Текст книги "Наука сознания. Современная теория субъективного опыта"
Автор книги: Майкл Грациано
Жанр: Прочая образовательная литература, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 2 (всего у книги 14 страниц) [доступный отрывок для чтения: 5 страниц]
Прибор может озвучить что-то вроде: “Там рыба”, если зрительная система осьминога содержит информацию о рыбе, плывущей неподалеку. Он может сказать: “Я существо с кучей конечностей, которые могут двигаться так и сяк”. Или: “Чтобы достать рыбу из банки, нужно повернуть ту круглую штуку”. Прибор бы многое сказал, отражая информацию, которая, как мы знаем, содержится в нервной системе осьминога. Но нам неведомо, произнесет ли он: “У меня есть субъективный личный опыт – осознание – этой рыбы. Я не просто обрабатываю информацию о ней. Я ее переживаю. Я чувствую, каково это – видеть рыбу”. Мы не знаем, есть ли в мозге информация подобного рода, поскольку не в курсе того, что сообщают осьминогу его модели самого себя. У него, возможно, нет механизмов, чтобы смоделировать сознание или приписать себе это свойство. Применение понятия “сознание” по отношению к этому животному может оказаться нерелевантным.
Тайна осьминога – пример того, что животное может быть сложным и умным, а мы тем не менее все еще не в силах ответить на вопрос о его субъективном опыте или даже о том, есть ли смысл задавать такой вопрос применительно к этому существу.
Возможно, один из источников путаницы здесь – невольное, но мощное стремление человека приписывать сознание всему вокруг. Как я подчеркнул в первой главе, мы склонны видеть сознание у кукол и других, еще менее вероятных кандидатов. Люди иногда верят, что их домашние растения осознают. Осьминог, у которого богатый поведенческий арсенал и большие глаза, наполненные сфокусированным вниманием, является в некотором роде тестом Роршаха с чернильными пятнами, убедительно запускающим в нас сильное социальное восприятие. Мы не только умом понимаем, что он собирает объективную информацию о мире, – мы не можем не чувствовать, что из этих задумчивых глаз исходит субъективное осознание. Но правда состоит в том, что мы этого не знаем, и наше ощущение сознающего разума говорит больше о нас, чем об осьминогах. Специалисты, которые изучают осьминогов, рискуют стать самыми ненадежными экспертами, потому что именно на них прежде всех остальных подействуют чары этих удивительных созданий. Позже, в пятой главе, я вернусь к всепроникающему аспекту человеческого сознания: оно инструмент в нашем социальном арсенале, и мы безотчетно приписываем его тем, кто действует вокруг нас.
Чтобы внести ясность: я не утверждаю, что у осьминогов нет сознания. Но нервная система этих моллюсков до сих пор настолько неполно изучена, что мы не можем сравнить организацию их мозга с организацией нашего и предположить, до какой степени могут быть похожи на наши их алгоритмы и модели самих себя. Для проведения подобных сравнений нам нужно заняться животными из своей собственной родословной – позвоночными.
Глава 3
Централизованный интеллект лягушки
В детстве я много времени проводил на ферме на севере штата Нью-Йорк. Каждое лето целыми ночами мы слушали брачное кваканье лягушки-быка в пруду за домом. Мы звали его Элвисом, а лягушку, чей голосок потоньше доносился в ответ, – Присциллой. С тех пор я обожаю лягушек, а занявшись нейробиологией, захотел узнать, что происходит у них в головах.
У этих животных есть область мозга, которая называется “тектум”. На латыни это значит “крыша”, тектум – крыша среднего мозга, самый заметный выступ на его верхушке. Он есть не только у лягушек. Возможно, лучше всего он изучен у амфибий, но присутствует также у рыб, рептилий, птиц и млекопитающих. Эта область мозга есть у всех позвоночных, и, насколько нам известно, ни у кого другого. Можно с немалой уверенностью предположить, что тектум развился примерно полмиллиарда лет назад у маленьких бесчелюстных рыб, общих предков позвоночных, и все потомки унаследовали эту часть мозга[29]29
E. Knudsen and J. S. Schwartz, “The Optic Tectum, a Structure Evolved for Stimulus Selection,” in Evolution of Nervous Systems, ed. J. Kaas (San Diego: Academic Press, 2017), 387–408; C. Maximino, “Evolutionary Changes in the Complexity of the Tectum of Nontetrapods: A Cladistic Approach,” PLoS One 3 (2008): e3582.
[Закрыть].
У людей тоже есть тектум, но у нас он расположен не на верхушке мозга. Это сравнительно небольшой выступ (точнее, их два – по одному с каждой стороны), погребенный под кипами мозговых структур, которые расширились в нашем эволюционном прошлом. У людей и других млекопитающих он обычно называется верхним холмиком четверохолмия. Здесь для простоты я буду называть этот холмик тектумом.
Бóльшую часть эволюционной истории позвоночных тектум был вершиной интеллектуальных достижений: самый сложный процессор в центре мозга. У лягушки он принимает зрительную информацию и выстраивает из мира вокруг амфибии некий аналог карты[30]30
D. Ingle, “Visuomotor Functions of the Frog Optic Tectum,” Brain, Behavior, and Evolution 3 (1970): 57–71.
[Закрыть]. Каждая точка на округлой поверхности тектума соответствует точке в окружающем животное пространстве. Тектум с правой стороны мозга лягушки содержит точную карту зрительного поля левого глаза, то же самое с левым тектумом и правым глазом. Когда вокруг лягушки хаотично летает черная точка, глаза принимают эту информацию, зрительный нерв посылает сигналы в тектум, а тот запускает управление мышцами. В результате язык лягушки “выстреливает” с потрясающей точностью и ловит муху.
Логику такого устройства ввода-вывода особенно ярко продемонстрировал нейробиолог Роджер Сперри. В начале 1960-х гг.[31]31
Здесь авторская неточность. Роджер Сперри проводил подобные эксперименты в начале 1940-х гг. Работа 1943 г., на которую ссылается автор в Примечаниях, посвящена исследованию зрения тритонов без регенерации нерва. Упомянутый выше эксперимент был описан в работе 1944 г. “Optic nerve regeneration with return of vision in anurans”, опубликованной в Journal of neurophysiology. Полное библиографическое описание статьи см. в Примечаниях на с. 224. – Прим. науч. ред.
[Закрыть] он провел на лягушке операцию: отделил глаза, перевернул их на 180° и вставил обратно[32]32
R. W. Sperry, “Effect of 180 Degree Rotation of the Retinal Field on Visuomotor Coordination,” Journal of Experimental Zoology Part A: Ecological and Integrative Physiology 92 (1943): 263–79; R. W. Sperry, “Optic nerve regeneration with return of vision in anurans,” Journal of neurophysiology 7.1 (1944): 57–69 (дополнение науч. ред.).
[Закрыть]. Глаза прижились. У лягушек удивительные способности к регенерации. Зрительный нерв заново пророс от глаз к тектуму и восстановил внутреннюю зрительную карту. Когда подопытная лягушка вновь начала видеть, при появлении мухи над головой она стала выбрасывать язык вниз. Если муха жужжала справа от лягушки, язык вылетал влево. Централизованный интеллект лягушки – это простой, но идеально эффективный механизм, который собирает сигналы от нервов и подбирает для них соответствующие реакции. К сожалению, манипуляции ученых его обманули. Модифицированную лягушку пришлось кормить с рук, иначе она бы погибла от голода.
Тектум лягушки занят не только зрением. Он также собирает информацию от ушей и осязательных рецепторов на коже[33]33
C. Comer and P. Grobstein, “Organization of Sensory Inputs to the Midbrain of the Frog, Rana pipiens,” Journal of Comparative Physiology 142 (1981): 161–68.
[Закрыть]. Карта поверхности тела лягушки, а также слухового и зрительного пространств вокруг животного сходятся и частично интегрируются в тектуме. Это высший уровень интеграции в мозге амфибий: центральный процессор, который собирает воедино разрозненные сигналы, поступающие из окружающей среды, сосредоточивается на самом важном событии, происходящем в каждый конкретный момент, и запускает реакцию[34]34
B. E. Stein and M. A. Meredith, The Merging of the Senses (Cambridge, MA: MIT Press, 1993).
[Закрыть]. Тектум – механизм централизованного внимания лягушки.
Ученые могут прощупывать мозг с удивительной точностью, подобно тому как инженер-компьютерщик прощупывает микросхему. В одном из стандартных методов используются электроды: тонкие, как волосок, жесткие проводки, покрытые пластиковой изоляцией везде, кроме кончика. Оголенной остается примерно десятая доля миллиметра провода. Словно миниатюрный детектор, электрод в состоянии обнаруживать электрическую активность на микроскопическом расстоянии от оголенного металла. Длинный, гибкий провод, тянущийся от электрода, соединяет его с принимающим оборудованием. Точный механизм закрепляет электрод на месте, а затем двигает его микрометр за микрометром, чтобы исследовать заданную область мозга.
Такая схема достаточно чувствительна для измерения активности отдельных нейронов в мозге. Когда нейрон вблизи кончика электрода подает сигнал своим соседям, устройство регистрирует этот крошечный электрический импульс. Сигнал усиливается и передается в динамики, а экспериментатор слышит щелчок. В обычных обстоятельствах нейрон выдает один-два случайных щелчка в секунду, но, если он активно задействуется в происходящем, клетка может внезапно разразиться сотней щелчков за секунду. Любимая забава нейробиологов – слушать щелчки отдельных нейронов и гадать, какую роль те выполняют в мозге.
Каждый нейрон в тектуме лягушки работает как детектор[35]35
C. Comer and P. Grobstein, “Organization of Sensory Inputs to the Midbrain of the Frog, Rana pipiens,” Journal of Comparative Physiology 142 (1981): 161–68; D. Ingle, “Visuomotor Functions of the Frog Optic Tectum,” Brain, Behavior, and Evolution 3 (1970): 57–71.
[Закрыть]. Он следит за определенной зоной пространства – например, областью непосредственно над головой – и срабатывает чаще, когда в эту область попадает какой-то объект. Нейроны бывают разные: какие-то предпочитают движущиеся определенным образом зрительные стимулы, другим больше нравятся звуки или прикосновения. По крайней мере некоторые нейроны мультисенсорны: для них нет разницы, приближается к макушке видимый объект, раздается оттуда звук или к голове прикасаются, – они сработают, чтобы передать сигнал остальному мозгу. Если два или более чувств сходятся, передавая одно и то же сообщение о приближающемся объекте, соответствующие нейроны в тектуме становятся особенно активными. Простое вычисление словно говорит: “одна улика – уже хорошо, а если их две или три – явно происходит что-то важное”[36]36
B. E. Stein and M. A. Meredith, The Merging of the Senses (Cambridge, MA: MIT Press, 1993).
[Закрыть].
Подобный экспериментальный метод можно использовать и в обратном направлении: посылать по электроду импульсы, чтобы активировать близлежащие нейроны. Этот метод называется микростимуляцией. Такая стимуляция настолько слаба, что на коже вы ее не почувствуете, но ее хватает, чтобы пощекотать нейроны и побудить их послать свои собственные сигналы. Использование микростимуляции позволяет задать вопрос: “Если искусственно заставить возбуждаться эту группку нейронов у кончика электрода, что они велят делать животному?”
Скажем, саламандра при электрической стимуляции тектума производит сложное скоординированное движение[37]37
T. Finkenstadt and J.-P. Ewert, “Visual Pattern Discrimination through Interactions of Neural Networks: A Combined Electrical Brain Stimulation, Brain Lesion, and Extracellular Recording Study in Salamandra salamandra,” Journal of Comparative Physiology 153 (1983): 99–110.
[Закрыть]. Она поворачивается, открывает рот, высовывает язык, вытягивает передние конечности и делает хватательные движения своими длинными тонкими пальцами – будто ловя добычу. Какую бы область пространства ни отслеживали нейроны в определенной зоне тектума, при электрической стимуляции этих нейронов животное будет тянуться к той самой области.
Стимулируйте точку на карте тектума игуаны – и повернутся ее тело, голова, глаза[38]38
B. E. Stein and N. S. Gaither, “Sensory Representation in Reptilian Optic Tectum: Some Comparisons with Mammals,” Journal of Comparative Neurology 202 (1981): 69–87.
[Закрыть]. Животное будет смотреть ровно на то место, которому соответствует ваша точка на карте.
Стимулируйте тектум рыбы, и ее тело изменит положение, чтобы сориентироваться на нужную область пространства[39]39
H. Vanegas and H. Ito, “Morphological Aspects of the Teleostean Visual System: A Review,” Brain Research 287 (1983): 117–37.
[Закрыть]. Точно развернуться в нужном направлении для рыбы – это не просто пошевелить шейным суставом. Здесь требуется сложное взаимодействие плавников и воды.
У гремучих змей есть своя версия инфракрасного зрения: пара специализированных чувствительных к температуре органов, расположенных посередине между глазами и ноздрями. Эти органы посылают информацию в тектум, который формирует карту температурных сигналов, наложенную на обычную зрительную карту пространства[40]40
P. H. Hartline, L. Kass, and M. S. Loop, “Merging of Modalities in the Optic Tectum: Infrared and Visual Integration in Rattlesnakes,” Science 199 (1978): 1225–29.
[Закрыть]. Предполагается, что на этой мультисенсорной карте основываются как способность змеи поворачивать голову в сторону добычи, так и точность ее нападения.
В тектуме совы зрительная карта совмещена со звуковой[41]41
S. P. Mysore and E. I. Knudsen, “The Role of a Midbrain Network in Competitive Stimulus Selection,” Current Opinion in Neurobiology 21 (2011): 653–60.
[Закрыть]. Когда птица охотится, она может нацеливаться, либо увидев добычу, либо, при охоте ночью, услышав ее шуршание в траве.
Стимулируйте верхний холмик обезьяны, и произойдет стремительное скоординированное движение головы и глаз[42]42
R. H. Wurtz and J. E. Albano, “Visual-Motor Function of the Primate Superior Colliculus,” Annual Review of Neuroscience 3 (1980): 189–226.
[Закрыть]. Обезьяна повернется к нужной точке пространства. Мне не встречались исследования с применением электрической стимуляции к верхнему холмику мозга человека, но мы – подвид приматов, и у нас предположительно действует тот же механизм, что и у обезьян. Когда вы поворачиваетесь на что-то посмотреть, особенно если неожиданное событие заставляет вас ориентироваться быстро, рефлекторно, – это непринужденное на вид, хорошо скоординированное движение скорее всего запускается из тектума.
Все позвоночные пользуются тектумом примерно одинаковым образом, хотя у многих видов есть свои дополнительные особенности. Область мозга собирает сенсорную информацию, выбирает самое яркое из происходящего вокруг и направляет животное, физически поворачивая его органы чувств в нужную сторону.
Такая ориентировка иногда называется явным вниманием[43]43
M. I. Posner, “Orienting of Attention,” Quarterly Journal of Experimental Psychology 32 (1980): 3–25.
[Закрыть]. Это простое решение фундаментальной проблемы: вокруг происходит так много всего, что мозгу не справиться с обработкой всей информации. Животному нужно выбрать наиболее его интересующее и отбросить остальное. Если вы направите глаза и уши на один объект, то автоматически отбросите другие события, которые окажутся на периферии. Для вас эту работу выполняет тектум. Это первый в эволюции “центральный пульт управления” вниманием в мозге позвоночных.
Большинство людей, говоря о внимании, имеют в виду именно явное. В обиходном смысле слова, на что вы смотрите – тому и уделяете внимание. Отвернувшись от объекта – не уделяете.
Но взгляд – это лишь часть истории о внимании. Студент может машинально черкать на бумажке, смотреть в тетрадь, но по-прежнему обращать скрытое внимание на преподавателя. Или представьте, что вы случайно услышали, как люди вас обсуждают. Вы не станете поворачиваться к ним, чтобы не выдать себя, но ваше внимание, ваши ресурсы обработки информации сосредоточатся на этом разговоре. Или вы можете замечтаться, сидя в кресле, и ваше внимание обратится на что-то, чего попросту не существует в физическом мире, а ваш взор будет рассеянно блуждать по потолку. Во всех этих примерах направление внимания не совпадает с направлением взгляда. Этот более сложный его вид – скрытое внимание – не входит в обязанности тектума, который занимается только явной ориентировкой. С тектумом в роли основного центра внимания лягушка в состоянии пользоваться только явным вниманием. Она может физически разворачиваться к объектам окружающего мира.
Во внимании – явном ли, скрытом – нет смысла, если им нельзя управлять. Но управление – не такая уж простая инженерная задача. Нужно тщательно отслеживать управляемое. Впервые в этой эволюционной истории мы встретим не просто клетки, обрабатывающие информацию, и не просто животных, направляющих внимание, но мозговые системы, которые создают схему внимания – комплекс информации (его называют внутренней моделью), следящий за состоянием внимания. Наша эволюционная история подбирается все ближе к чему-то напоминающему сознание. Но пока еще не добралась.
Беспилотному автомобилю нужна внутренняя модель всей конструкции. Встроенный в него компьютер должен не только получать информацию о внешнем мире и затем посылать сигналы рулю и педалям. Системе необходима информация о самой машине, ее форме и размере, ее поведении на дороге, ее постоянно меняющихся характеристиках: скорости, ускорении, местоположении. Без богатой, постоянно обновляемой внутренней модели, содержащей большой объем информации, у машины будет лишь центр управления, который посылает водительские команды, но, скорее всего, дело кончится аварией.
Принцип внутренней модели был впервые описан в инженерной сфере[44]44
E. F. Camacho and C. Bordons Alba, Model Predictive Control (New York: Springer, 2004); R. C. Conant and W. R. Ashby, “Every Good Regulator of a System Must Be a Model of That System,” International Journal of Systems Science 1 (1970): 89–97; B. A. Francis and W. M. Wonham, “The Internal Model Principle of Control Theory,” Automatica 12 (1976): 457–65.
[Закрыть]. Неважно, что управляется – что-то материальное, вроде машины или роботизированной руки, или нечто аморфное, например поток воздуха во всех помещениях большого здания. Чтобы система управления работала как следует, ей нужна внутренняя модель того, чем она управляет. Ей требуется возможность наблюдать машину, робота или потоки воздуха. Внутренняя модель чем-то напоминает карту на столе генерала – с маленькими пластиковыми танками и солдатиками. Это связный комплекс информации, который, обычно упрощенным или схематичным образом, отражает и отслеживает то, чем нужно управлять.
Тот же принцип работает и в биологии. Мозг управляет телом с помощью внутренней модели, так называемой схемы тела – комплекса информации о его структуре и постоянно меняющемся состоянии[45]45
M. S. A. Graziano and M. M. Botvinick, “How the Brain Represents the Body: Insights from Neurophysiology and Psychology,” in Common Mechanisms in Perception and Action: Attention and Performance XIX, ed. W. Prinz and B. Hommel (Oxford, UK: Oxford University Press, 2002), 136–57; N. Holmes and C. Spence, “The Body Schema and the Multisensory Representation (s) of Personal Space,” Cognitive Processing 5 (2004): 94–105; F. de Vignemont, Mind the Body: An Exploration of Bodily Self-Awareness (Oxford, UK: Oxford University Press, 2018).
[Закрыть]. Иногда при инсульте повреждаются области мозга, которые строят схему тела[46]46
H. Head and G. Holmes, “Sensory Disturbances from Cerebral Lesions,” Brain 34 (1911): 102–254; G. Vallar and R. Ronchi, “Somatoparaphrenia: A Body Delusion. A Review of the Neuropsychological Literature,” Experimental Brain Research 192 (2009): 533–51.
[Закрыть]. Если пациент больше не осознает форму или структуру своей руки, он не сможет ею управлять. Пострадают простые навыки – указывать на что-то, дотягиваться рукой, держать чашку. Но увидеть важность внутренней модели можно и не заглядывая в отделение постинсультной реабилитации. Повесьте тяжелую сумку с покупками на запястье и попробуйте взяться за ручку двери: поначалу ваши движения будут неуклюжими. Внутренняя модель руки, имеющаяся у мозга, внезапно оказывается неправильной: изменились динамические свойства конечности. Но очень быстро, за несколько попыток, внутренняя модель выучит новые правила, и ваши движения станут плавнее и точнее[47]47
A. M. Haith and J. W. Krakauer, “Model-Based and Model-Free Mechanisms of Human Motor Learning,” in Progress in Motor Control: Neural Computational and Dynamic Approaches, Volume 782, ed. M. Richardson, M. Riley, and K. Shockley (New York: Springer, 2013), 1–21; S. M. McDougle, K. M. Bond, and J. A. Taylor, “Explicit and Implicit Processes Constitute the Fast and Slow Processes of Sensorimotor Learning,” Journal of Neuroscience 35 (2015): 9568–79; R. Shadmehr and F. A. Mussa-Ivaldi, “Adaptive Representation of Dynamics during Learning of a Motor Task,” Journal of Neuroscience 14 (1994): 3208–24.
[Закрыть].
С инженерной точки зрения внутренняя модель должна отслеживать настоящее и предсказывать будущее. Если вы хотите чем-то управлять, например тележкой в магазине, нужна возможность предсказать, что она будет делать в следующую секунду. Вы создаете что-то вроде интуитивного симулятора тележки, запускаете его в голове и понимаете, как она себя поведет. То, как вы станете управлять реальной тележкой, какую силу и под каким углом приложите к ее ручке, будет зависеть от предсказаний, сделанных внутренней моделью. Дети плохо справляются с подобной задачей и врезаются в магазинные полки: отчасти это происходит потому, что у них не сложилась хорошая внутренняя модель тележки. Они не могут предсказать, как усилие, приложенное к ручке, повлияет на движение колес. Взрослые же, попрактиковавшись, вырабатывают бессознательную, интуитивную модель.
А как обстоят дела со вниманием? Это ведь, можно сказать, важнейший процесс в мозге, и, несомненно, им нужно управлять. Чтобы эффективно реагировать на мир, мозг должен уметь стратегически сосредоточивать ресурсы на произвольных предметах. Но при этом внимание бывает капризным и расхлябанным не менее, чем тележка в супермаркете, сбиваясь куда попало. Из базовых принципов инженерии управления мы знаем, что тектуму нужна внутренняя модель, чтобы следить за вниманием. Мы с коллегами назвали эту предположительную внутреннюю модель “схема внимания” – по аналогии со схемой тела, которая помогает следить за телом. Схема внимания – это комплекс информации, описывающий внимание: не предмет, на который оно направлено, а само внимание. Схема наблюдает за его состоянием, отслеживает его динамические переходы от одного состояния к другому и предсказывает, как оно может измениться в ближайшем будущем. Вариант схемы внимания – информация, которая следит конкретно за явным вниманием, – был обнаружен в тектумах обезьян и кошек[48]48
Существует огромное количество экспериментальных работ, в которых изучался верхний холмик у кошек и обезьян, – в том числе то, как он отслеживает и прогнозирует положение головы и глаз, а следовательно, предсказывает, как зрительные образы будут двигаться по сетчатке. Я приведу лишь несколько обзорных статей. M. A. Basso and P. J. May, “Circuits for Action and Cognition: A View from the Superior Colliculus,” Annual Review of Vision Science 3 (2017): 197–226; D. L. Sparks, “Conceptual Issues Related to the Role of the Superior Colliculus in the Control of Gaze,” Current Opinion in Neurobiology 9 (1999): 698–707; R. H. Wurtz and J. E. Albano, “Visual-Motor Function of the Primate Superior Colliculus,” Annual Review of Neuroscience 3 (1980): 189–226.
[Закрыть]. Согласно базовым принципам, такая же информация почти наверняка имеется у лягушек, рыб и других животных, у которых есть тектум, даже если он подробно не изучен.
Вернемся к нашим лягушкам. Мы знаем, что у них есть центральный процессор – тектум. Мы знаем, что им присуще явное внимание – способность ориентировать органы чувств на определенный фрагмент большого мира. Мы знаем, что у них должна быть схема внимания, поскольку во внимании нет смысла, если им невозможно управлять, а управлять им невозможно без внутренней модели. Схема внимания – это примерно то же самое, что сложная модель самого себя. Лягушка не просто направляет внимание на определенные предметы в своем мире. Она еще и некоторым образом знает, что делает это. У нее есть информация о ее собственном внимании.
Что именно знает о себе мозг лягушки благодаря схеме внимания?
Вспомним о мысленном эксперименте, который я предложил провести во второй главе. Представим себе, что мы взяли футурологический переводчик информации в речь, Речинатор-5000, и воткнули его в тектум лягушки. Пользуясь информацией из схемы внимания, Речинатор может сказать: “Тут какие-то глаза. Тут тело. Они двигаются так и этак, поворачиваясь в разных направлениях. В данный момент они направлены на ту дергающуюся черную точку. Поскольку прямо сейчас они двигаются, то скоро окажутся направлены вон в ту сторону”. Информация настолько буквальна потому, что внимание лягушки ограниченно. Да, у нее есть схема внимания, но она описывает лишь явное. Для лягушки внимание – это поворот головы и глаз. А значит, нужная лягушке внутренняя модель – это модель головы и глаз: как они двигаются, как соотносятся с предметами.
Предположим, мы при помощи Речинатора спросили у тектума лягушки: “А есть ли у тебя субъективное переживание этой мухи?”
Тектум может давать только ту информацию, которая в нем имеется. Он скажет: “Там носится туда-сюда черная точка. Тут глаза. Тут тело. Они двигаются. Они направлены туда”.
Мы слегка раздражаемся: “Да-да, это понятно. Но как насчет осознания? Насчет мысленного образа мухи?”
Тектум лягушки повторяет: “Тут глаза. Тут тело. Они направлены туда”.
В тектуме лягушки попросту нет информации, чтобы ответить на наши вопросы. Понятие осознания для нашей амфибии не имеет смысла. Несмотря на то что у нее есть сложный мозг, определенный тип внимания и даже схема внимания, лягушке не нужны внутренние модели, описывающие ее как сознающего агента.
Я до сих пор с теплом вспоминаю Элвиса и Присциллу. Я знаю, что их поведение на удивление сложно, даже их скрипучие брачные песни. Если бы я достаточно времени провел с лягушками, у меня бы наверняка наладился с ними контакт и появилось бы интуитивное ощущение (столь характерное для нас, общественных человеческих существ), что в этих крошечных животных должно таиться сознание. Это человеческие, социальные объяснения того, почему людям может казаться, что у лягушки есть сознание. Но у амфибии практически наверняка отсутствует аппарат, позволяющий моделировать сознание или приписывать это свойство себе самой. У нее может быть объективное осознание о себе и окружающей среде в том смысле, что она обрабатывает информацию о своем теле и его окружении, но, если бы нам удалось перевести эту внутреннюю информацию в речь, не нашлось бы никаких причин обнаружить в лягушке субъективное осознание.
И тем не менее все нужные фрагменты почти расположились по местам. Согласно моему эволюционному отчету на настоящий момент, полмиллиарда лет назад у древней бесчелюстной рыбы образовалась некая форма явного внимания, появился тектум, чтобы этим вниманием управлять, и, вероятно, схема внимания, чтобы упростить управление. Амфибии, рептилии, птицы и млекопитающие – все унаследовали одну и ту же систему. Во всех нас скрыт один и тот же тектальный аппарат. Но, чтобы обнаружить феномен, который мы признаем как сознание, нужно сделать еще один шаг. Нужно от явного внимания обратиться к более сложному и тонкому навыку скрытого, в котором экспертами являются птицы и млекопитающие.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?