Текст книги "«На мирно спящих аэродромах…» Разгром 1941 года"
Автор книги: Марк Солонин
Жанр: Книги о войне, Современная проза
Возрастные ограничения: +16
сообщить о неприемлемом содержимом
Текущая страница: 2 (всего у книги 38 страниц) [доступный отрывок для чтения: 12 страниц]
Широко распространенное заблуждение состоит в том, что самолет поворачивается в воздухе при помощи хвоста, точнее – при помощи руля направления, расположенного на вертикальном оперении. Хвост для самолета есть вещь наиважнейшая (обеспечивает устойчивость вообще и поддержание необходимого угла атаки в частности), но развороту в горизонтальной плоскости он мало чем помогает. Самолет летает благодаря крылу и разворачивается при помощи все того же крыла.
Прежде всего, мы должны вспомнить два параграфа из школьного курса физики: движение по окружности (даже если оно происходит с постоянной линейной скоростью) является движением с ускорением (центростремительным), а любое движение с ускорением возможно только под воздействием силы. Ускорение прямо пропорционально силе (сие есть второй закон Ньютона), следовательно, если мы желаем двигаться с большим центростремительным ускорением (т. е. и лететь быстро, и разворачиваться круто), необходимо приложить большую силу. Где же ее взять? Тяга двигателя? Нет, это не самая большая сила, имеющаяся в нашем распоряжении на борту самолета. Даже у современных истребителей тяга двигателя составляет порядка 70–80 % от взлетного веса самолета. Самой большой силой является подъемная сила крыла, которая может быть и в пять, и десять раз больше веса самолета! А для того, чтобы подъемная сила «затащила» самолет в разворот, надо всего лишь накренить самолет в сторону предполагаемого разворота. (См. рис. 5)
Таким образом, разворот начинается с крена, причем весьма глубокого, после чего горизонтальная проекция подъемной силы (на рис. 5 она обозначена буквой N) начинает искривлять траекторию полета, и самолет начинает выполнять разворот (вираж). Для того чтобы разворот был крутым, т. е. происходил с малым радиусом и за минимальное время, подъемная сила, которую может развить крыло, должна быть как можно больше, и вот для этого-то удельная нагрузка на крыло истребителя должна быть как можно меньше (т. е. для хорошей маневренности нужно «большое крыло»).
Рис. 5
Рост подъемной силы немедленно вызывает увеличение аэродинамического сопротивления.
Причем (как мы уже отмечали выше) прирост сопротивления будет особенно большим тогда, когда для получения большой подъемной силы мы выходим на режим полета с максимальными углами атаки. (См. рис. 6)
Рис. 6
Чтобы избежать или хотя бы ослабить этот эффект, нужно еще на этапе проектирования дать самолету «большое» крыло (малую удельную нагрузку). И в любом случае для того, чтобы преодолеть возросшее сопротивление, потребуется перевести двигатель на режим максимальной тяги (максимальной мощности). В конце концов может наступить такой момент, при котором крыло еще способно увеличивать подъемную силу, но тяги двигателя уже не хватает для преодоления все возрастающего сопротивления. Вот почему для высокой маневренности нужно не только большое крыло, но и большая тяго (энерговооруженность
В цифрах это выглядит так. На предельно больших углах атаки сила аэродинамического сопротивления достигает примерно одной четвертой подъемной силы. Соответственно, если при этом крыло может развить подъемную силу, в шесть раз превышающую вес самолета (перегрузка 6 единиц), то для преодоления возросшего сопротивления потребуется двигатель с тягой, в полтора раза (!!!) превышающей вес самолета (тяговооруженность 1,5 единицы). Такая тяговооруженность при использовании поршневых двигателей внутреннего сгорания была абсолютно недостижима, поэтому ограничение маневренных возможностей самолета тягой двигателя (точнее говоря – тягой винтомоторной установки) было наиболее характерным для истребителей 30-х —40-х годов.
Типовым значением располагаемой перегрузки было в то время 2–3 единицы. В более понятных категориях – перегрузке в 2,9 единицы соответствует выполнение виража радиусом 300 м за 21 секунду при постоянной скорости полета 90 м/сек (324 км/час). Эти цифры выбраны не случайно, они фактически точно соответствуют параметрам самых массовых истребителей Второй мировой войны.
Новая эпоха, открывшаяся с появлением турбореактивного двигателя с форсажной камерой, сделала более распространенным случаем ограничение маневренности параметрами аэродинамики крыла. Огромная тяга реактивного двигателя позволяет преодолевать растущее аэродинамическое сопротивление, но и возможности роста подъемной силы крыла не безграничны. При углах атаки более 15–20 градусов прирост подъемной силы сначала замедляется, а затем происходит самое страшное из того, что заложено природой в аэродинамику самолета, – срыв потока. Воздушный поток отрывается от верхней поверхности крыла, и подъемная сила скачкообразно падает до нуля. Срыв потока по самой сути своей есть процесс неуправляемый и стихийный, он никогда не произойдет одновременно и равномерно на левом и правом крыле. Поэтому срыв приводит не просто к «просадке» самолета, а к беспорядочному крену и вращению. В самом худшем случае беспорядочное вращение превращается в «штопор», выйти из которого не удается вплоть до встречи с землей…
Всевозможные и труднообъяснимые даже для профессионалов аэродинамические ухищрения позволяют в ряде случаев оттянуть наступление срыва до очень больших углов атаки (20–30 град.). В сочетании с огромной тяговооруженностью современных истребителей это позволяет довести располагаемую перегрузку (отношение подъемной силы к весу) до 9 и более единиц. В результате современный российский истребитель «МиГ-29», несмотря на очень высокую (по меркам 40-х годов) удельную нагрузку на крыло (443 кг/кв. м), выполняет установившийся вираж за 15,3 секунды – быстрее, чем любой истребитель Второй мировой войны (за исключением нашего «И-16»). Такая вот получается «перекличка поколений»…
Проблема, однако, в том, что летать с такими перегрузками может далеко не каждый летчик. Перегрузка приводит к отливу крови из головы в ноги (связанные с этим ощущения на авиационном сленге называются «очи черные»). Кратковременная потеря сознания возникает уже при перегрузке в 4–5 единиц. Специальные противоперегрузочные костюмы, кислородная маска, наклоненное до положения «полулежа» кресло, специальные тренировки позволяют летчику управлять самолетом даже при перегрузке в 7–8 единиц. Но это – предел. Дальнейшее продвижение по пути все больших и больших располагаемых перегрузок возможно только на беспилотных аппаратах, примером чего могут служить некоторые типы ракет класса «воздух – воздух», способные кратковременно маневрировать с чудовищной перегрузкой в 35 единиц!
Подведем некоторые итоги. Мы уже знаем, с чего надо начинать «осмотр» таблички с тактико-техническими характеристиками самолета. Удельная нагрузка и тяговооруженность – вот два главных параметра, определяющих облик самолета и свидетельствующих о замысле и квалификации его (самолета) создателей. К слову говоря, много ли Вы, уважаемый читатель, видели книг, в которых эти параметры указаны?
Наиболее сложным и противоречивым является выбор удельной нагрузки. Хотим летать быстро – нужно уменьшать площадь крыла (увеличивать удельную нагрузку), хотим крутить виражи «вокруг телеграфного столба» – нужно большое крыло, развивающее большую подъемную силу, т. е. минимальная удельная нагрузка. Для самолета-истребителя задача становится почти неразрешимой: истребителю нужна и большая скорость, и большая маневренность. Несколько смягчить это противоречие возможно только за счет увеличения тяго (энерговооруженности. Причем большая тяга двигателя нужна не только для того, чтобы преодолеть резко возрастающее на вираже аэродинамическое сопротивление крыла. Она позволяет обеспечить высокие разгонные характеристики и большую вертикальную скорость, которые также являются неотъемлемой составляющей многогранного понятия «маневренность». Но тут возникает следующая проблема.
2.3. Пламенный моторДля создания качественно нового истребителя с большей скоростью и достаточной маневренностью нужен был не просто двигатель с большей мощностью (тягой), а качественно новый двигатель со значительно большей удельной мощностью (мощность, деленная на вес двигателя). Или, другими словами, нужен был двигатель, который при прежнем весе развивал бы большую мощность. Радикально решить эту задачу удалось только в эпоху реактивной авиации.
Ситуация же в конце 30-х годов сложилась такая, что конструкция поршневого авиамотора была уже доведена до совершенства, а удельная мощность моторов истребителей нового «скоростного» поколения была примерно одинаковой и уже достигла технически возможного предела. Оставался на тот момент лишь один, последний неиспользованный резерв – выхлопная труба.
В выхлопную трубу вылетает до 40 % энергии сгорающего в двигателе топлива. Если использовать эту энергию, заставив раскаленные выхлопные газы вращать турбину, а на ось этой турбины поставить компрессор, нагнетающий избыточный воздух в цилиндры мотора, то все параметры двигателя заметно улучшатся. В начале 40-х годов решить эту задачу практически – не в штучных экспериментальных образцах, а в серийном производстве – не удалось никому, кроме американцев. Т. е. «приводные» центробежные нагнетатели стояли на всех без исключения авиамоторах рассматриваемого периода, но для вращения компрессора приходилось отбирать мощность с вала двигателя. Другими словами – увеличение высотности покупалось за счет снижения полезной мощности на винте, в полном соответствии с принципом «вытянул хвост-голова увязла». Стоит отметить, что американский Госдепартамент по достоинству оценил уникальное достижение своих инженеров и запретил продавать самолеты с турбокомпрессорной установкой даже ближайшим союзникам!
Еще одной проблемой, связанной с двигательной установкой боевого самолета, был выбор между использованием моторов «жидкостного» или «воздушного» охлаждения.
Кавычки стоят совсем не случайно. Любой авиамотор, в том числе и так называемый двигатель «жидкостного охлаждения», охлаждается воздухом. Больше некуда сбросить образующееся при работе мотора тепло, кроме как в окружающую атмосферу. Вот только сброс этот организован по-разному. В двигателе «воздушного охлаждения» тепло непосредственно уносится набегающим потоком воздуха с ребристой поверхности головок цилиндров, при этом для большей эффективности обдува цилиндры располагаются поперек потока, а сам мотор собран в виде многолучевой «звезды». В двигателе так называемого «жидкостного охлаждения» цилиндры расположены в ряд, один за другим вдоль потока; тепло первоначально «снимается» омывающей блок цилиндров охлаждающей жидкостью, которая затем прокачивается насосом через обдуваемый воздухом радиатор.
Авиация начиналась с использования моторов «воздушного охлаждения» – простых, легких и надежных (нет радиатора, нет трубопроводов, нет насоса прокачки жидкости, которые могут сломаться или дать течь). Затем, в погоне за все большей и большей скоростью, конструкторы всего мира обратились к двигателю «жидкостного охлаждения». В самом деле, вытянутый в длину рядный двигатель входит в воздух «как нож в масло», в то время как радиальная «звезда» воздушного охлаждения превращает фюзеляж самолета в тупоносое бревно. Казалось бы, преимущества мотора «жидкостного охлаждения» для снижения аэродинамического сопротивления очевидны и бесспорны: девять цилиндров радиальной «звезды» имеют гораздо большую площадь поперечника, нежели те же девять цилиндров, но выстроенные в ряд вдоль потока. Увлечение двигателем «жидкостного охлаждения» стало повальным, а характерный «остроносый» фюзеляж – обязательной приметой скоростного истребителя нового поколения.
Американский истребитель «Хоук» Р-36 с двухрядным двигателем
Скоро, однако же, конструкторам пришлось убедиться в том, что в погоне за модой они многое упустили из виду. Во-первых, 9—12 цилиндров в один ряд не выстроишь. Мощные двигатели «жидкостного охлаждения» стали двухрядными, с расположением двух блоков цилиндров в виде латинской буквы «V». Кроме того, в поршневом двигателе есть немало других агрегатов, которые навешиваются на блок цилиндров и увеличивают площадь поперечного сечения. С другой стороны, разработчики двигателей «воздушного охлаждения» научились делать мотор в виде двух «звезд», расположенных одна задругой, и при этом обеспечивать достаточный обдув головок второго ряда цилиндров.
В результате цилиндров стало больше («двойные звезды» делали 14– или даже 18-цилиндровыми), но при этом сами цилиндры стали короче, а общий диаметр двигателя – меньше. Так, например, радиальный двигатель воздушного охлаждения АШ-82 при рабочем объеме 41,2 литра имел диаметр 1,26 метра, а рядный двигатель жидкостного охлаждения AM-35 с объемом 46,6 литров имел ширину 0,876 м и высоту 1,09 м. Чуда, как видим, не произошло, площадь поперечника радиального двигателя все равно оказалась больше площади поперечного сечения V-образного двигателя «жидкостного охлаждения», но эта разница была отнюдь не девятикратной.
Самое же главное заключалось в том, что почти вся экономия сопротивления, достигнутая за счет использования двигателя «жидкостного охлаждения», теряется в радиаторе. Законы физики отменить невозможно, охлаждение двигателя «жидкостного охлаждения» по сути своей остается воздушным, поэтому площадь теплопередачи радиатора должна была быть ничуть не меньшей, чем совокупная площадь оребрення цилиндров радиальной «звезды». Точнее говоря, площадь оребрения «воздушника» может быть даже значительно меньшей. Почему? Теплоотдача зависит от разности температур. Допустимая температура двигателя воздушного охлаждения определяется физико-химическими параметрами моторного масла и может достигать 200 и более градусов. А вот максимально допустимая температура двигателя «жидкостного охлаждения» ограничена температурой закипания этой самой жидкости, т. е. уровнем в 110–120 градусов (с применением в качестве охлаждающей жидкости не воды, а этиленгликоля).
Весьма весомым (6 тонн взлетного веса) подтверждением всему вышесказанному стал американский истребитель P-47D «Тандерболт». Огромный тупорылый «кувшин» (так его называли летчики) с двухрядной «звездой» воздушного охлаждения имел коэффициент аэродинамического сопротивления меньший (!!!), чем у остроносого «Мессершмитта», и, развивая на большой высоте скорость в 690 км/час, «Тандерболт» стал одним из самых быстрых поршневых истребителей Второй мировой войны.
До самого конца войны «спор» между радиальными и рядными моторами так и не был разрешен. Англичане отвоевали с 1939-го по 1945-й годы исключительно на истребителях с моторами жидкостного охлаждения, японцы – воздушного. ВВС США, Германии и СССР закончили мировую войну, имея на вооружении пару истребителей (один с радиальным, другой – с рядным двигателем): «Тандерболт» и «Мустанг», «Фокке-Вульф» и «Мессершмитт», «Ла» и «Як». Все американские бомбардировщики были оснащены только двигателями воздушного охлаждения, почти все немецкие и английские – жидкостного. Советская авиация в конце войны имела на вооружении два типа бомбардировщика с моторами воздушного охлаждения («ДБ– Зф» и «Ту-2»), но самым массовым был легкий бомбардировщик «Пе-2» с двигателем жидкостного охлаждения…
2.4. Уравнение существованияМы подошли к самому главному. Главным для понимания процесса проектирования самолета является закон природы, который в авиации получил изящное название «уравнение существования». Этот закон (подобно II закону термодинамики) имеет множество совершенно непохожих друг на друга формулировок. Например: «невозможно изменить вес любой составляющей самолета (двигатель, планер, топливо, шасси, вооружение) без того, чтобы для сохранения исходных летных характеристик не пришлось изменить вес всех остальных компонентов». Например, дополнительная пушка весом в 50 кг потребует (если мы хотим сохранить исходную тяговооруженность и связанные с ней разгонные и маневренные характеристики) небольшой «добавки» мощности двигателя. Чуть более мощный двигатель будет и несколько тяжелее. Для него потребуются более тяжелый винт и лишние литры топлива (если мы хотим сохранить исходную дальность и продолжительность полета). Потяжелевший самолет потребует усиления конструкции шасси, а для сохранения исходной удельной нагрузки на крыло потребуется увеличить площадь крыла, что приведет к росту аэродинамического сопротивления, для преодоления которого (если мы хотим сохранить максимальную скорость исходного самолета) придется увеличить мощность двигателя, который станет еще тяжелее…
Закончится ли в конце концов эта «цепная реакция». Да. Чем? Появлением нового самолета, в котором относительные доли веса каждого агрегата в общем весе самолета останутся точно такими же, как и раньше, но весь самолет в целом станет тяжелее. Это еще одна возможная формулировка «уравнения существования».
Поясним сказанное простым, но при этом вполне реалистичным числовым примером. Предположим, что на неком «исходном самолете» был двигатель мощностью в 1000 л.с. и две пушки общим весом 100 кг, при этом вес пушек составлял 4 % от общего веса (т. е. самолет весил 2,5 тонны). Добавка третьей пушки весом в 50 кг (при сохранении всех летных параметров исходного самолета!) приведет к появлению нового самолета, в котором вес пушек по-прежнему будет составлять 4 % от общего веса, но этот новый самолет будет иметь вес в 3,75 тонны и потребует двигатель мощностью в 1500 л.с. (по умолчанию мы предполагаем, что вес мотора, его мощность и тяга винтомоторной установки связаны прямой пропорциональной зависимостью). Хорошо, если двигатель такой единичной мощности существует. В противном случае создать трехпушечный самолет (при сохранении всех летных параметров исходного) не удастся, так как установка двух моторов (по 750 л.с. каждый) на крыло радикально меняет аэродинамику (большее сопротивление) и маневренность (больший момент инерции и снижение угловой скорости крена).
Заслуживает внимания и удивительно малая доля вооружения в общем весе истребителей начала Второй мировой войны.
«Веллингтон»
Стремление к невозможному, т. е. желание сохранить высокую горизонтальную маневренность (на уровне лучших бипланов середины 30-х годов) и при этом добиться скорости, значительно превосходящей скорость новейших бомбардировщиков, потребовало значительного увеличения тяговооруженности, т. е. использования все более и более мощных моторов. Вес винтомоторной группы дошел до половины от веса пустого самолета, и истребитель превратился в «мотор с крыльями», где не осталось места для того главного, ради применения которого истребитель и взлетает в небо, – вооружения. Двигатель «съел» самолет…
Надеюсь, что все это не слишком сложно. Из «уравнения существования» следует множество интересных выводов. В частности, на каждом определенном этапе развития техники соотношение относительного веса планера, двигателя, топлива, полезной нагрузки у самолетов с одинаковыми летными характеристиками (скорость, дальность, скороподъемность, располагаемая перегрузка) будет почти одинаковым.
Возьмем, например, бомбардировщик, способный переместить 1 тонну бомб на расстояние в 2–3 тысячи километров с крейсерской скоростью 300–360 км/час. Этим требованиям в конце 30-х годов отвечали английский «Веллингтон», немецкие «Хейнкель-111» и «Юнкерс-88», советский «ДБ-Зф», итальянский «Савойя-Маркетти-79». Внешне это очень разные самолеты, с разным числом и типом охлаждения двигателей, разными аэродинамическими и конструктивно-силовыми схемами, сделанные из различных материалов и по-разному вооруженные.
Но – доля веса топлива в нормальном взлетном весе выражается весьма сходными цифрами: 21,2 %, 27,6 %, 27,6 %, 32,5 %, 24,8 %. Из общего ряда, как видно, выпадают два самолета: «Веллингтон» (21,2 %) и «ДБ-Зф» (32,5 %). Но это как раз тот случай, когда «исключения подтверждают правило». «Веллингтон» летал медленнее всех (крейсерская скорость всего 290 км/час), потому и расходовал топливо экономичнее, а «ДБ-Зф» имел значительно большую дальность полета (до 3300 км).
Вернемся теперь к сравнению параметров истребителей. Относительный вес конструкции (планер + двигатель + шасси) на протяжении всей войны практически не изменился, и у трех десятков самых разных по характеристикам и внешнему виду истребителей укладывался в диапазон 74–82 % от общего взлетного веса самолета. Другими словами, на топливо и полезную нагрузку оставалось порядка 18–26 % от взлетного веса. Например, вес конструкции истребителя «Мессершмитт» «Bf-109»Е-3 составлял 2016 кг; полезная нагрузка (592 кг, или 22,8 % от взлетного веса) состояла из топлива и масла (330 кг), вооружения с боеприпасами (172 кг), летчика с парашютом (90 кг).
А теперь сравним весовые характеристики «Мессершмитта» серии Е (один из самых легких истребителей начала войны) с весом самого тяжелого одномоторного истребителя конца войны.
История создания и боевого применения американского «Тандерболта» (вес пустого 4452 кг, нормальный взлетный вес 5961 кг) может послужить отличной иллюстрацией сразу нескольких основополагающих правил самолетостроения. Высокая удельная нагрузка (214 кг на кв. м) позволила самому тяжелому истребителю Второй мировой стать одновременно и рекордсменом скорости. Четвертая часть от 6 тонн взлетного веса американского истребителя составляет 1500 кг, но летчик, пилотирующий 6-тонный самолет, ничуть не толще и не тяжелее других. Вместе с парашютом он весит не более 100 кг. В результате на вооружение, приборное оборудование и топливо в «Тандерболте» остается 1400 кг – в три раза больше, чему «мессера» серии Е.
Вот поэтому на борту «Тандерболта» мы и обнаруживаем 6 или 8 крупнокалиберных пулеметов с огромным боекомплектом (в перегрузочном варианте – до 3400 патронов); в кабине летчика – полный комплект всевозможного оборудования (от писсуара до автопилота и средств радионавигации); за спиной пилота – мощное бронирование, под ногами – совершенно уникальная стальная «лыжа», сберегающая жизнь летчика при вынужденной посадке на фюзеляж. Для штурмовки наземных целей «Тандерболт» мог поднять 900 кг бомб и 10 ракет калибра 127 мм (это соответствует боевой нагрузке двух наших штурмовиков «Ил-2»). Максимальная дальность полета в 3780 км (с подвесными баками) позволяла сопровождать любой бомбардировщик, даже тот, который в Германии или СССР назывался бы «дальним».
Таким образом, огромные усилия американских ученых и инженеров, создавших для «Тандерболта» двигатель с турбонаддувом единичной мощностью в 2300 л.с., были потрачены не зря. Они позволили создать одноместный одномоторный самолет, который при вполне приемлемых летных характеристиках (и даже рекордной скорости) имел взлетный вес в 6 тонн. Большой взлетный вес (а значит, и большой вес полезной нагрузки) позволил создать на базе этого самолета высокоэффективную многоцелевую систему вооружения, способную на огромных пространствах выполнять самые разнообразные боевые задачи.
Шеститонный самолет и двигатель мощностью в 2300 л.с. – это не только огромное достижение конструкторской мысли. Это еще и огромные финансовые затраты, огромный расход топлива на каждый вылет. Нельзя ли решить задачу проще и дешевле? «Уравнение существования» подсказывает несколько возможных путей. Во-первых, всегда можно «купить» рост одних характеристик ценой снижения других. Вернемся к примеру с установкой дополнительной третьей пушки на легкий истребитель весом в 2,5 тонны. Совсем необязательно запускать «цепную реакцию» роста абсолютного веса всех агрегатов самолета. Самый простой и быстрый способ – залить в топливный бак на 50 кг бензина меньше. При этом сохранятся все летные характеристики исходного самолета. Кроме одной – дальности полета. Приемлемая ли это цена за увеличение огневой мощи вооружения? В ряде случаев – да. А если далеко летать не надо, то можно и часть приборного оборудования снять, а за счет экономии веса «купить» дополнительный боекомплект.
Есть и гораздо лучший способ разумного использования «уравнения существования». Совсем необязательно улучшать одни параметры ценой ухудшения других. Можно (и нужно) пойти другим путем. 50 и более кг веса можно сэкономить за счет снижения веса конструкции. Так как вес планера (фюзеляж, крыло, хвостовое оперение) составлял для истребителей эпохи Второй мировой войны порядка 35–40 % веса пустого самолета, то даже самое скромное облегчение конструкции позволяло найти «лишние» 2–3 % веса, позволяющие очень заметно увеличить полезную нагрузку.
«Самое главное глазами не увидишь». Эти слова знаменитого летчика, писателя и философа А. Экзюпери очень точно отражают главные проблемы и возможности в проектировании самолета. Выбор оптимальной конструктивно-силовой схемы, тщательная проработка конструкции каждого узла и детали, создание высокопрочных материалов – вот те невидимые постороннему глазу усилия, которые в конечном итоге и определяют летные характеристики самолета. Удивительно, но факт: скучный сопромат (занудное учение о прочности гаек, болтов, стержней и оболочек) оказался по меньшей мере столь же важен, как и все красоты аэродинамики.
Приведем еще один показательный пример. На рубеже 30 – 40-х годов разрабатывался и поступал на вооружение ВВС ведущих стран мира ряд истребителей с двигателями мощностью 1050–1100 л.с. При почти одинаковых мощности двигателя и максимальной скорости вес этих самолетов оказался очень даже разным (см. Таблица 1).
Таблица 1
Причем нельзя сказать, что малый вес конструкции лидеров был «куплен» ценой снижения мощности вооружения. По такому параметру, как «вес секундного залпа», поликарповский «И-180» был равен «Томахоуку» (1,86 кг/сек и 1,84 кг/сек) и превосходил «Спитфайр» (1,86 против 1,52 у английского «огневержца»). Что же касается тихоходного французского «Блоха», то на нем было установлено самое мощное и поэтому самое тяжелое среди всех вышеперечисленных истребителей вооружение (две пушки «Испано-Сюиза» 20 мм и два пулемета 7,7 мм, вес секундного залпа 3,2 кг/сек).
Приведенную выше таблицу не стоит рассматривать как «рейтинг квалификации конструкторов», хотя, конечно же, вес конструкции пресловутых «истребителей новых типов» («ЛаГГ-3» и «Як-1») впечатляет. Самое главное глазами не увидишь. Избыточный вес конструкции «ЛаГГа» – это, скорее всего, результат прискорбной торопливости в стремлении выполнить «задание Партии и Правительства» на технологиях и оборудовании мебельной фабрики (к сожалению, это не шутка). Низкий вес конструкции «И-180» и «Блоха» свидетельствует не только о высокой квалификации разработчиков, но и о несомненных преимуществах легкого двигателя воздушного охлаждения. Большой вес конструкции «Томахоука», возможно, объяснялся не ошибками весового проектирования, а большими запасами прочности планера. Такое предположение (точный ответ требует серьезного анализа, выходящего за рамки задач данной главы) может объяснить факт превращения тяжелого и маломаневренного «топора» в истребитель-бомбардировщик, который по весу бомбовой нагрузки (450 кг) и дальности полета (1127 км) почти не уступал советскому двухмоторному фронтовому бомбардировщику «Пе-2».
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?