбинации лежит явление гомологичного узнавания: только гомологичные, т. е. практически не отличающиеся по последовательности оснований молекулы ДНК (или участки ДНК в хромосомах) способны вступить в тесный контакт (узнать друг друга), что открывает путь к осуществлению дальнейших этапов перевоссоединения нитей ДНК и рекомбинации генетических признаков (см. Мосевицкий,1975; Mosevitsky, 1978; Ланцов, 2007). Однако 2–3 млрд лет тому назад запрет на межвидовой обмен мог быть не столь строгим, каким он стал позже.

При горизонтальном переносе соответствующие свойства реципиента могли одномоментно меняться весьма существенно (скачком). Это, в первую очередь, касалось признаков, контролируемых отдельным агентом, как правило, белком. Значительно менее вероятна замена путем горизонтального переноса отдельных элементов в сформировавшихся сложных структурах, в частности в рибосомах. Именно поэтому сделанный Уэзом выбор рибосомной РНК, как и выбор рибосомных белков, в качестве молекулярных часов был оправдан. Исключив ряд белков, которые могли участвовать в горизонтальном переносе и, следовательно, искусственно сближать виды, Р. Дулиттл и сотрудники (см. Feng еt al., 1997) уже в следующем после их нашумевшей публикации 1997-ом году получили новые результаты, согласно которым разделение бактерий и архе могло произойти 3.23.8 млрд лет тому назад. В этот интервал укладывались и экстраполяции других авторов (см. Doolittle, 1997). Следует заметить, что и в настоящее время оценка разными группами исследователей вклада горизонтальных переносов в эволюционный процесс неоднозначна. По данным некоторых авторов горизонтальные переносы вносят столь значительные искажения в обусловленную мутациями “вертикальную” эволюцию, что существенные ошибки в построении дерева жизни неизбежны (Bapteste et al., 2003; Andersson et al., 2005).

Выше, говоря о горизонтальном переносе, мы имели в виду передачу отдельных признаков (генов). Такие переносы, постепенно накапливаясь, могли коренным образом преобразовать генетический аппарат и физиологию клетки. Было высказано предположение, что особенно эффективно они происходили при захвате и использовании одних клеток другими в качестве пищи. В частности, именно “пищевыми“ переносами Дулиттл объяснял присутствие большого числа бактериальных генов в хромосомах эукариотов (Doolittle, 1998).

Однако значение, которое невозможно переоценить, сыграла другая форма горизонтального переноса, когда объединялись в единый организм целые клетки.

5.3.1 Концепция формирования митохондрий и хлоропластов путем симбиоза бактериальной клетки и раннего эукариота

Около 2 млрд лет тому назад на Земле создалась критическая для дальнейшего развития жизни ситуация. Фотосинтезирующие бактерии, размножившись, стали производить все больше кислорода. Первоначально, пока на поверхности Земли было много чистых металлов, а в атмосфере присутствовали метан, сероводород и другие восстановленные соединения, практически весь кислород расходовался на их окисление. Однако к указанному сроку практически все выходившие на поверхность металлы были превращены в окислы и в атмосфере начал накапливаться свободный кислород. Для хемотрофных анаэробов, какими были тогда все архе, кислород оказался ядом. Поэтому они были либо обречены на гибель, либо должны были ограничиться нишами, куда кислород не проникал (глубинные области морей и океанов, выходы лавы и подземных вод и др.). Однако у бактерий успели появиться виды (протеобактерии), которые, обзаведясь механизмом окислительного фосфорилирования, стали использовать кислород для получения энергии, запасаемой в АТФ (как при фотосинтезе). Естественно, для них кислород стал не ядом, а благом. Анаэробы могли облегчить свое существование, вступив в состояние симбиоза с протеобактериями, которые, поглощая кислород, осуществляли локальную детоксикацию. Если вернуться к представлению о эукариотах как о продолжении одной из линий архе, то ранние эукариоты были анаэробами и так же, как архе, нуждались в тесном общении с утилизирующими кислород бактериями.

Около 20-ти лет тому назад исследование митохондрий и хлоропластов, присутствующих в клетках животных (только митохондрии) и растений (митохондрии и хлоропласты), неопровержимо доказало их бактериальное происхождение. Тогда же получила признание гипотеза формирования современных эукариот, благодаря имевшим место случаям симбиоза ранних эукариот с бактериями, которые трансформировались в митохондрии (Gray, 1989; Cavalier-Smith, 2002). Митохондрии стали внутриклеточными энергетическими фабриками эукариотической клетки, в которых осуществляется синтез АТФ по механизму аэробного окислительного фосфорилирования (Рис. 5А). На основании генетического анализа разных форм современных эукариот многие исследователи пришли к заключению о единственном эпизоде симбиоза раннего эукариота с α-протеобактерией, в результате которого эукариоты приобрели митохондрии. Симбиоз уже содержавших митохондрии эукариотических клеток с фотосинтезирующими бактериями, которые трансформировались в хлоропласты, дал миру растения, в первую очередь водоросли. Произошло это около 1.5 млрд лет тому назад (Yoon et al., 2004). У различных водорослей, помимо других отличий, обнаружены разные формы хлорофилла, характерные для определенных фотосинтезирующих бактерий. Это означает, что акты симбиоза, приводившие к образованию хлоропластов, были неоднократны. В частности, зеленые водоросли, давшие начало наземным растениям, произошли от эукариотической клетки, вступившей в симбиоз c зеленой бактерией (для обзора Малахов, 2004).

У современных эукариотических организмов некоторые гены, контролирующие работу митохондрий, сохранились в самих органеллах, в которые трансформировались бактерии, а другие переместились в ядро и, функционируя в составе генома эукариотической клетки, продолжают обслуживать своих бывших хозяев. Потому, несмотря на ядерную локализацию, их именуют митохондриальными. К ним относятся гены митохондриальных транспортных РНК, рибосомных РНК и рибосомных белков. Продукты этих генов транспортируются в митохондрии, где участвуют в формировании рибосом бактериального типа для синтеза собственных белков. Поэтому рибосомы митохондрий даже визуально отличаются от рибосом самой эукариотической клетки, унаследованных от архе. В принципе, также обстоят дела и с хлоропластами растений.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 | Следующая
  • 0 Оценок: 0

Правообладателям!

Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.


Популярные книги за неделю


Рекомендации