Электронная библиотека » Майкл Кордингли » » онлайн чтение - страница 10


  • Текст добавлен: 10 марта 2020, 21:17


Автор книги: Майкл Кордингли


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 10 (всего у книги 35 страниц) [доступный отрывок для чтения: 12 страниц]

Шрифт:
- 100% +

Глава 5
Грипп: не простуда

Огромная ошибка – отождествлять грипп с простудой. В романе Арнольда Беннетта «Карта», написанном в 1911 году, миссис Мачин категорически утверждает: «В мое время не было никакой инфлюэнцы. Называйте простуду простудой». Беннетт, вероятно, счел бы эти строчки менее уместными, если бы написал свой роман десятью годами позже. В 1918 году разразилась пандемия гриппа, названного «испанкой», поразившего каждого четвертого жителя планеты и унесшего сорок миллионов жизней в течение одного года. Вирус простуды является весьма эффективным патогеном, но совместная с человеком эволюция сделала простуду хотя и превалирующим, но легким заболеванием, сохранив только симптомы, необходимые для успешной передачи вируса новым хозяевам. Вирус простуды не стал комменсалом, не причиняющим никакого вреда хозяину; он остается паразитом и вызывает поражение, достаточное для сохранения заразительности. Генетическое разнообразие его велико, но удивительно устойчиво, по крайней мере согласно нашим наблюдениям, и это разнообразие проявляется существованием множества отличающихся между собой генетически и серологически штаммов. Эти родственные вирусы циркулируют в человеческой популяции совместно, и поэтому ни один из отдельных серотипов не является единственным возбудителем простуды в каждый данный момент времени. Биология вируса гриппа, с другой стороны, совершенно иная. Вирус A человеческого гриппа – один из самых успешных и опасных человеческих вирусов и представляет собой образец эволюции вируса. Удивительная быстрота, с которой вирусы гриппа непрерывно обновляются, генетически может сделать грипп одной из самых страшных болезней для человечества. Наши отношения с вирусом гриппа мало похожи на давно установившееся и устойчивое равновесие, в каком мы находимся с вирусом простуды. Вирус гриппа является движущейся мишенью: несмотря на то что мы можем быть уверены, что каждый год грипп будет поражать и убивать людей, мы никогда не можем наверняка знать природу и тяжесть следующей эпидемии.

В феврале каждого года Всемирная организация здравоохранения (ВОЗ) созывает международные конференции специалистов по гриппу. Целью этих конференций является обзор доступных эпидемиологических и лабораторных данных, собранных в 141 клинической лаборатории в 111 странах. В ходе конференции специалисты должны попытаться предугадать, какие штаммы вируса надо использовать для создания следующей вакцины. Эту вакцину необходимо изготовить и сделать доступной для лечебных учреждений Северного полушария до начала зимы месяцев, когда наступает, с точностью часового механизма, следующий гриппозный сезон. Соответствующим национальным агентствам дают рекомендации, а эти агентства, в свою очередь, выдают лицензии производителям вакцин, находящимся в зоне их юрисдикции. Успехи этих дискуссий блистательны, но не вполне совершенны. В некоторые годы появляются новые по антигенному составу и потенциально пандемические штаммы, которые не соответствуют предсказаниям; в иных случаях штамм мутирует настолько, что перестает реагировать на предложенную вакцину. Сегодня ученые-медики обладают углубленным пониманием эволюции вирусов гриппа человека, основанным на эволюции прошлых штаммов и особенностях течения прошлых эпидемий. Выдающийся кетчер «Янки» Йоги Берра выразил это следующей содержательной фразой: «Трудно делать предсказания, особенно о будущем». Предсказание будущей эволюционной траектории вирусов, в особенности вируса гриппа, всегда чревато неопределенностью.

В феврале 2014 года Центры по контролю заболеваемости в Атланте объявили, что в 2014–2015 годах вакцины будут направлены против следующих штаммов:

• вируса гриппа A/California/7/2009 (H1N1) пандемии 2009 года;

• вируса гриппа A/Texas/50/2012 (H3N2);

• вируса гриппа B/Massachusets/2/2012.

Номенклатура, информативная для специалистов по гриппу, является, мягко сказать, туманной, и мы не станем уделять ей большого внимания, чтобы не отвлекаться от сути. Случайное наблюдение, однако, показывает, что существует два изолированных штамма вируса гриппа A: один представляет штаммы “H11”, которые были выявлены во время пандемии 2009 года, второй – недавний образец (2012 года) штаммов “H3N2”, – а также третий, который является совокупностью штаммов B. По своему антигенному составу эти вирусы представляют собой те штаммы вируса гриппа, которые доминируют в современных сезонных эпидемиях, и ученые ожидают, что они станут доминирующими штаммами, которые начнут циркулировать среди населения США в ранние зимние месяцы. Эта догадка основана на сложных расчетах, но это всего лишь догадка, которая может оказаться ошибочной. В следующем сезоне 2014–2015 года было обнаружено, что вакцина не соответствует антигенам доминирующих вирусов. По большей части инфекцию вызывали вирусы гриппа A(H3N2), но по генетическому составу и по антигенам они сильно отличались от штамма A/Texas/50/2012(H3N2), который использовали для создания вакцины. Следствием этой ошибки стала необычная тяжесть сезонной эпидемии того года.

Для того чтобы понять, что именно делает вирус гриппа таким талантливым новатором, важно отчетливо представлять, как он устроен и каковы его особенности как инфекционного агента, поражающего человека. Существуют три вида вирусов гриппа (A, B и C), но мы сосредоточим наше внимание только на вирусах гриппа A. Пока именно они являются наиболее важной группой вирусов, так как определяют ежегодную заболеваемость гриппом, а кроме того, они демонстрируют весь набор трюков, которые делают вирус гриппа столь успешным патогеном.

Подобно человеческим риновирусам, вирус гриппа кодирует свою генетическую информацию в РНК; однако в отличие от риновируса его геном состоит из негативной цепи РНК. После инфицирования гены вируса должны транскрибироваться на комплементарную цепь позитивной РНК, которая уже распознается рибосомами клетки-хозяина, осуществляющими трансляцию вирусных белков. Больше того, геном вируса состоит из восьми различных сегментов РНК, упакованных в рибонуклеопротеиновые комплексы, которые все вместе содержатся в общей вирусной оболочке. Эта оболочка, представляющая собой липидную мембрану, пронизана тремя вирусными белками, которые выступают на поверхности вирусной частицы. Эти белки представляют собой вирусные оболочечные гликопротеины, гемагглютинин (ГА) и нейраминидазу (НА), а также матриксный белок (М2). Белки ГА и НА являются белками, определяющими антигены вируса, и именно они служат мишенью иммунной системы хозяина. ГА – это белок, отвечающий за связывание с рецепторами эпителиальных клеток верхних дыхательных путей и опосредующий проникновение вируса в клетку (в главе 11 подробно обсуждаются белки ГА с различными рецепторными предпочтениями, которые влияют на эпидемиологические особенности вирусов гриппа). Вирус гриппа располагает своим оригинальным механизмом овладения клеточными системами синтеза белка с целью репликации генома и сборки вирусных частиц, которые затем отпочковываются от клетки сквозь двойной липидный слой, из которого состоит стенка клетки. За этот процесс отвечает нейраминидаза – она обеспечивает отделение вирусных частиц от клеточной поверхности. На мембране клеток-хозяев находятся рецепторы, опосредующие вход вируса в клетку. Связывание вируса с рецепторами клетки является необходимым условием инфицирования, но при высвобождении вирусных частиц это становится помехой. Дочерние вирусные частицы прочно связываются с поверхностью клетки, и их надо освободить от этой связи. Здесь в игру вступает НА, которая отщепляет вирус от клетки и дает ему возможность связаться с новыми клетками или поменять хозяина. Примечательно, что вирусные частицы отпочковываются только от свободной поверхности эпителиальных клеток и высвобождаются в просвет дыхательных путей. Следовательно, вирусы, образованные в инфицированных клетках, выходят непосредственно в свой носитель, в секрет слизистой оболочки дыхательного тракта. В типичных случаях заболевание у человека ограничено дыхательными путями.

Начало заболевания гриппом в целом напоминает заболевание простудой, но отличается быстротой развития симптомов и их значительной тяжестью. Так же как при простуде, признаком начала болезни является заложенность носа и боль в горле. Дело в том, что инфекция, как правило, проникает в организм через нос, откуда попадает в носовые пазухи или глотку. Очень скоро вирус начинает реплицироваться в трахее, а в более тяжелых случаях в бронхиолах легких, где он может стать причиной гриппозной пневмонии. Лихорадка, кашель, общее недомогание и ломота в теле, сопровождающие грипп, являются симптомами сопротивления иммунной системы, вступившей в борьбу с вирусом гриппа, так как иммунная система атакует клетки, зараженные вирусом. Поражение вирусом клеток верхних и нижних дыхательных путей приводит к образованию нагруженного вирусными частицами экссудата, который отхаркивается из дыхательных путей при кашле и чихании, и это определяет основной путь передачи вируса от больного человека здоровому. Вирус распространяется по воздуху внутри капель экссудата, а в других случаях заражение происходит при контакте с поверхностями, зараженными вирусом. Беспощадность передачи вирусов между людьми проявляется тем фактом, что во время типичной сезонной эпидемии вирус может инфицировать каждого десятого жителя планеты (Nelson, Holmes, 2007). Инфекция протекает остро и разрешается самопроизвольно, но могут возникать осложнения, чаще у восприимчивых пациентов, например у пожилых больных или у людей с сопутствующими заболеваниями. Самыми частыми осложнениями являются пневмония, бронхит или гайморит. Очень легко недооценить тяжесть гриппа у человека. Каждый год от гриппа в мире умирают от четверти до половины миллиона человек, несмотря на применение вакцины (ВОЗ, 2014).

Мастер по смене антигенов

В основе успешности вируса гриппа A как эпидемического патогена лежит его способность создания генетических вариантов, что позволяет избежать удара иммунной системы в популяции хозяев: вирусы гриппа – подлинные мастера по смене своих антигенов. Иногда это удается сделать так удачно, что разражаются всемирные эпидемии – пандемии. В прошлом столетии мы пережили четыре такие пандемии, самая последняя была в 2009 году (Salomon, Webster, 2009; Kilbourne, 2006). Вирус гриппа, циркулирующий в популяции во время сезонных эпидемий, как правило, имеет небольшие антигенные отличия от штаммов, вызвавших эпидемию предыдущего года. Напротив, пандемические штаммы очень сильно отличаются своим антигенным составом от прочих штаммов, и у людей отсутствует иммунологическая память на эти новые антигены. Возможность такой генетической вариабельности обеспечивается мутациями и генетическими обменами. Быстрота циклов репликации вируса в организме хозяина и устойчивая цепь передачи вирусов между многочисленными хозяевами являются условием возникновения множества мутаций. Подобно другим РНК-содержащим вирусам, вирусная РНК-полимераза делает приблизительно одну ошибку на 1000–10 000 включенных в цепь рибонуклеотидов (Nelson, Holmes, 2007). Следовательно, мы должны полагать, что вирус гриппа также существует в образе квазивида. Сложность состава квазивида преходяще ограничивается «бутылочным горлышком» при передаче вируса от одного хозяина другому, она быстро восстанавливается после инфицирования нового хозяина. Это важный и устойчивый источник генетической вариабельности, которая может быть объектом как очищающего, так и положительного отбора, в зависимости от природы и активности селективного давления иммунитета. Вторым источником вариабельности вируса гриппа A является обмен генетическим материалом между вирусами, инфицирующими одну и ту же клетку. Сегментированная природа РНК-генома вируса гриппа допускает замену сегментов в геноме, что приводит к возникновению новых химерических вирусов с радикально измененными патогенными и антигенными свойствами. Набор сегментов в геноме вируса гриппа A можно сравнить с колодой на руках сдающего в покере. Карты можно брать, и набор их у игрока может измениться как в лучшую, так и в худшую сторону. Так же как в покере, естественный отбор заботится о том, чтобы неудачные расклады исчезали, а оставались только жизнеспособные, которыми и продолжают игру. Этот феномен генетической перетасовки является формой горизонтального переноса генов и напоминает приобретение бактериями новых признаков в результате конверсии фагов. В данном случае вновь созданный вирус обладает одним или более вирусными генами, обеспечивающими преимущество. Такие перемещения, которые приводят к получению новых сегментов для ГА или НА из вирусов других подтипов, являются главным источником возникновения новых, потенциально пандемических штаммов, снабженных антигенными новшествами. Это, пожалуй, самое мощное и непредсказуемое оружие в арсенале вируса гриппа. До изобретения секвенирования нуклеотидных последовательностей разнообразие вирусов гриппа описывали исключительно на основании серологических критериев, и обнаруживаемое разнообразие ограничивалось антигенными различиями вирусных штаммов с разными подтипами ГА и НА на их поверхности. Так как реакция антител на вирус гриппа определяется гликопротеинами ГА и НА на поверхности вирусного капсида, описание вирусов гриппа опиралось на их антигенные свойства. То же самое остается и сегодня, поскольку это самый обильный источник антигенного разнообразия, которое определяет патогенный потенциал вирусов гриппа. Тем не менее сегодня мы можем дополнить анализ отдельных групп вирусов знанием нуклеотидных последовательностей в генах ГА и НА, а также последовательностей в шести других генных сегментах вирусного генома.

Существует восемнадцать подтипов ГА (H1–H18) и десять подтипов НА (NA1–NA10), которые мы к настоящему времени научились распознавать (Webster, Govorkova, 2014); эти подтипы отличаются по своим функциям и антигенам, и их используют для типирования вирусов гриппа A. Отсюда подтипы, появления которых ожидали в эпидемию зимой 2014–2015 года в Северном полушарии, должны были, по расчетам, обладать наборами H3N2 (подтип ГА 3 и подтип НА 2) и H1N1. Перемещения ГА– и НА– подтипов (в результате которых происходит антигенный сдвиг) являются главными детерминантами эпидемического потенциала и патогенных свойств вирусов гриппа. Сегодня все согласны с тем, что геномный контекст этих вариантов подтипов также важен для успешного возникновения патогенных форм вируса гриппа. В течение последних десяти лет, на фоне развития техники секвенирования, ученые получили полные геномные последовательности для беспрецедентного числа отдельных штаммов вируса. Филогенетическая, эпидемиологическая и эволюционная динамика вируса гриппа во время эпидемий и в промежутках между ними может быть теперь подробно исследована. Этот филодинамический анализ позволил документально показать, каким способом вирус гриппа с такой непринужденностью и апломбом каждый раз заново изобретает свою конструкцию.

Вирус A гриппа человека

Вирус гриппа A может паразитировать не только в организме человека; вирусы этой группы инфицируют множество видов других млекопитающих: свиней, лошадей, морских млекопитающих, птиц и летучих мышей (Webster et al., 1992). Те вирусы, которые инфицируют людей и передаются в человеческих популяциях, ограничены вирусами только трех из восемнадцати известных на сегодня подтипов ГА (H1, H2 и H3) и двух из десяти подтипов НА (N1 и N2). Действительно, вирус гриппа является в первую очередь вирусом водных птиц; филогенетический анализ указывает на то, что все вирусы типа А развились из вирусов птичьего гриппа (Webster et al., 1992). Таким образом, водные птицы являются естественными и самыми древними хозяевами вирусов гриппа и их главным резервуаром. Грипп свободно циркулирует в диких популяциях птиц, преимущественно среди гусей, уток и других водоплавающих птиц, с эпидемическими вспышками, которые, как правило, происходят в конце лета и начале осени. Среди диких водоплавающих птиц вирус гриппа циркулирует не как возбудитель респираторных заболеваний, так как у птиц вирус гриппа поражает клетки кишечного эпителия. Вирус передается фекально-оральным путем в окружающей среде, в воде, где птицы находят пищу. По некоторым оценкам, в инфицированных фекалиях птиц содержание вирусов на один грамм в миллиард раз превышает то количество вирусов, которое необходимо для заражения культуры клеток в лабораторных условиях (Webster, 2002). Несмотря на такое массивное вирусное отягощение, гриппозная инфекция у птиц, как правило, протекает доброкачественно и практически не вызывает болезненных симптомов. Считается, что причина кроется в длительной совместной эволюции, в результате которой установились устойчивые отношения вирус – хозяин.

Представляется, что вирус птичьего гриппа и его хозяева достигли адаптивного равновесия (Webster, 2002). Сравнение эндемичных для птиц вирусов гриппа за последние 60 лет показало практическое отсутствие эволюции их геномов в сравнении с вирусами гриппа млекопитающих, которые быстро накапливают значительные аминокислотные изменения в продуктах всех восьми геномных сегментов. Эволюционный статус-кво сохраняется у птиц, несмотря на непрерывное возникновение генетических вариантов во время репликации гриппозного РНК-генома. Представляется, что в данном случае отсутствует давление положительного отбора, которое облегчало бы появление новых штаммов. Предположительно можно сказать, что сохранившиеся штаммы достигли «оптимума приспособленности» своего природного вида, и почти все генетические изменения оказываются разрушительными, так как подвергаются давлению отрицательного очищающего отбора. Этот вывод подкрепляется наблюдением, согласно которому синонимичные изменения нуклеотидных последовательностей, не оказывающие влияния на последовательность аминокислот в белках (а значит, и на фенотип) вируса, значительно превосходят по численности несинонимические изменения. Представляется в связи с этим, что эволюционная гонка вооружений между птицами и вирусом гриппа осталась в далеком прошлом, и стороны пришли наконец к стабильному сосуществованию. Иммунная система диких птиц довольно вяло реагирует на гриппозную инфекцию. Можно предположить, что именно по этой причине практически отсутствует давление отбора на популяцию вирусов, так как мала необходимость избегать воздействия иммунной системы хозяина. Во взаимоотношениях человека и вируса гриппа картина совершенно иная; здесь генетический конфликт сохраняет прежнюю ярость.

Вирус гриппа диких птиц часто поражает домашних птиц. У этих новых и относительно мало адаптированных хозяев преобладают реакции положительного отбора, облегчающие генетические изменения вируса. Изменение экологической среды создает новое диверсифицирующее давление на вирусный геном, что проявляется в преобладании несинонимических мутаций над синонимическими в геномах вирусов (Nelson, Holmes, 2007). Мутации, приводящие к изменению последовательности аминокислот в белках, могут быть благоприятными для репликации вируса в клетках нового хозяина. Представляется, что это происходит, несмотря на слабый иммунный ответ домашних птиц на инфицирование вирусами гриппа. Положительный отбор, однако, фокусируется не только на обычных подозреваемых, на антигенных детерминантах ГА и НА генов; отбор сильнее действует на другие генные сегменты. Представляется, что другие детерминанты вирулентности или мишени клеточного иммунитета являются доминирующими движителями этой новой эволюционной траектории. Так же как во всех новых отношениях, конкуренция между партнерами и необходимость притирки друг к другу всегда сильнее всего вначале.

Как старейшие штаммы вируса гриппа, штаммы, доминирующие среди диких птиц, отличаются большим генетическим разнообразием. Это разнообразие служит настоящим плавильным котлом, в котором множество штаммов вируса гриппа претерпевают множество циклов относительно свободной передачи и репликации, смешиваются и путем перемещений передают друг другу блоки генетической информации. Этот резервуар поддерживает существование вируса гриппа A и является созидающей силой, действующей за фасадом генетического разнообразия, которое с большой выгодой используется вирусом.

Достаточно четко установлено, что вирус гриппа человека A берет свое начало в генетической информации вируса птичьего гриппа. Несмотря на то что вирус птичьего гриппа инфицирует новых хозяев иных видов, он редко образует в них устойчивые штаммы. Вирус заходит в тупик либо по причине избыточной вирулентности, либо, наоборот, от отсутствия вирулентности, или же от невозможности обеспечить надежный путь передачи и заражения. Из тех штаммов, которые все же возникли и упрочились – тюленя, лошади и свиньи, – вирус человеческого гриппа ближе всего к свиному гриппу. Вирусы гриппа человека не циркулируют в популяциях диких птиц; вероятно, они потеряли эту способность в результате эволюционной адаптации к человеку. Штаммы вируса гриппа человека редко напрямую приобретают генетическую информацию вируса птичьего гриппа. Свиньи являются важными промежуточными хозяевами между птицами (скорее всего, утками) и людьми. Вирус гриппа человека, циркулирующий в настоящее время, приобрел свои гены от многочисленных предковых вирусов, но перемещения и приобретения генетической информации, вероятно, имели место в организмах свиней, откуда гены передавались людям. Этот процесс выявлен и надежно документирован (Webster, 2002; Webster, Govorkova, 2014). Один из циркулирующих в настоящее время сезонных вирусов гриппа человека, штамм H3N2, существует, начиная с 1968 года, когда он впервые был зарегистрирован как причина пандемии гонконгского гриппа. Как мы увидим ниже, длительный период времени, в течение которого этот вирус превалировал в этиологии эпидемий, предоставляет нам уникальный инструмент изучения эволюции эпидемического вируса гриппа человека на протяжении нескольких десятилетий. Сравнительное изучение геномов H3N2 в разные моменты времени и в разных географических областях позволило неплохо разобраться в эволюции гриппа. Перемещение генов, создавшее пандемический гонконгский штамм H3N2, произошло в результате замещения превалировавшего до тех пор штамма H2N2. Исследование генных сегментов нового, появившегося в 1968 году штамма H3N2 показало, что он является продуктом генетического обмена между циркулирующим вирусом H2N2 и птичьим вирусом H3. Новый вирус сохранил шесть генных сегментов штамма H2N2, но приобрел новый гемагглютинин (H3) и новый генный сегмент, кодирующий РНК-полимеразу.

Циркулировавший до этого эпидемический вирус H2N2, по сути, с течением времени развился в два генетически разнородных генетических таксона типа H2N2. Представляется, что эти вирусы продолжают циркулировать в человеческой популяции и после пандемической вспышки гриппа типа H3N2. Филодинамика возникновения и быстрого распространения нового пандемического вируса была сложной. В то время как первые штаммы H3N2 получили все свои H2N2 гены от одного из двух циркулирующих таксонов вирусов H2N2, штаммы, возникшие позднее, имели генные сегменты, полученные от обоих таксонов. Ученые сделали вывод, что происходило не одно, а множество перемещений этих генов между циркулирующими штаммами, что и сыграло решающую роль в быстрой эволюции нового пандемического штамма (Lindstrom, Cox, Klimov, 2004).


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации