Электронная библиотека » Мик О'Хэйр » » онлайн чтение - страница 10


  • Текст добавлен: 24 декабря 2014, 16:18


Автор книги: Мик О'Хэйр


Жанр: Зарубежная образовательная литература, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 10 (всего у книги 16 страниц)

Шрифт:
- 100% +
Полный порядок

«Почему ряды кнопок на калькуляторе или цифровой клавиатуре расположены так, что нумерация начинается снизу, хотя мы привыкли читать сверху вниз? Почему кнопки телефонов устроены иначе и самые маленькие цифры находятся в верхних рядах?»

М. Д. Берксон

Бишопс-Стортфорд, Хартфордшир, Великобритания


В механических арифмометрах, основной элемент конструкции которых – вращающиеся колеса, кнопка 0 всегда соседствует с кнопкой 1. Из удобства в самых старых счетных устройствах цифры расположены в порядке возрастания снизу вверх – вероятно, в память о тех временах, когда у этих устройств были не клавиши, а рычаги на колесах. Когда цифры стали размещать на клавишах, расположенных по три в ряд с одной лишней слева, порядок цифр сохранили прежним.

На вращающемся телефонном диске 0 находится рядом с 9, потому что 0 в телефонном номере передается по телефонной линии десятью сигналами. Когда появились телефоны с кнопками, расположение цифр на них перенесли со старых дисковых телефонов.

Никко ван Сомерен

Кембридж, Великобритания

Отражение в зеркале

«Почему в зеркале меняются местами правая и левая, а не верхняя и нижняя части изображения?»

Кисхор Бхагвати

Лозанна, Швейцария


Зеркало не переворачивает изображение слева направо: оно меняет местами перед и зад относительно плоскости зеркала. Встаньте перед зеркалом. Протяните руку, например влево. И вы, и ваше отражение указывают в одном и том же направлении. Направьте руку вперед. Теперь рука вашего отражения протянута в противоположном направлении от вашей руки. Направьте руку вверх. Вы и ваше отражение опять указывают в одну сторону. Теперь встаньте к зеркалу боком и повторите то же самое. Направляя руку в сторону, вы с отражением будете указывать в противоположном направлении. Положите зеркало на пол и встаньте на него. На этот раз вы будете указывать в противоположные стороны, когда поднимете руку вверх, а ваше перевернутое отражение опустит ее вниз. Во всех случаях направление меняется, только когда ваша рука направлена на зеркало или от него.

Хилари Джонсон

Молверн, Вустершир, Великобритания


Суть ответа заключается в том, что отражение и поворот – разные вещи. Правая и левая стороны нашего тела симметричны, и потому мы стремимся воспринимать отражение как поворот вокруг центральной вертикальной оси. Нам представляется, что мир перед зеркалом повернут на 180° относительно вертикальной оси зеркала, и появляется за ним там, где мы видим его отражение. При таком повороте голова и ноги остаются там, где им положено быть, а левая и правая стороны тела меняются местами, как и видно на отражении.

Но если представить, что мир повернулся вокруг горизонтальной оси, проходящей поперек зеркала, мы встанем с ног на голову, а левая и правая половины тела останутся такими, как полагается. У отражения поменяются местами верх и низ, а не правая и левая стороны.

Итак, то, каким мы увидим отражение – с поменявшимися местами левой и правой стороной, или верхом и низом, или повернутым вокруг любой другой оси, – зависит от того, вокруг какой оси мы подсознательно (и ошибочно) представляем себе вращение мира.

Если лечь на пол перед зеркалом, можно наблюдать оба эффекта сразу. Комната сделает поворот вокруг вертикальной оси, так что поменяются местами левая и правая стороны, а у вашего тела стороны поменяются местами из-за поворота вокруг горизонтальной оси, проходящей из головы в ноги.

Питер Расселл

Лондон, Великобритания


На самом деле изображение не перевернутое. Присмотритесь к своему лицу в зеркале: левая сторона находится слева, а правая – справа.

А теперь посмотрите на лицо другого человека без зеркала. Оно тоже перевернуто, потому что иначе на него не взглянуть: его правая сторона находится напротив вашей левой. С таким же успехом можно посмотреть на вставшего на голову человека: его левая сторона будет соответствовать вашей левой, а ноги – голове. Но обычно мы так не делаем, потому что это очень неудобно.

Проведите такой эксперимент. Напишите на листе бумаги какое-нибудь слово и приложите его к зеркалу. Вы машинально повернете его вокруг вертикальной оси, и в зеркале левая и правая части слова поменяются местами. Это поворот изображения, а не зеркала.

Повторите эксперимент, на этот раз приложите к зеркалу листок, повернутый вокруг горизонтальной оси. Слово перевернется «вверх ногами».

Алан Хардинг

Стэнстед, Эссекс, Великобритания


Проблема связана с тем, как мы воспринимаем отражение в зеркале. Мы представляем себя стоящими на карусели, которая сделала пол-оборота и перенесла нас туда, где мы видим отражение, т. е. в зеркало. Мы видим, что верх и низ тела остались на прежних местах, но левая и правая стороны поменялись местами.

Если вместо карусели воспользоваться чертовым колесом и представить, что оно подняло нас вверх, результат будет другим. Когда колесо делает пол-оборота, левая и правая стороны в зеркале оказываются на своих местах, а верх и низ меняются местами.

Трудность в том, что мы ошибочно пользуемся в этих экспериментах вращением, когда на самом деле в отражении меняются планы. Поскольку нам нелегко вращать свое тело в реальности, мы создаем умозрительную картину, но она не всегда соответствует тому, что мы видим в действительности.

Как правило, мы предпочитаем, чтобы верх и низ оставались на своих местах, потому воспринимаем левую и правую стороны как поменявшиеся в зеркале местами. Хотя при желании мы могли бы переставлять верх и низ.

Дэвид Сингер

Сан-Франциско, Калифорния, США

Запечатано светом

«Вскрывая конверты с самоклеящейся полоской, я иногда замечаю в клее лиловое флуоресцентное свечение. Оно продолжается очень короткое время, но может повториться, если снова запечатать конверт и опять открыть его. Чем вызван этот эффект?»

Стюарт Дугуид

Эдинбург, Великобритания


Окрашенное свечение – одна из форм хемилюминесценции. Для разделения склеенных поверхностей требуется энергия, которая разрушает силы притяжения между молекулами клея.

Предположительно, процесс открывания конверта придает избыточную энергию молекулам клея и приводит их в состояние возбуждения. Пока они возвращаются в нормальное состояние, энергия проявляется в виде зримого свечения. Разница в энергии между возбужденным и нормальным состоянием определяет длину волны, отсюда и цвет свечения, в данном случае – лиловый.

Это явление отличается от флуоресценции, при которой свет (обычно ультрафиолетовый) сначала впитывается, а затем испускается с увеличенной длиной волны (в видимом спектре). При флуоресценции появляются яркие, радужные цвета, а синее свечение вы могли наблюдать, потягивая тоник возле ультрафиолетовой лампы, какие часто встречаются в ночных клубах.

Пол Райт

Пил, остров Мэн


Подобный эффект можно увидеть, если оторвать кусок изоленты.

Впервые я заметил его примерно 30 лет назад, и это открытие по случайности произошло вскоре после взрыва в угольной шахте. Последними людьми, которые спустились в шахту до взрыва, были электрики.

Я задумался о том, пользовались ли электрики изолентой, и даже отправил властям письмо с вопросом о возможной опасности изоленты как причины взрыва.

Но мне ответили, что описанный эффект давно известен и что в этом свечении недостаточно энергии, чтобы вызвать взрыв метана в шахте.

Майк Гэй

Канада


Я заметил свечение, о котором пишет автор предыдущего ответа, на конвертах из Королевского химического общества и задумался о том, как оно действует на воспламеняющиеся газы в атмосфере. Как я пошутил в обратном письме, члены Королевского химического общества часто вскрывают конверты в более взрывоопасной атмосфере, нежели метановая.

Недавно один из взрывов приписали именно этой причине – по крайней мере, сдиранию наклеенной этикетки. Возможно, в будущих изданиях «Справочника Бретрика по химически опасным реакциям» появится новая статья: «Клейкие этикетки. Толсон П. и др.».

Мощный свинцовый аккумулятор взорвался, когда оператор оторвал от него клейкую этикетку. Расследование показало, что при этом возникло напряжение более 8 киловольт. Взрыв вызван разрядом в заполненном водородом и кислородом пространстве после перезарядки аккумулятора. Разряды такого же рода редактор наблюдал при вскрывании конвертов с самоклеящимися полосками, полученных из Королевского химического общества.

П. Арбен

Кенилуорт, Уорикшир, Великобритания

Барабанка

«Почему банка Swarfega при ударе издает барабанный звук?»

Брюс Басуэлл

Бат, Сомерсет, Великобритания


Очищающему средству для рук Swarfega, как и многим другим веществам, присущи одновременно вязкость и эластичность. Этот гель образован сетью слабых эластичных связей. Под действием сдвигающего усилия они легко рвутся; это происходит, когда мы чистим этим средством руки. Если же связи не разорваны, а подвергнуты действию силы, не превышающей предел эластичности вещества (например, при ударе по банке), они не теряют энергию и вибрируют, как пружина.

Период вибрации зависит от энергии и длины связей. Если удар приходится по разветвленным сетям прочных и сравнительно коротких связей, например в металлической наковальне, звук будет звенящим и высоким. Сети слабых и длинных связей, как в средстве Swarfega, дают натуральные низкочастотные гармонические колебания при ударе. Эти колебания быстро гасит вязкий компонент средства, который не хранит энергию удара, а рассеивает ее в виде тепла и энтропии.

Уэйн Коллинз

Тоддингтон, Бедфордшир, Великобритания


Средство Swarfega – либо гель, либо очень вязкая жидкость (фазовый переход возможен при обычных комнатных температурах). Есть что-то необычное в том, что самые распространенные вещества в природе обладают высокими внутренними потерями на трение, и при ударе по банке раздается глухой звук. Низкие внутренние потери Swarfega указывают, что на молекулярном уровне это вещество может обладать какой-то структурной упорядоченностью.

Поскольку это очищающее средство, у его молекул есть ионное окончание, которое соединяется с водой, и жировое окончание, которое вода отталкивает. Молекулы могут образовывать почти сферические структуры, в которых жировые окончания направлены наружу, а водяные – внутрь. Затем они будут легко скользить друг по другу, пока вещество не деформируется и в нем не возникнет механический резонанс с низкими потерями в случае малой амплитуды управляющего возмущения. Помнится, если в банку с Swarfega добавить воду, резонирующий эффект ослабеет.

Дж. М. Вудгейд

Рэлей, Эссекс, Великобритания

В плену пленки

«Почему пищевая пленка не липнет к металлической посуде так же хорошо, как к такой же гладкой стеклянной или керамической?»

Тим Блумфилд

Летчуорт, Хартфордшир, Великобритания


Пищевая, или упаковочная, пленка при отрывании от рулона приобретает электрический заряд. Затем она липнет к изолирующей поверхности по тому же принципу, по которому незаряженные клочки бумаги липнут к наэлектризованному экрану компьютера или телевизора.

Пленка прилипает к поверхности предмета, если между ним и пленкой имеется значительная разность электрических потенциалов. Это достигается, когда предмет служит изолятором. Если предмет металлический, заряд из пленки рассеивается в нем, нужный эффект не наблюдается.

Не липнет к посуде и старая пленка, давно оторванная от рулона. Спустя некоторое время пленка теряет заряд, а вместе с ним – и клейкие свойства.

Алистер Гамильтон

По электронной почте, без обратного адреса


Пищевая пленка приобретает статический заряд, когда ее отрывают от рулона. Можно почувствовать этот заряд, если оторвать кусок пленки и поднести его к лицу: вы ощутите, что волоски на щеке встали дыбом. Этот заряд проникает в металл, а в стекле или в пластике остается на поверхности. Чем больше статического электричества, тем надежнее держится пленка.

Джеффри Уэллс

По электронной почте, без обратного адреса

Кто шуршит?

«Откуда берется энергия, от которой тонкий белый пакет из супермаркета так громко шуршит?»

Люси Беркиншоу

Лестер, Великобритания


Эту энергию создаете в основном вы, потому что сам по себе пакет не шуршит. Шорох создают резкие движения, таких же можно добиться, если тереть или сгибать жесткую пластину. Пакеты делают из полиэтиленовой пленки, которая в отсутствие специальной обработки отличается податливостью, хорошо мнется и почти не издает шума. Она эластичнее, чем пластик, поэтому легко поглощает напряжение.

Но для изготовления пакетов пленку растягивают, чтобы она стала тонкой, удобной в обращении и настолько дешевой, чтобы выдавать ее бесплатно вместе с товарами. При этом молекулы выравниваются, образуют более жесткие поверхности. Чтобы пакеты выглядели лучше, а их содержимое не было таким заметным, производители добавляют в полиэтилен красители и затвердители. В итоге получаются пакеты, которые отзываются громким шорохом на каждое движение, прикосновение и трение.

Джон Ричфилд

Деннесиг, Южная Африка

Первое включение

«Почему нить лампочки обычно лопается, когда свет включают после перерыва, а не в конце длинного вечера, когда нить раскалена после длительной работы?»

Алан Стейтен

Сент-Айвс, Корнуолл, Великобритания


Когда лампочку включают, на тонкую нить накаливания обрушивается тройной удар.

От сопротивления металла повышается температура нити. При включении сопротивление составляет одну десятую долю обычного рабочего, поэтому через нить проходит ток силой, в десять раз превышающей расчетную величину, быстро нагревает нить и создает тепловое напряжение.

Если какая-нибудь часть нити тоньше остальных участков, она будет нагреваться еще быстрее. Удельное сопротивление на миллиметр длины окажется выше, чем в остальной нити, поэтому на данном участке тепло будет накапливаться быстрее, чем на соседних, в результате тепловое напряжение резко возрастет.

Вдобавок ко всему, нить представляет собой спираль, которая также действует как электромагнит. Из-за магнитных свойств соседние витки отталкиваются друг от друга, поэтому проходящий по нити ток оказывает воздействие на тонкую и хрупкую нить, создавая механическое напряжение.

Неудивительно, что бедняжка рвется при включении света.

Роберт Сениор

Аппингем, Ратленд, Великобритания


Чем выше сила электрического тока, который проходит через вольфрамовую нить обычной лампочки накаливания, тем сильнее нагревается металл. Когда лампочку только включают, температура нити очень быстро повышается, нить раскаляется добела. При таком быстром нагревании нить подвергается максимальному воздействию физического и теплового напряжения. Когда ток выключается, нить находится в тепле лампочки, поэтому температура изменяется медленнее, чем при включении. Следовательно, вероятность, что нить лопнет при включении, гораздо выше, чем во время работы или при остывании после включения.

Росс Х. Клеменс

Норт-Наррабин, Новый Южный Уэльс, Австралия


Нить накаливания лампочки лопается при включении тока потому, что сила тока и температура при этом максимальны. Если измерить сопротивление холодной нити лампочки, обнаружится, что оно гораздо меньше расчетного.

Для 100-ваттной лампочки сопротивление, измеренное мной в холодном состоянии, составило всего 6 Ом, а в горячем – около 140 Ом. Таким образом, сила тока и температура гораздо выше при включении, чем после того, как лампочка уже поработала некоторое время и достигла расчетной температуры. Это особенно справедливо для тех участков нити, где она истончилась от старости и испарения частиц металла. Большая начальная сила тока действует на эти участки нити, создавая температуру гораздо выше стандартной, отчего нить и плавится. Сразу после включения лампочки выполняют более трудную работу, тонкие участки нити нагреваются гораздо сильнее, чем просто при эксплуатации.

У. Анрах

Ванкувер, Канада


Лампочка накаливания дает свет благодаря нагреванию вольфрамовой нити до температуры около 2500 °C. При высокой температуре атомы вольфрама испаряются с поверхности нити, вызывая почернение, которое иногда видно внутри стеклянной колбы. Из-за этого испарения нить со временем становится тоньше.

Горячая точка, разрушающая нить, может появиться на ней по двум причинам. Во-первых, если расстояние между двумя витками вольфрамовой спирали окажется меньше среднего, температура сжатых витков будет выше нормальной, поскольку пространства для излучения у них меньше. Во-вторых, некоторые витки спирали могут быть тоньше остальных. Сопротивление этих витков окажется выше, чем у обычных.

Следовательно, скорость теплообразования в горячих точках будет больше, чем на соседних участках, а поскольку площадь поверхности тонких участков меньше, скорость теплоотдачи падает, таким образом температура нити оказывается выше нормальной.

Поскольку скорость испарения увеличивается экспоненциально росту температуры, более горячие точки будут истончаться быстрее. По мере утончения нити в горячих точках ее сопротивление растет, следовательно, увеличивается и температура. Поэтому температура будет продолжать повышаться, а нить – истончаться в ускоряющемся темпе.

Сопротивление холодной нити лампочки составляет примерно одну десятую сопротивления при нормальной рабочей температуре. Это означает, что при включении сила тока очень велика по сравнению с нормальной рабочей. Если диаметр нити в горячей точке станет достаточно мал, мощный ток при включении может расплавить нить.

Когда между концами разорванной нити образуется зазор, электрический разряд вызывает искру или дугу в нем. Эта дуга может распространиться на провода, подводящие ток к нити накаливания. В этом случае дуга низкого сопротивления резко увеличивает силу тока в лампочке, и это, в свою очередь, вызывает срабатывание предохранителя или выключение тока в цепи. Дугу можно увидеть как вспышку света внутри лампы.

Билл Мадилл

Университет Центральной Англии, Бирмингем, Великобритания

6. Наша планета, наша Вселенная

Полюсное время

«Какое время на Северном полюсе?»

Найджел Гудвин

Ноттингем, Великобритания


На этот вопрос можно дать два ответа. Первый: для каждого человека время будет определяться его суточным (циркадным) ритмом. Поначалу это физиологическое время будет соответствовать времени на той долготе, на которой человек жил до того, как попал на полюс.

За несколько недель, проведенных на полюсе, индивидуальный ритм установится, суточный период составит примерно 25 часов.

Разумеется, есть также местное время, неподвластное человеческому измерению, если вы, конечно, не философ, живущий где угодно, только не на полюсе.

Итак, второй ответ: время либо дневное (на протяжении шести летних месяцев), либо ночное (в шесть зимних месяцев).

На равноденствие я не бывал на полюсе, но могу представить себе несколько сумеречных недель, когда солнце находится на горизонте.

Уилл Хопкинс

Университет Отаго, Новая Зеландия


Суть вопроса в следующем: каким образом измерять время человеку, который родился и вырос на Северном полюсе и никогда не слышал ни о Гринвиче, ни о Токио, ни о других городах Земли?

Можно сделать это таким образом. Допустим, на Северном полюсе есть темный период года, когда солнце постоянно находится у линии горизонта. Прикрепите к шесту горизонтальную доску и нарисуйте на ней окружность, в которой начертите два диаметра перпендикулярно друг другу. Обозначьте точки пересечения окружности и диаметров А, Б, В и Г.

На Северном полюсе звезды вращаются в плоскости, параллельной горизонту. Плоскость горизонта на полюсах совпадает с плоскостью небесного экватора.

Затем выберите на горизонте какую-нибудь звезду и определите как нулевой час момент, когда эта звезда пересекает линию визирования через точку А, если смотреть от центра круга (шеста). Моменты пересечения звездой точек Б, В и Г соответствуют 6, 12 и 18 часам.

После этого легко провести на доске другие прямые линии согласно промежуточным часам.

Если бы мне потребовалось выполнить эту задачу в данный момент (на Северном полюсе), в качестве опорной точки я выбрал бы одну из трех звезд на поясе Ориона, потому что они находятся почти на небесном экваторе, являются самыми яркими из всех соседних звезд, а также из звезд на небесном экваторе и отчетливо видны невооруженным глазом.

Следующей проблемой на полюсе будет выбор средств отсчета времени летом, когда звезд не видно из-за полярного дня.

Нанеся зимой часовые линии, следует дождаться, когда солнце поднимется над горизонтом. В тот момент, когда оно появится и возвестит приближение полярной весны, мы отмечаем азимут солнца. Часовая линия, которой он соответствует, будет называться временем восхода по 24-часовой системе, разработанной зимой.

Подобно звездам зимой, солнце будет вращаться в плоскости, параллельной горизонту, но, в отличие от нашей опорной звезды, которая вращается всегда в одной и той же плоскости, плоскость вращения солнца будет день ото дня подниматься и наконец достигнет наивысшей точки, расположенной под углом 23,5° к горизонту.

После этого солнце будет опускаться все ниже, пока через шесть месяцев после первого появления не скроется за горизонтом.

Д. С. Паренсис

Технологический университет Лулео,

Швеция


Вопрос задан некорректно: время не зависит от местонахождения. Когда в Лондоне 18:00 по Гринвичу, на Северном полюсе, в Тимбукту и на обратной стороне Луны по Гринвичу тоже будет 18:00.

Можно было бы спросить, в каком временно́м поясе находится Северный полюс, но и такая постановка вопроса неверна. Временной пояс – политическое и административное, а не географическое понятие. Поскольку Северный полюс находится за пределами территориальных вод, для него временной пояс не определен.

Попытки определить время астрономическим путем также обречены на провал. Полдень – это время, когда солнце на юге, но на Северном полюсе оно всегда на юге. Полдень – время, когда солнце достигает самой высокой точки, но на Северном полюсе высота солнца над горизонтом всегда постоянна. Полдень – момент времени, разделяющий световой день на равные отрезки, но на Северном полюсе шесть месяцев светло, а потом еще шесть – темно.

Полдень – время, когда солнце достигает самой высокой точки, но на Северном полюсе высота солнца над горизонтом всегда постоянна. Полдень – момент времени, разделяющий световой день на равные отрезки, но на Северном полюсе шесть месяцев светло, а потом еще шесть – темно.

Майк Гай

Кембридж, Великобритания


С геофизической точки зрения время имеет отношение к положению солнца относительно земли, а также к положению наблюдателя. Поскольку любое направление на Северном полюсе будет южным, солнце всегда находится на юге, следовательно, время на Северном полюсе всегда одно и то же.

Какое это время? Международная демаркационная линия суточного времени проходит через Северный полюс, следовательно, сам полюс находится между текущим днем и следующим. Другими словами, на Северном полюсе всегда полночь.

Этим объясняется, как Дед Мороз ухитряется доставлять подарки всем девочкам и мальчикам мира за единственную ночь.

Он просто выходит из своего грота на юг (т. е. в любую сторону – ведь дело происходит на Северном полюсе), раздает столько подарков, сколько поместится в санях, а потом оказывается дома ровно в то же время, в какое вышел оттуда. Так что можно взять следующую партию подарков, раздать их, вернуться домой и т. д.

Патрик Уиттейкер

Хаунслоу, Миддлсекс, Великобритания


Северный полюс – истинная родина политиков, потому что здесь на вопрос: «Который час?» – каждый может со всей честностью ответить: «А какой вам нужен?»

Пол Бирчелл

Майклоувер, Дербишир, Великобритания


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | Следующая
  • 0 Оценок: 0

Правообладателям!

Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.


Популярные книги за неделю


Рекомендации