Электронная библиотека » Майкл Газзанига » » онлайн чтение - страница 7


  • Текст добавлен: 19 мая 2022, 22:07


Автор книги: Майкл Газзанига


Жанр: Прочая образовательная литература, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 7 (всего у книги 20 страниц) [доступный отрывок для чтения: 7 страниц]

Шрифт:
- 100% +

Часть II
Физическая система

Глава 4
Модуль за модулем, развитие мозга

Черная королева: «Здесь, знаешь ли, приходится бежать со всех ног, чтобы только остаться на том же месте! Если же хочешь попасть в другое место, тогда нужно бежать по меньшей мере вдвое быстрее!»

Льюис Кэрролл.
«Алиса в зазеркалье»

Наш мозг кажется таким же непрочным, как Музей Гуггенхайма в испанском Бильбао, этом творении Фрэнка Гери, однако, как справедливо указывает сам архитектор, в здании музея протечек не бывает. Сооружение вполне надежно! Гери, гениальный архитектор, расширил наши представления о физических структурах, способных выполнять полезные функции. Наш мозг – тоже физическая структура, выполняющая полезные функции. В хаотичности этой с виду неустойчивой конструкции есть свои закономерности, понятные нам лишь отчасти, а большей частью – непонятные. Несмотря на много веков исследований, никто до конца так и не догадался, каким образом из этого запутанного клубка биологического материала у нас в голове рождается наш повседневный опыт. Ежесекундно в нашем мозгу совершаются мириады электрических, химических и гормональных превращений, а нам это кажется плавным и гармоничным процессом. Возможно ли это? И впрямь: как должен быть устроен мозг, чтобы он мог формировать целостное сознание?

Все на свете имеет свою базовую структуру, а физики распространяют это правило на квантовый уровень (мы еще поговорим об этом в 7 главе). Мы любим разбирать всякие вещи, чтобы посмотреть, почему они работают. Тело и мозг, как и все прочее, состоят из отдельных частей. В этом смысле можно сказать, что мы состоим из модулей, то есть из компонентов, при взаимодействии которых рождается тот самый цельный функционирующий объект нашего внимания. Мы должны разобраться в его частях, причем не только в их комбинациях, но и во взаимодействиях.

То, что наши психические состояния и поведение есть результат некоей совместной деятельности разных частей мозга, сомнений не вызывает. Мысль о мозге, функционирующем как единая структура, которая производит сознательный опыт, на первый взгляд кажется разумной. Даже нобелевский лауреат Чарльз Шеррингтон в начале 1900-х писал о мозге как о «заколдованном ткацком станке»[1], имея в виду слаженную работу нервной системы по созданию загадочного разума. Однако неврологи, его современники, могли бы пригласить его к себе в больничные отделения, на обход. В их клиниках было полно пациентов, чей поврежденный мозг поведал бы ему совсем другую историю.

Парадокс в том, что существует масса доводов против функционирования мозга как единого целого, хотя все мы кажемся себе неделимыми сущностями – и тем самым на интуитивном уровне подтверждаем модель станка Шеррингтона. Наше неделимое сознание создается как раз тысячами относительно независимых единиц – проще говоря, модулей. Модули представляют собой обособленные и зачастую локализуемые нейронные сети, выполняющие специфические задачи.

Нейробиолог, физик и философ Дональд Маккей однажды заметил, что принцип работы чего-либо гораздо проще понять, когда в этой работе происходит сбой. Как физик он знал, что нередко инженеры быстрее разбирались в принципах работы каких-то устройств, например телевизора, когда картинка нарушалась, а не когда она была четкой и неискаженной[2]. Точно так же изучение поврежденного мозга помогает лучше понять, как работает мозг здоровый.

Самые убедительные доказательства модульной структуры мозга дает обследование пациентов с поражением мозга. Если пострадают некоторые ограниченные области мозга, то отдельные когнитивные способности могут ухудшиться из-за прекращения работы ответственной за них нейронной сети, в то время как другие сохранятся и будут по-прежнему работать и безупречно выполнять свои задачи. Любопытно, что сознание пациентов с изменениями в мозге при многих отклонениях кажется абсолютно нормальным. Этого не было бы, если бы сознаваемый опыт зависел от идеального функционирования всего мозга в целом. Поскольку моя концепция держится на данном факте (что модули присутствуют везде), мы должны понять, в какой степени для мозга характерно модульное строение.

Модули выпадают – мозг работает

Возьмем любую, какую хотите, долю мозга у человека после инсульта. Например, при повреждении правой части теменной доли обычно возникает так называемый синдром неглекта (одностороннего пространственного игнорирования). В зависимости от местоположения и величины пораженного участка пациенты с синдромом неглекта ведут себя так, будто левой половины воспринимаемого ими мира, иногда включая левую часть их собственного тела, не существует частично или полностью! Они могут оставить еду на левой половине тарелки, не побриться или не накраситься с левой стороны, нарисовать часы без левой части циферблата, не прочесть левую страницу книжного разворота и не заметить ни людей, ни предметы в левой части комнаты. Иногда они не признают собственные левые руки и ноги, пытаясь встать с кровати без их помощи, хотя их конечности вовсе не парализованы. Некоторые игнорируют левую часть пространства даже в воспоминаниях и воображении[3]. Судя по тому, что дефицит способностей зависит от размера и локализации пострадавшего участка, повреждение в специфических нейронных цепях приводит к ухудшению работы различных звеньев процесса. В пользу этой гипотезы убедительно говорит картирование функциональной нейроанатомии при подобных поражениях мозга[4].

Здесь мы сталкиваемся с неожиданным фактом: если сенсорная или двигательная система действительно выходит из строя, то проявляется синдром неглекта, а когда все сенсорные и моторные системы работают в нормальном режиме – то возможна его разновидность, синдром вытормаживания. В этом случае каждое полушарие само по себе работает вроде бы нормально, но если им приходится функционировать одновременно, начинаются ошибки. При этом на подсознательном уровне информация в игнорируемом поле может быть использована![5] Стало быть, информация есть, просто пациент не отдает себе в этом отчета. Вот как это происходит. Пациенты с левосторонним пространственным неглектом, которым одновременно подают зрительные сигналы в правое и левое зрительные поля, говорят, что видят только зрительный стимул справа. Но если им показывают стимул только в левом зрительном поле и этот стимул воздействует на те же зоны сетчатки, что и в предыдущем случае, то он воспринимается нормально. Иными словами, в отсутствие конкуренции с нормальной стороны зона неглекта попадает в поле внимания и в область сознательного восприятия! Самое удивительное, что такие пациенты не видят и не ощущают ничего из ряда вон выходящего – они не замечают ни пробелов в восприятии, ни сопряженных с этим проблем.

Тогда в их рассказах о себе, по-видимому, отражается лишь то, что они осознают. А это, в свою очередь, зависит от двух факторов. Во-первых, не работающие нейронные цепи ускользают от их сознания, как будто этих цепей никогда и не было. А вместе с ними исчезает и осознание их функций. Во-вторых, имеет место своего рода конкуренция. Процессы в одних цепях попадают в область сознания, в других – нет. Короче говоря, сознательный опыт, вероятно, связан исключительно с локальной обработкой информации (что обеспечивает специфические возможности), и кроме того, другие модули могут оказаться сильнее – в результате процесс так и не дойдет до сознания. Это поразительные выводы.

Однако, на мой взгляд, самое интересное клиническое расстройство – это не отрицание частей своего тела, а «феномен третьего человека»[7]7
  Впервые это явление описал Эрнест Шеклтон. Он и двое его товарищей преодолели тяжелейшие 680 миль по бурным волнам в утлой спасательной шлюпке с минимальным запасом пищи и пресной воды, что привело их в состояние крайнего истощения и изнеможения. Им предстоял последний рывок в их героической попытке спасти застрявшую во льдах команду, оставшуюся на острове у берегов Антарктиды, – надо было без карты, имея только ледоруб и пятнадцать метров веревки, как можно быстрее пересечь две заснеженные горные цепи на острове Южная Георгия. Шеклтон рассказывал, что на протяжении этого похода ему все время казалось, будто их сопровождает четвертый человек. Позднее Томас Элиот ввел в поэму «Бесплодная земля» этот эффект присутствия «третьего человека», как он выразился, и термин прижился. (J. Geiger, The Third Man Factor: Surviving the Impossible [New York: Weinstein Books, 2009]).


[Закрыть]
, когда кажется, будто кто-то находится рядом с вами, хотя на самом деле там никого нет! Синдром воплощенного присутствия заставляет вас думать, что в определенной части пространства, часто прямо у вас за спиной, кто-то есть. Ощущение это настолько сильное, что люди то и дело оглядываются, пытаясь увидеть этого человека или угостить его. Когда вы идете по темной аллее и вам кажется, что вас преследуют, – это совсем другое. Чувство присутствия возникает резко и неожиданно. Подобное часто случается с альпинистами и с теми, кто подвергает себя чрезмерным физическим нагрузкам в экстремальных условиях.

Райнхольд Месснер, первым в одиночку покоривший Эверест и снискавший мировую славу величайшего альпиниста – и, между прочим, никогда не пользовавшийся дополнительными источниками кислорода, – в своей книге «Голая гора»[6] описал один случай, который произошел с ним и его братом Гюнтером в 1970 году во время их первого серьезного восхождения на вершину Нанга-Парбат в Гималаях: «Вдруг, откуда ни возьмись, рядом со мной появился третий альпинист. Он шел вверх вместе с нами, держась на расстоянии нескольких шагов немного правее меня и не попадая в поле моего зрения. Фигуру я разглядеть не мог, да и нельзя было отвлекаться, но я был уверен, что рядом кто-то есть. Мне не требовалось доказательств, я чувствовал его присутствие». Но для того, чтобы испытать подобный опыт, не надо быть уставшим от перегрузок альпинистом. Чуть ли не половине вдов и вдовцов доводилось ощутить присутствие покойных супругов[7]. Кое-кого такие явления вдохновляли на истории о призраках, видениях и божественном вмешательстве.

Все это тут ни при чем, утверждает швейцарский невролог и нейрофизиолог Олаф Бланке, который столкнулся с этим явлением чисто случайно. Он спровоцировал такое состояние, когда проводил электрическую стимуляцию височно-теменной зоны коры мозга своего пациента, пытаясь локализовать эпилептический очаг[8]. Также он обследовал большую группу пациентов, жаловавшихся на ощущение чужого присутствия. Как выяснил Бланке, это явление непосредственно связано с поражением лобно-теменной области на противоположной стороне[9]. Такое пространственное соотношение навело Бланке на мысль, что причины кроются в нарушениях обработки сенсомоторной информации и слаженной работы всех органов чувств. Определяя свое местоположение в пространстве, мы не задумываемся о том, что при этом задействуется множество процессов – зрение, слух, осязание, проприоцепция, движение и прочие, – которые при нормальной интеграции дают нам верное представление о том, где мы находимся. Если возникает сбой, наш мозг ошибается и дезинформирует нас. Олаф Бланке и его сотрудники обнаружили, что одно из подобных нарушений в обработке информации проявляется как ощущение присутствия чужака. Недавно с помощью роботизированной руки им удалось вызвать нарушение сенсорного восприятия и создать это ощущение у здоровых людей[10].

Совершая какие-либо движения, мы ждем последствий через определенное время и в определенном месте. Вы чешете спину – и ждете моментальной реакции на спине. Если пространственные и временные ощущения отвечают вашим ожиданиям, мозг интерпретирует их как самопроизвольные. При рассогласовании, если сигналы расходятся с самоощущением во времени и пространстве, вы приписываете эти действия постороннему агенту. Представьте себе, что вы стоите с завязанными глазами и вытянутыми вперед руками, ваш палец вставлен в паз «ведущего» робота, как в наперсток, а робот передает сигналы механической руке, расположенной у вас за спиной. Вы двигаете пальцем и тем самым приводите в движение механическую руку, которая постукивает вас по спине. Палец может ощущать сопротивление, иногда соответствующее силе толчка, а иногда едва заметное, явно не коррелирующее с вашими действиями. Если вы чувствуете касание рукой спины одновременно с производимым вами движением, то ваш мозг создает иллюзию: хотя ваши руки вытянуты перед вами, вам кажется, будто ваше туловище переместилось вперед и вы касаетесь пальцем своей спины. Но если ощущение касания несинхронно и на мгновение запаздывает, мозг рисует другую картину. Вы как бы перемещаетесь в обратном направлении, назад от вашего пальца, и вам кажется, будто вашей спины касается что-то другое. А если вы к тому же, управляя механической рукой, еще и не чувствуете сопротивления пальцу, такое расхождение ощущений во времени порождает чувство, будто кто-то, стоящий позади вас, касается вашей спины! С помощью точного управления физическими раздражителями Бланке показал, что сенсомоторные конфликты – то есть несовпадение сигналов с физическими реакциями во времени и пространстве – способны вызвать ощущение чужого присутствия у здоровых добровольцев. Конфликты такого рода были созданы в результате манипуляций с различными локальными нейронными сетями – модулями.

Если бы мозг работал, как «заколдованный ткацкий станок», удаление его части или стимулирование неправильной работы каких-нибудь нейронных цепей либо вывело бы из строя всю систему, либо привело бы к нарушениям во всех когнитивных проявлениях. В действительности масса людей с поврежденными или отсутствующими частями мозга живет более или менее нормально. Если страдают определенные области мозга, какие-то, хотя и не все, когнитивные функции почти всегда ухудшаются. Возьмем, к примеру, такую хорошо развитую когнитивную функцию, как язык и речь. У большинства людей речевой центр расположен в левом полушарии. В речевом центре мозга имеются две совершенно различные области – зона Брока и зона Вернике.

Зона Брока отвечает за формирование речи, в то время как зона Вернике связана с восприятием и пониманием устной и письменной речи, а также с построением понятных фраз и правильным порядком слов. Точнее, зона Брока отвечает за произношение слов, то есть координирует работу мускулатуры губ, рта и языка, чтобы слова звучали правильно, а зона Вернике – за выстраивание слов в нужном порядке еще до того, как мы произнесем осмысленную фразу. Речь людей с нарушениями в зоне Брока затруднена – они произносят слова в нужном порядке, но выговаривают их с трудом, как бы рывками (скажем, «модуль… ный… мозг»), иногда с грамматическими ошибками. Пациенты с расстройствами в зоне Брока чувствуют свои ошибки и могут растеряться. Люди с нарушениями в зоне Вернике, напротив, главным образом демонстрируют неспособность понимать слова. Они произносят их с правильными интонациями и грамматическими особенностями, но то, что они говорят, лишено смысла. Можно сделать вывод, что обе эти области выполняют свою специфическую работу, а та, где возник дефект, перестает справляться со своими обязанностями. Это однозначно указывает на высокоспецифичное модульное устройство мозга.

Почему в мозге развилась модульная структура? Однажды я услышал, как глава компании Coca-Cola объяснял принцип функционирования его корпорации. По мере разрастания штата руководители компании поняли, что производить всю продукцию на одном центральном предприятии и развозить ее по всему миру неумно, неэффективно и дорого. Не было никакого смысла тратить деньги на упаковку и доставку товара, на организацию совещаний в «штаб-квартире», командировочные для их участников и на все такое прочее. Следовало поделить мир на регионы, построить в каждом свой завод и продавать продукцию на местах. Централизованное планирование отменили и ввели местное управление. То же самое и с мозгом – дешевле и более эффективно.

Эволюция большого мозга

Сложилось общепринятое мнение, что животные с более крупным мозгом, чем можно было бы ожидать при их размерах тела, обладают более развитыми умственными и другими когнитивными способностями. Считалось, что мозг человека велик для его тела, чем и объясняются наш высокий интеллект и разнообразие талантов. Однако в этой теории не все гладко. В действительности мозг неандертальцев гораздо больше нашего, но это не помогло им в конкуренции с Homo sapiens, когда тот появился. Что касается моего собственного исследования, то тут возникает другой непростой вопрос: после операции по расщеплению мозга оставшееся в одиночестве левое полушарие (половина мозга) почти не уступает по интеллектуальным способностям целому, неповрежденному мозгу. Больше – не обязательно лучше. Так в чем же дело?

Сюзана Эркулану-Хаузел с сотрудниками сравнила количество нейронов и других клеток в мозге разных видов, применив новую методику их подсчета в человеческом мозге. Как выяснилось, слухи о нашем большом мозге сильно преувеличены! Человеческий мозг вовсе не гипертрофированный – что касается размеров, он представляет собой пропорционально увеличенный мозг приматов. Несмотря на то, что мозг человека гораздо крупнее и содержит гораздо больше нейронов, у шимпанзе и людей одинаковое соотношение количества нейронов и размеров мозга[11]. Было сделано еще одно поразительное открытие – оказалось, что соотношение глиальных клеток и нейронов 10:1 (которое часто называлось, хотя и не подтверждалось никакими источниками) не имеет ничего общего с действительностью. На самом деле глиальных клеток в человеческом мозге не больше половины общего их количества, ровно столько же, сколько у приматов. Эркулану-Хаузел рассеяла и другое заблуждение, предположив, что наше ошибочное мнение об использовании мозга всего лишь на 10 %[8]8
  Существует мнение, что этот миф основан на факте, будто в любом поведении или деятельности только небольшая часть нейронов активируется в мозге. Другие нейроны будут активны в других видах деятельности. Это и есть проявление высокой специфичности «модулей». – Прим. научного редактора.


[Закрыть]
основано на завышенной оценке соотношения глиальных клеток и нейронов как 10:1[12]!

Впрочем, человеческий мозг имеет два преимущества перед мозгом других млекопитающих. Во-первых, он устроен очень экономично и компактно, по правилам подобия, справедливым и для других приматов, и во-вторых, из всех экономично устроенных мозгов приматов наш самый крупный, а следовательно, в нем больше всего нейронов. Но, когда вы сравниваете другие виды с приматами, нельзя автоматически судить о количестве нейронов по величине мозга. Возьмем, например, грызунов: если сравнивать мышей и крыс, мозг последних крупнее – но не только потому, что в нем больше нейронов. У крыс при увеличении числа нейронов увеличивается и размер нейрона. Стало быть, один нейрон крысы занимает больше объема, чем нейрон мыши – разница примерно такая же, как между спагетти и тоненькой вермишелью. А у приматов, если сравнивать обезьян и людей, с увеличением числа нейронов размер нейрона не меняется. Поэтому в более крупном мозге примата на единицу объема приходится в целом больше нейронов, чем в относительно более крупном мозге грызуна. Если взять мозг крысы и увеличить его до размеров человеческого, крыса будет иметь 1/7 общего количества нейронов, которые имеются у человека – по той простой причине, что каждый нейрон крысы займет больше места. Увеличение размера мозга – дело хитрое, и, по-видимому, для разных отрядов (приматы, грызуны и прочие) действуют разные правила пропорционального роста.

Тут мы снова возвращаемся к модулям. Если бы в человеческом мозге при увеличении числа нейронов каждый из них соединялся бы с соседними, мы имели бы экспоненциальный рост количества аксонов (элементов нейрона, обеспечивающих передачу сигналов). Наш мозг был бы гигантским – 20 км в диаметре[13], – и ему требовалось бы столько энергии, сколько мы не смогли бы ему дать, даже если бы нас кормили как на убой[14]. Фактически на наш мозг приходится около двух процентов всего веса тела, и при этом он забирает 20 % всей энергии. Эта мощная электрическая система работает в непрерывном режиме, как кондиционеры в Фениксе в июле, поэтому и потребляет так много энергии. Возникла бы и другая проблема – длина аксонов была бы такой, что скорость обработки информации резко упала бы.

Нейробиолог Георг Стридтер изучает причины и характер различий, сформировавшихся у разных видов в ходе эволюции мозга. Он полагает, что размеры мозга увеличиваются с соблюдением определенных законов, регулирующих внутренние связи[15]. Прежде всего, по мере увеличения мозга количество связей, соединяющих один нейрон с другими, в среднем не меняется. Напротив, в абсолютном отношении число нейронных связей сохраняется, благодаря чему – в плане энергозатрат и пространства – рост мозга становится более управляемым. Однако это означает, что с увеличением размеров мозга связанность частей структуры в целом сокращается. Сокращение связанности подразумевает более высокую автономность процессов.

Вторая закономерность – минимизация длины связей. Это приводит к тому, что нейроны соединяются главным образом с соседними нейронами. Короткие связи требуют меньше энергии, объема и времени на передачу сигнала и обеспечивают эффективную коммуникацию между локализованными в определенных зонах нейронами. Следовательно, при увеличении мозга происходит реорганизация путей передачи сигналов и меняется структурная архитектура мозга. В итоге архитектура сложившейся структуры такова, что образуется кластер, или «сообщество», локализованных нейронов с хорошо развитыми соединениями.

Организация такого типа позволяет этим самостоятельным кластерам независимо выполнять определенные функции – и вот уже рождается модуль! Как правило, в одном модуле устанавливаются внутренние связи между нейронами, но некоторые, немногие, нейроны способны образовывать короткие связи с нейронами близлежащих модулей, и в итоге формируется нейронная цепь. Нейронная цепь возникает, когда один модуль получает информацию, обрабатывает ее и передает в другой модуль для дальнейшей обработки. Таким образом, пути передачи информации от одного модуля к другому, пусть и немногочисленные, позволяют соседним модулям объединяться в кластеры для более многоступенчатой ее обработки. В следующей главе мы узнаем об этом больше, когда будем говорить о многоуровневой архитектуре.

Иногда модули образуют иерархическую систему – они состоят из субмодулей, которые и сами в свою очередь складываются из субсубмодулей[16]. Тем не менее при множестве независимо функционирующих модулей возникает нужда в эффективной коммуникации между ними и координации их работы. Получаем третье условие связанности – не все связи должны быть минимизированы, кое-какие длинные связи, которые сокращают путь между удаленными узлами, сохраняются[9]9
  Относительно недавно в журнале Nature было опубликовано несколько статей, где обсуждались множественные длинные отростки нейронов (Volume 598 Issue 7879, 7 October 2021). – Прим. научного редактора.


[Закрыть]
.

Общая архитектура, выстроенная по таким правилам соединения, называется архитектурой «малого мира». Для подобного типа архитектуры характерна высокая степень модульности, однако передача информации между любыми двумя модулями всегда происходит в несколько стадий. Архитектура «малого мира» характерна для многих многокомпонентных систем, например для энергосистемы западных штатов США и социальных сетей. Кластерная организация мозга – система функционально взаимосвязанных областей – подтверждена многими исследованиями[17].

Преимущества модульного мозга

Рассмотрев эту конфигурацию, мы увидим, что преимущества модульного мозга перед мозгом, функционирующим целиком, обоснованы массой причин. Начать с того, что модульный мозг существенно снижает расход энергии. Поскольку он разделен на отдельные узлы, для выполнения конкретной задачи необходимо активировать лишь некоторые участки в составе данного модуля. Если бы вы по каждому поводу задействовали весь мозг целиком, вам пришлось бы платить по счету за электричество для всей черепной коробки. Это можно сравнить с летом в Фениксе. Гораздо дешевле включать ночью кондиционеры не во всем доме, а только в спальне. Но хотя модульность и позволяет беречь энергию, так ли уж велика экономия, если учесть, что на питание мозга уходит пятая часть вашего рациона?

Оказывается, несмотря на всю свою энергоемкость, мозг действительно работает рационально в плане потребления энергии. Нейроны передают электрические импульсы по «проводам» мозга – аксонам и дендритам. Хотя нейронная «проводка» заметно отличается от электросхем современных приборов, базовая идея та же – информацию от одного узла к другому несет электрический ток, и на это нужна энергия. Чем длиннее путь, тем больше потребляется энергии, и чем толще аксон, тем выше его сопротивление и, следовательно, больше энергии уходит на его преодоление. Когда в работу включаются локальные модули, мозг экономит энергию при передаче информации между ними за счет использования более тонких «проводов» на коротких расстояниях с меньшим временем проведения сигнала. Кроме того, с учетом динамики нервных систем, доля проводящих путей в мозге – 60 процентов (отношение суммарного объема аксонов к объему серого вещества) – согласуется с той, что и предполагалась при минимальных длине путей и связанном с ней замедлении проводимости. В проводящих системах многих мозговых структур почти выдерживается этот оптимальный параметр[18]. В противном случае, если бы мозг функционировал как унитарный орган, в каждом его отделе содержалось бы примерно равное количество коротких и длинных связей, а более длинная связь подразумевает больше «проводов», то есть больше «затрат». Модульный мозг сокращает затраты, поддерживая для путей передачи сигналов относительно низкое соотношение 3:5 (те самые отведенные им 60 %) и таким образом ограничивая объем передачи электрических сигналов по длинным связям. По-видимому, благодаря модульному режиму работы мозгу удается в целом максимально повышать эффективность расходования энергии.

Модульный мозг эффективен еще и потому, что сразу много модулей могут одновременно обрабатывать разную информацию. Если вместо одной системы, которая пытается скоординировать все действия, несколько систем функционируют независимо друг от друга, говорить на ходу, жуя резинку, гораздо проще. Кроме того, чтобы работать как единый центр и хорошо справляться со всеми повседневными обязанностями, мозг должен был бы стать «мастером на все руки». Более выгодно иметь «специалистов», каждый из которых занимается своим делом. Для сложных систем характерно разделение функций. Скажем, в экономике наблюдается подъем, когда сельским хозяйством занимаются лучшие фермеры, образованием – лучшие учителя, а управлением – лучшие администраторы. Неумные менеджеры способны загубить бизнес, неумелые фермеры разорятся, а плохие учителя… да что там говорить, все мы хотя бы раз пострадали из-за них и знаем, чем это может кончиться. Люди становятся экспертами тогда, когда выбирают свое дело и сосредотачиваются на своей работе, не углубляясь во все направления, необходимые для поддержания экономики. Труд специалистов более производителен. Экономический эффект возрастает не тогда, когда все пытаются внести свою лепту в каждую область, а когда узкие специалисты одновременно заняты в своих областях. Таким образом, логично предположить, что наш мозг эволюционировал по пути модульной организации ради параллельной и эффективной обработки информации.

Пожалуй, самое главное – это то, что модульная организация, помимо всего прочего, позволяет мозгу быстрее адаптироваться и эволюционировать в изменчивой окружающей среде: поскольку один модуль способен меняться и воспроизводиться независимо от остальных, нет риска изменить или потерять по ходу дела другие, уже хорошо приспособленные. Поэтому дальнейшие преобразования одной части не угрожают надежной работе всей системы.

Даже если не принимать во внимание эволюцию, модульность полезна в плане приобретения новых навыков. Как выяснили исследователи, в процессе отработки двигательных навыков меняется архитектура отдельных нейронных сетей[19]. Хотя на повышение квалификации часто уходит немало времени, мы можем учиться на практике. Если бы каждый раз, когда мы осваивали новые умения, менялся режим функционирования всего мозга, мы разучились бы выполнять то, что уже умеем. Модульный мозг хорош тем, что экономит энергию при скудных источниках, обеспечивает параллельное выполнение разных когнитивных задач при ограниченности во времени, облегчает переход к новым функциям при появлении новых угроз выживанию и позволяет нам приобрести практический опыт в различных областях. Но если от всего этого отвлечься, какие еще возможны варианты организации мозга?

Путь к модульности

Человеческий мозг – не единственный мозг с модульной организацией и не единственная модульная биологическая система. Из модулей состоят мозги червя, мухи и кошки, а также сосудистая система, сети межбелковых взаимодействий и регуляции экспрессии генов, метаболическая система и даже наши социальные сети[20]. Как развивалась модульность? Какие факторы естественного отбора стимулируют образование модульной системы? Трое специалистов по информатике озадачились этим вопросом и, хорошенько пораскинув мозгами, решили проверить гипотезу Стридтера о том, что модульность стала побочным продуктом при минимизации затрат на соединение, вызванной естественным отбором[21].

Затраты на соединения в сети складываются из затрат на установление и поддержание связей, энергозатрат на передачу информации по каналам связи и на запаздывание сигнала. Чем больше связей и чем они длиннее, тем дороже выстроить и затем обслуживать сеть[22]. Кроме того, добавление связей и удлинение сигнальных путей может привести к увеличению критического времени запаздывания реакции – не очень здорово для выживания в конкурентной среде, когда хищник, завидев вас, обнажает клыки и выпускает когти, а его пасть наполняется голодной слюной.

Ученые-информатики Джефф Клун, Жан-Батист Муре и Год Липсон сделали то, что обычно и делают информатики: построили компьютерную модель[23]. Они использовали хорошо изученные сети с сенсорными входами и результирующими выходными данными. По результирующим данным судили о способности нейросети противостоять возникающим в окружающей среде трудностям. Ученые смоделировали двадцать пять тысяч поколений эволюции, заложив в программу прямое давление отбора либо на максимальный рост производительности, либо на ту же производительность, но в сочетании с минимизацией затрат на соединение. И вот вам пожалуйста! Стоило только добавить второе условие при изменяемой или неизменной окружающей среде, как сразу стали образовываться модули, в то время как без минимизации затрат на соединение этого не происходило. А когда исследователи посмотрели, какие нейросети проявили самую высокую производительность, то оказалось, что это были модульные сети. Выяснилось, что в этой группе степень модульности возрастала вместе с уменьшением затрат. Одновременно те же сети и развивались гораздо быстрее – то есть как при постоянных, так и при меняющихся внешних условиях им требовалось заметно меньше поколений. Эксперименты с компьютерными моделями убедительно доказывают, что влияние естественного отбора на рост производительности нейронных сетей и минимизацию затрат на межнейронные связи приводит к существенному возрастанию модульности и лучшей способности таких сетей к развитию.

Итак, мы поняли, что модульные системы имеют массу достоинств, но как они их реализуют? Каким образом тысячи независимых модулей, каждый на своем месте, сообща координируют наши мысли и поступки – и в конечном итоге формируют наш сознательный опыт?

Внимание! Это не конец книги.

Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!

Страницы книги >> Предыдущая | 1 2 3 4 5 6 7
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации