Электронная библиотека » Мик О'Хэйр » » онлайн чтение - страница 13


  • Текст добавлен: 24 декабря 2014, 16:18


Автор книги: Мик О'Хэйр


Жанр: Зарубежная образовательная литература, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 13 (всего у книги 16 страниц)

Шрифт:
- 100% +
Геометрический парадокс

«Почему иллюминаторы на кораблях круглые? Когда зародилась эта традиция?»

Кэмпбелл Манро

Обан, Стратклайд, Великобритания


Полагаю, автор вопроса видел на старинных картинах и гравюрах деревянные корабли с иллюминаторами (скорее всего, орудийными портами) квадратной или прямоугольной формы и задумался о том, почему на судах со стальным корпусом иллюминаторы круглые.

Когда корабли делали из дерева, их конструкционные элементы были волокнистыми и довольно гибкими (деревянные суда громко скрипели, так как дерево гнулось под напором волн). Однако дерево, особенно сырое, чрезвычайно устойчиво к напряжению усталости. Попробуйте сломать мокрый ивовый прутик, сгибая его в разные стороны, а затем повторите то же самое со стальным прутиком такой же толщины. Материалы на основе железа (в сущности, большинство металлов) подвержены кристаллическому разрушению в результате изменений в структуре частиц, вызванных постоянной сменой напряжений. Эффект проявляется по-разному, в зависимости от поперечного сечения, тепловой обработки, углеродного содержания и присутствующих в сплаве добавок.

Ближе к концу XIX века большинство торговых, а потом и военных судов начали строить с металлической обшивкой. Кораблестроители быстро обнаружили, что любые прямоугольные или квадратные отверстия в корабле, будь то на палубе (люки) или на боку (порты и иллюминаторы), являются источником усталости металла, которая прежде всего проявляется по углам. Корпус корабля буквально раздирает на части из-за циклов сгибания под действием волн; чем сильнее штормит море, тем выше напряжение. Незадачливые матросы обнаруживали, что в самые страшные штормы их корабль просто разваливался на части. Поэтому кораблестроители придумали круглые иллюминаторы и скруглили углы палубных люков. Острых углов, в которых концентрировалось напряжение, на корабле не осталось.

Дэвид Лорд

Олдершот, Гемпшир, Великобритания

В лепешку

«Мне с детства не дает покоя один парадокс. Представим, что муха летит навстречу движущемуся поезду. Происходит лобовое столкновение. Когда муха ударяется о переднюю часть поезда, направление ее движения меняется на 180°, поскольку она разбивается и продолжает двигаться вместе с поездом в виде бесформенной лепешки на стекле.

В тот момент, когда муха меняет направление движения, она должна быть неподвижной, и в этот же момент она ударяется о стекло поезда, следовательно, и поезд должен быть неподвижным. Таким образом, муха может остановить поезд. Где здесь нелогичность и какое отношение все это имеет к устройству британских железных дорог?»

Джефф Флит

Эванстон, Иллинойс, США


Вы правы. Муха действительно останавливает поезд, но не целиком, а только маленькую часть, с которой соприкасается, да и то ненадолго.

Какими бы жесткими ни казались предметы, в какой-то степени они податливы. Так и ветровое стекло поезда, о которое ударяется муха, слегка прогибается назад. Эта частица поезда не только останавливается на миг, но и совершает движение в обратном направлении.

Для этого требуется значительная сила (все-таки стекло обладает жесткостью), но следует помнить, что в подобных столкновениях обычно участвуют силы большой величины.

Сила, с которой муха действует на поезд, имеет такую же величину, как и сила, с которой поезд действует на муху, – она довольно велика. Воздействуя на муху с незначительной массой, эта сила создает огромное ускорение. В сущности, ускорение мухи так велико, что на кратком участке пути, за время прохождения которого прогибается ветровое стекло, оно равно ускорению поезда.

Придав мухе эту скорость, ветровое стекло пружинит и возвращается на прежнее место, принимая обычную форму. Поскольку обратное движение происходит очень быстро и деформированная часть буквально рывком возвращается в прежнее положение, возникает вибрация, с помощью которой стекло восстанавливает форму. Так появляется звук, который мы слышим, когда муха ударяется о ветровое стекло.

Эта простая картина дополнена и усложнена такими факторами, как деформация тела мухи и влияние инерции на стекло, но она, тем не менее, демонстрирует основные действующие принципы.

Эрик Дэвис

Перт, Западная Австралия


Автор вопроса прав, полагая, что в определенный момент муха неподвижна. Но в этот момент она не ударяется о переднюю часть поезда.

При соприкосновении ветрового стекла поезда с мухой (пренебрежем тем фактом, что поезд гонит перед собой стену воздуха) мухе придается ускорение, направленное вперед, к поезду. За очень краткий, но конечный период времени, который требуется поезду, чтобы преодолеть расстояние, равное длине тела мухи, муха сплющивается и приобретает ускорение. Таким образом, в момент, когда муха становится неподвижной, ее передняя часть процентов на десять успевает стать шлепком на окне поезда. При этом скорость поезда остается постоянной. К тому времени, как о стекло полностью разобьется остаток мухи, что при скорости 200 километров в час произойдет на 2 × 10-4 секунды позже, муха наберет ускорение в соответствии со скоростью поезда и будет продолжать двигаться вместе с ним в совершенно расплющенном виде.

А если подойти к вопросу более педантично, то по законам сохранения количества движения поезд слегка замедлит ход, но затем быстро восстановит первоначальную скорость. Ускорение, которое ощутит муха, если ее разгоняют до скорости 200 километров в час на дистанции в 1 сантиметр, составит 3 × 105 м/с2, или около 30 000 джоулей. На муху весом 1 грамм и на окно действует сила около 300 ньютонов.

Джулиан Бин

Ричмонд, Суррей, Великобритания


Когда поезд сталкивается с мухой, передние несколько нанометров ветрового стекла в месте соприкосновения на миг останавливаются, а следующие несколько нанометров подвергаются упругой деформации; остальная часть поезда продолжает двигаться полным ходом.

После столкновения сжатый материал ветрового стекла восстановит форму, его передний край наберет ускорение и снова достигнет прежней скорости. Следов столкновения на нем практически не останется (если не считать следов неупругой деформации мухи).

Все вышеописанное – пример чрезмерного упрощения, поскольку на практике перед поездом будет двигаться волна упругого напряжения, передняя поверхность поезда – вибрировать, пока не прекратится движение, но эти частности не играют роли в нашем случае столкновения мухи и поезда. Если массы примерно одинаковы, как при столкновении автомобилей, дополнительные перемещения внутри каждой могут иметь большое значение, например, если от них зависит характер травм, полученных пассажирами.

М. Г. Лэнгдон

Фархем, Суррей, Великобритания


Давая объяснения столкновению мухи с поездом, читатели приняли во внимание многочисленные аспекты – от длины мухи до пластичности ветрового стекла (а если муха ударится о котел?).

Но все авторы ответов упустили из виду подоплеку вопроса – скорее философскую, нежели физическую. Потому что словом «муха» заменено выражение «один атом мухи». Это еще один вариант парадокса Зенона Элейского. Примерно в 450 году до н. э. он сказал, что движущийся объект постоянно находится в движении, однако в любой конкретный момент времени имеет определенные координаты (т. е. является неподвижным). Человек не в состоянии увидеть, измерить или вообразить бесконечно малое время – точно так же мы не можем представить себе бесконечность. И никогда не сможем.

Р. К. Хендра

Лондон, Великобритания

Дыра в куполе

«Недавно я на благотворительной акции прыгала с парашютом. Помимо страха высоты меня тревожила большая дыра в куполе парашюта. Зачем она нужна? Помогает ли она снизить торможение парашюта?»

Сьюзи Клейн

Лондон, Великобритания


До появления полюсного отверстия (той самой пугающей дыры в куполе) воздух из парашюта можно было выпустить только из-под одного края, а для этого наклонить парашют, причем беспомощный парашютист кренился набок.

При обратном движении парашюта воздух выходил из-под противоположного края, возникало равномерное движение, напоминающее колебания маятника (убедитесь в этом сами, посмотрев кадры с парашютистами времен Второй мировой войны).

Понятно, что такой спуск на землю чрезвычайно опасен, особенно в ветреный день. Полюсное отверстие, через которое воздух медленно уходит из купола, препятствует колебаниям и обеспечивает бо́льшую безопасность посадки.

Еще одно достоинство полюсного отверстия в том, что оно замедляет раскрытие парашюта. Без этого отверстия воздух резко врывается в купол и может повредить его или вызвать слезы у парашютиста (мужчинам это не к лицу).

Пол Дир

Кембридж, Великобритания

Взгляд вниз

«Почему в самолетах такие маленькие окошки и почему они размещены так низко на фюзеляже, что многим людям приходится наклоняться, чтобы увидеть другие самолеты на аэродроме?»

Тимоти Кулумпас

Нью-Йорк, США


Как и многие другие конструкционные особенности самолетов, размещение различных деталей – своего рода компромисс. Конструкторам самолетов жилось бы гораздо легче, если бы в самолетах вообще не предусматривались иллюминаторы, но мы по-прежнему считаем, что они должны быть.

Британские конструкторы утратили положение лидеров в сфере производства реактивных авиалайнеров после ряда аварий самолетов de Havilland Comet в середине ХХ века отчасти из-за усталости металла вокруг иллюминаторов, которая привела к разрушению конструкций.

Иллюминаторы по-прежнему остаются обязательным элементом самолетов, но их стараются делать как можно меньше. В наши дни диаметр иллюминаторов всего 33 сантиметра. В них три рамы: две герметично закупоренные и третья внутренняя, чтобы пассажиры не добрались до двух первых и не повредили их. Рамы объединены в один оконный пакет, который прочно встроен в стенку фюзеляжа.

Разумеется, иллюминатор гораздо тяжелее и обходится дороже, чем тонкий лист алюминия, который заменяет, поэтому фюзеляж приходится укреплять, чтобы он выдержал рамы. Увеличение веса означает, что самолет может принять на борт меньше пассажиров и багажа, и это снижает потенциальные доходы авиакомпаний.

Эксплуатация иллюминаторов тоже представляет проблему – они не только царапаются и бьются, через них происходит также утечка воздуха из салона, они подвержены конденсации и обледенению.

Расположение иллюминаторов зависит от модели самолета, но обычно конструкторы стараются размещать их центр чуть ниже уровня глаз сидящих пассажиров. С земли иллюминаторы кажутся низковатыми, но в полете дают возможность смотреть на землю. Если поднять иллюминаторы повыше, это почти ничего не даст. Поскольку сиденья расположены в самой широкой части круглого или овального фюзеляжа, иллюминаторы будут обращены вверх под углом 10–15°. При этом в полете пассажир будет видеть только небо. Кроме того, если верх иллюминатора окажется на уровне глаз, солнце будет слепить их. Пассажирам придется опускать жалюзи, а это значит, что можно было бы обойтись вообще без иллюминаторов.

Полезно было бы делать иллюминаторы более толстыми, но, как я уже говорил, это непрактично из-за увеличения веса.

Кроме того, не забывайте, что каждый гражданский самолет, летающий сегодня, был разработан по крайней мере десять лет назад, а некоторые приступили к службе 40 лет назад. За это время изменились и люди, и дизайн сидений. Когда разрабатывались эти модели самолетов, существовали четкие принципы конструирования, в том числе и касающиеся положения иллюминаторов; линия размещения иллюминаторов традиционно использовалась как удобное место сборки частей фюзеляжа. Это положение закрепилось, под него настроены сборочные линии, переделка которых обойдется непомерно дорого.

Тем временем средние размеры людей продолжают увеличиваться. Дизайнерам приходится пользоваться так называемыми «критериями Дрейфуса», чтобы определить размеры сидений. Эти критерии постоянно меняются, в США дизайнеры обычно делают кресла для самолетов подходящими для 95 % американцев мужского пола. Если у вас слишком высокий рост, вам покажется, что иллюминатор расположен слишком низко, – обычно так кажется рослым людям.

И наконец, в настоящее время в самолетостроении действует тенденция отхода от просторного и неэкономного размещения в сторону плотной расстановки кресел. В таких обстоятельствах, когда высота кресла играет важную роль в размещении максимального количества пассажиров, основание кресла делают выше, чтобы хватило места для ног пассажира, сидящего сзади. Следовательно, иллюминатор окажется еще ниже, чем было задумано.

Теренс Холлингворт

Бланьяк, Франция


Иллюминаторы в самолетах делают маленькими по соображениям безопасности. Первый крупный реактивный авиалайнер, de Havilland Comet, имел большие прямоугольные иллюминаторы, из которых открывалась панорама земли. Но после нескольких лет службы такие самолеты начали один за другим терпеть аварии.

Чтобы выяснить их причины, компания de Havilland поместила новый Comet в резервуар с водой и несколько раз загерметизировала его и снова разгерметизировала, чтобы создать условия, как в полете. После циклов герметизации, соответствующих по количеству циклам за двухлетнюю службу (в резервуаре ее повторили за несколько недель), в углу одного из иллюминатора обнаружились повреждения, которые в полете привели бы к катастрофе.

Конструкцию иллюминаторов изменили, на фюзеляже разместили небольшие иллюминаторы. Так проблема была решена, положение иллюминаторов остается неизменным по сей день.

Майк Бернс

Колледж Веллингтон,

Кроуторн, Беркшир, Великобритания

На виражах

«Почему, когда ведешь машину, руль сам возвращается в исходное положение, если после поворота убрать с него руки? На машине Lego Technics моего друга так не бывает».

Клэр Садбери

Манчестер, Великобритания


Стремление руля вернуться в исходное положение вызвано стабилизирующим действием передних колес. Этот эффект наглядно виден на магазинной тележке, где вертикальная поворотная ось каждого колеса находится впереди точки соприкосновения колеса с опорой. Если начать толкать вперед тележку, колеса которой не направлены в сторону ее движения, они сами выровняются под действием силы торможения между опорой и колесом.

Если объяснять подробнее, то при движении тележки вперед сила торможения, приложенная опорой к колесу, всегда будет направлена в сторону, противоположную направлению движения колеса по опоре.

Если колеса не выровнены в направлении движения тележки, сила сопротивления не действует на поворотные оси, следовательно, создается вращающий момент вокруг этой оси, который всегда стремится изменить положение колеса.

В машинах тот же эффект достигается с помощью наклона рулевого колеса, а также тем, что точка пересечения оси с землей находится перед точкой соприкосновения шины с землей. То же самое справедливо для велосипеда, в чем вы убедитесь, если приложите палку вдоль поворотной оси переднего колеса так, чтобы край палки касался земли, вы обнаружите, что эта точка находится перед точкой соприкосновения шины с землей.

Можно продемонстрировать стабилизирующее воздействие на велосипед, катая его вперед-назад за седло и не придерживая руль. При движении вперед велосипед довольно легко вести по сравнительно прямой линии.

Но вести велосипед за седло назад почти невозможно: переднее колесо будет пытаться развернуться на 180°, как колесо магазинной тележки. При переходе на задний ход в машине вы тоже заметите, что руль перестает возвращаться в исходное положение.

Билл Лафтон

Саутгемптон, Гемпшир, Великобритания

Вверх тормашками

«Весь наш класс, в том числе и учитель математики, в тупике. Мы не можем понять, как самолету удается летать вверх шасси и не падать на землю. Если мы правильно понимаем, крылья сконструированы таким образом, чтобы поддерживать самолет в воздухе при горизонтальном движении. Но когда самолет летит колесами вверх, как часто делают маленькие самолеты, ясно, что подъемная сила должна действовать в обратном направлении и прижимать самолет к земле. Но маленьким самолетам удается летать в перевернутом состоянии довольно долго. Как такое возможно?»

Ник Юсокк

Лондон, Великобритания


Аэродинамический профиль крыла самолета имеет некоторое отношение к подъему в воздух при нормальном полете, но более важным фактором является угол атаки – угол, под которым воздух ударяет в крыло.

Крылья самолета обычно наклонены под углом около 4° в горизонтальной плоскости по сравнению с корпусом самолета. Это хордовый угол крыла.

Так что даже когда фюзеляж выровнен, угол атаки крыла составляет 4°. Возникает подъемная сила, такая же, как действующая на ладонь, если держать ее под углом около 45° к горизонтали в потоке воздуха, движущемся с большой скоростью. Рука не имеет аэродинамического профиля, но вы будете ощущать действие подъемной силы, вызванной углом атаки ладони к приближающемуся ветру.

Этот принцип позволяет самолетам летать в перевернутом виде. Нос самолета при этом задирается сильнее, чем при обычном полете, из-за необходимости компенсировать хордовый угол крыльев. Но если угол атаки положительный по сравнению с касательным воздушным потоком над крылом, тогда направленная сила все равно возникает. Это подъемная сила, которая преодолевает силу, созданную формой крыла, и удерживает самолет в воздухе.

Переворачивая самолет в воздухе, пилоты должны опасаться в первую очередь остановки двигателя, поскольку и топливная, и масляная системы большинства обычных легких самолетов действуют под влиянием гравитации. При перевороте самолета поступление топлива может прекратиться, поскольку клапан, подающий топливо двигателю, вдруг оказывается над баком.

Марк Мобли

Бристоль, Великобритания

Ртуть под запретом

«Недавно в полете я изучал список предметов, которые запрещено проносить на борт самолета. Я с изумлением увидел в этом списке ртутный термометр. С какой стати?»

Рик Эрахо

Клекхитон, Западный Йоркшир, Великобритания


Самолеты делают в основном из алюминия, и, как это ни странно, ртуть даже в небольших количествах способна нанести алюминию серьезный вред. Несмотря на внешнюю инертность, алюминий – химически активный металл, который бурно соединяется с кислородом, содержащимся в воздухе. Но при этой реакции быстро образуется тонкая и прочная оксидная пленка, которая препятствует продолжению реакции. В процессе анодирования пленку делают толще для лучшей защиты алюминия.

Ртуть может разрушать эту защитную оксидную пленку, результаты процесса бывают на редкость масштабными. Ртуть способна растворять алюминий, образуя амальгаму, взрывающую оксидный слой снизу, – вероятно, поначалу под пленку он проникает сквозь трещины в ней.

Много лет назад один техник, работавший у меня, пролил несколько капель ртути на свой деревянный верстак, скрепленный прочными алюминиевыми уголками. К следующему утру на алюминии появились огромные дыры, дерево возле них было сильно обуглено, а на уголках, будто причудливые кораллы, образовались большие наросты хрупкого оксида алюминия.

Все это понадобилось для проведения химического эксперимента, но теперь такие эксперименты не приветствуются из-за токсичности алюминия.

Однажды я видел, как пассажиру запретили вносить в самолет барометр, который тоже значился в списке запрещенных предметов, хотя этот конкретный барометр был без ртути. Мне с трудом удалось убедить служащих аэропорта, что он безвреден. Они не понимали, что опасность представляет ртуть, а не барометры сами по себе. Интересно, что, по их мнению, измеряет альтиметр…

Харви Ратт

Кафедра электроники и компьютерной техники,

Университет Саутгемптона, Великобритания


Ртуть подвижна, из-за этого внутри конструкции может образоваться коррозионная амальгама. Самолет, в котором разлили ртуть, придется держать в карантине до появления этой амальгамы. В конечном итоге самолет придется подвергать тщательной обработке, потому что во всех инженерных справочниках говорится, что амальгама расползается, как древесная гниль.

Род Пэрис

Air Medical Limited,

Оксфордский аэропорт,

Кидлингтон, Оксфордшир, Великобритания


Наряду со многими другими химическими веществами ртуть входит в список опасных веществ, составленный Международной организацией гражданской авиации (ИКАО) при ООН. Это вещество и предметы, содержащие его, запрещено вносить в самолет в багаже или в ручной клади. Исключение – маленькие термометры в защитных футлярах, предназначенные для личного пользования.

При необходимости перевозок содержащих ртуть предметов они должны рассматриваться как авиационный груз. В правилах ИКАО подробно рассказывается о том, как следует перевозить ртуть.

Не стоит пренебрегать этими запретами. В Великобритании пронос в самолет опасных веществ, способных нанести ущерб самолету, чреват судебным разбирательством и внушительным штрафом в размере, установленном Актом гражданской авиации от 1982 года. В случае, если ртуть разольется, самолет будет выведен из строя. Авиакомпания и производители самолета могут потребовать возмещения убытков.

Джеймс Хукем

Грузовая транспортная ассоциация,

Танбридж-Уэллс, Кент, Великобритания


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | Следующая
  • 0 Оценок: 0

Правообладателям!

Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.


Популярные книги за неделю


Рекомендации