Электронная библиотека » Николай Волков » » онлайн чтение - страница 3


  • Текст добавлен: 16 февраля 2017, 12:00


Автор книги: Николай Волков


Жанр: Педагогика, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 3 (всего у книги 7 страниц)

Шрифт:
- 100% +
3. Нутриенты, используемые для поддержания биохимического гомеостаза организма

В контроле за воздействием применяемых эргогенных нутриентов важное значение имеет оценка их непосредственного воздействия на поддержание биохимического равновесия в организме (биохимического гомеостаза). Для спортсменов в поддержании биохимического гомеостаза наиболее важным является регулировка лактатного метаболизма и показателей кислотнощелочного и гормонального равновесия в организме.

Накопление молочной кислоты во время нагрузки ведет к заметному «закислению» организма, снижая значение pH. Это является одним из основных факторов снижения работоспособности и развития утомления при работе. Ряд нутриентов спортивного питания может снизить скорость накопления молочной кислоты и защитить работающие мышцы от ее повреждающего действия.

К числу нутриентов, оказывающих наиболее выраженное влияние на показатели лактатного метаболизма и кислотно-щелочного равновесия, следует отнести:

– цитрат натрия, янтарную, лимонную и глутаминовую кислоты, цитруллина малат;

– бикарбонатные и фосфатные буферы;

– микроэлементы: железо, фосфор, магний, цинк, кобальт и т. п;

– сывороточные белки (альбумин и глобулин) и гидролизаты белков;

– отдельные аминокислоты и аминокислотные смеси: ВСАА, гистидин, аланин, аргинин, креатин, карнозин и др.;

– антиоксиданты.

К нутриентам, оказывающим влияние на поддержание гормонального равновесия в организме, относятся белковые и аминокислотные препараты, витамины, адаптогены растительного и животного происхождения (экдистен, форсколин, пантокрин, продукты пчеловодства и др.).

На практике особенно важно применение комплексных препаратов, воздействующих на все способы поддержания биохимического гомеостаза в организме.

Способ применения зависит от поставленных задач: для поддержания гомеостаза во время нагрузки препараты применяются перед и во время нагрузки; для ускорения восстановления – после нагрузки.

4. Нутриенты, направленные на ускорение процессов восстановления после физических нагрузок

Биохимические изменения в организме человека, вызванные выполнением избранного упражнения, не ограничиваются только временем работы, а распространяются также на значительный период времени отдыха после завершения работы. Такое биохимическое последействие упражнения обычно обозначается термином «восстановление». В этот период осуществляется переход метаболизма от катаболических процессов, происходящих в работающих мышцах во время упражнения, к процессам анаболической направленности, способствующим восстановлению разрушенных при работе клеточных структур, восполнению растраченных энергетических ресурсов и возобновлению нарушенного эндокринного и водно-электролитного равновесия организма.

В ходе процессов восстановления после мышечной работы выделяются три фазы – срочное, отставленное и замедленное восстановление. Фаза срочного восстановления охватывает первые 30 мин после окончания упражнения и связана с восполнением внутримышечных ресурсов АТФ и креатинфосфата, а также с оплатой алактатного компонента кислородного долга. В фазе отставленного восстановления, продолжающейся от 0,5 до 6-12 ч после окончания упражнения, происходит восполнение растраченных углеводных и жировых резервов, возвращение к исходному состоянию водно-электролитного равновесия организма. В фазе замедленного восстановления, которая может продолжаться до 2–3 суток, усиливаются процессы протеиносинтеза и происходят формирование и закрепление в организме адаптационных сдвигов, вызванных выполнением упражнения. Каждая фаза восстановления имеет свои особенности в динамике происходящих метаболических процессов.

В период отдыха после работы биохимические изменения, произошедшие в мышцах и других органах во время выполнения упражнения, постепенно приходят в норму. Наиболее выраженные изменения обнаруживаются в сфере энергетического обмена. В процессе работы в мышцах и других тканях снижается содержание энергетических субстратов (КрФ, гликогена, а при длительной работе – и липидов) и повышается содержание продуктов внутриклеточного метаболизма (АДФ, АМФ, Н3РО4, молочной кислоты, кетоновых тел и т. п.). Накопление продуктов «рабочего» метаболизма и усиление гормональной активности стимулируют окислительные процессы в тканях в период отдыха после работы, что способствует восстановлению внутримышечных запасов энергетических веществ, приводит в норму водно-электролитный баланс организма и обеспечивает индуктивный синтез белков в органах, подвергнутых воздействию нагрузки.


Таблица 3

Время, необходимое для завершения восстановления биохимических процессов в период отдыха после напряженной мышечной работы


Как следует из табл. 3, процессы восстановления в период отдыха после мышечной работы протекают с различной скоростью и завершаются в разное время (явление гетерохронизма). Быстрее всего восстанавливаются резервы О2 и КрФ в работающих мышцах, затем – внутримышечные запасы гликогена и гликогена печени и в последнюю очередь – резервы жиров и разрушенные при работе белковые структуры.

Интенсивность протекания восстановительных процессов и сроки восполнения энергетических запасов организма зависят от интенсивности их расходования во время выполнения упражнения (правило Энгельгардта). Интенсификация процессов восстановления приводит к тому, что в определенный момент отдыха после работы запасы энергетических веществ превышают их дорабочий уровень. Это явление получило название суперкомпенсация, или сверхвосстановление. После фазы значительного превышения исходного уровня содержание энергетических веществ постепенно возвращается к норме. Чем больше расход энергии при работе, тем быстрее происходит ресинтез энергетических веществ и тем значительнее превышение исходного уровня в фазе суперкомпенсации. Следует, однако, отметить, что это правило применимо лишь в ограниченных пределах. При чрезмерно напряженной работе, связанной с очень большим расходом энергии и значительным накоплением продуктов распада, скорость восстановительных процессов может снизиться, а фаза суперкомпенсации будет достигнута в более поздние сроки и выражена в меньшей степени.

Длительность фазы суперкомпенсации во времени зависит от общей продолжительности выполнения работы и глубины вызываемых ею биохимических сдвигов в организме. После мощной кратковременной работы эта фаза наступает быстро и столь же быстро завершается. Например, при восстановлении внутримышечных запасов КрФ она обнаруживается уже на 5-6-й мин отдыха и завершается через 1,5–2 ч после завершения упражнения. Восстановление АТФ происходит еще быстрее, поскольку осуществляется при одновременном усилении процессов распада КрФ, анаэробного гликолиза и аэробного метаболизма. При выполнении длительных интенсивных упражнений, когда имеет место выраженный ацидоз из-за усиления гликолиза, суперкомпенсация в содержании КрФ в работающих мышцах наступает только через 12 мин после окончания упражнения и продолжается в течение нескольких часов. Причины явления суперкомпенсации связаны с повышением концентрации гормонов анаболического действия в период отдыха после работы с индукцией синтеза белков-ферментов, контролирующих процессы восстановления энергетических ресурсов в скелетных мышцах.

Общие закономерности динамики биохимических процессов в период отдыха после мышечной работы наиболее полно проявляют свое действие в ходе восстановления внутримышечных запасов фосфагенов (АТФ+КрФ) и гликогена.

Как уже отмечалось, между интенсивностью выполняемого упражнения и скоростью исчерпания внутримышечных запасов фосфагенов существует линейная зависимость. Такая же зависимость связывает показатели интенсивности выполняемого упражнения со скоростью восполнения запасов фосфагенов после работы. Максимальные значения скорости восстановления внутримышечных запасов фосфагенов зафиксированы сразу после окончания упражнения и составляют порядка 20–25 ммоль – л-1· мин-1. В момент окончания работы запасы КрФ в мышцах могут быть снижены на 70–90 % от исходного уровня. Темпы их возвращения к дорабочему уровню зависят от скорости аэробного ресинтеза АТФ. В обычных условиях при таких кинетических характеристиках полное восстановление запасов КрФ достигается на 5–8 мин с момента окончания упражнения.

Скорость восстановления запасов фосфагенов в мышцах обнаруживает тесную связь со скоростью оплаты быстрой фракции кислородного долга. Это означает, что чем большее количество имеющихся запасов КрФ будет использовано при работе, тем больше кислорода необходимо доставить в работающие мышцы в период отдыха после работы, чтобы обеспечить восстановление запасов креатинфосфата. Большая часть АТФ, необходимой для обеспечения процесса восстановления КрФ в работающих мышцах, образуется за счет аэробного окислительного распада углеводов в цикле Кребса и в дыхательной цепи митохондрий. Некоторое ее количество может быть получено от анаэробного гликолиза, еще протекающего параллельно с окислительными превращениями в работающих мышцах в первые минуты восстановления.

Размеры быстрой фракции кислородного долга (алактатный кислородный долг) обнаруживают линейную зависимость от количества макроэргов (АТФ+КрФ), использованных во время работы. У высококвалифицированных спринтеров размеры алактатной фракции О2-долга могут достигать порядка 6 л.

В отличие от процесса восполнения запасов фосфагенов в период отдыха после работы реставрация внутримышечных резервов гликогена, использованных во время упражнения, происходит в течение многих часов и даже дней. На процессы восстановления внутримышечных запасов углеводов заметное влияние оказывают тип выполняемого упражнения, его интенсивность и продолжительность, а также характер и объем углеводного питания в период отдыха после работы. Достижение выраженной суперкомпенсации по содержанию гликогена в мышцах требует не менее 2–3 сут. Ограничения в приеме углеводов в период отдыха после работы или введение режима полного голодания в этот период отрицательно сказываются на темпах и абсолютных размерах восполнения углеводных ресурсов. Для ресинтеза гликогена в мышцах после работы могут использоваться как внутренние субстраты, в частности молочная кислота и глюкоза, образовавшаяся из веществ неуглеводной природы, так и дополнительные количества углеводов, которые вводятся с пищей.

Исходя из того факта, что между размерами внутримышечных резервов гликогена и временем работы до появления первых признаков утомления существует линейная зависимость, разработаны и широко используются в спортивной практике специальные приемы для повышения углеводных резервов организма.

Восстановление запасов гликогена в период отдыха после работы обнаруживает определенную зависимость от избранного режима выполнения упражнений. Выполнение общего объема запланированной работы в форме кратковременных периодов интенсивных упражнений, разделенных на столь же кратковременные периоды отдыха (интервальная или повторная работа), сопровождается более быстрым восстановлением запасов гликогена в работающих мышцах. Основная причина такого потенцирующего влияния интервальной работы на ускорение процесса восстановления растраченных запасов гликогена связана с большей степенью вовлечения в работу быстрых волокон гликолитического типа, в которых восстановление запасов гликогена в паузах отдыха происходит с более высокой скоростью, чем в медленно сокращающихся мышечных волокнах окислительного типа. Подобное явление зафиксировано также и в случае повторных длительных нагрузок, выполняемых в фазе «отставленного» восстановления.

Молочная кислота, образующаяся в работающих мышцах в результате усиления анаэробного гликолиза, подвергается окислительному устранению в первые минуты отдыха после окончания упражнения. В начальный период восстановления концентрация молочной кислоты в работающих мышцах превышает ее концентрацию в крови, затем происходит быстрый отток накопившейся в мышцах за время работы молочной кислоты в кровь. Обычно к 7-10-й мин восстановительного периода концентрация молочной кислоты в мышцах и крови достигает равновесия, а на более поздних этапах восстановления (от 20 мин и далее) ее концентрация в крови превышает содержание лактата в мышцах. В этот период мышцы становятся основным местом окислительного устранения избытка накопившейся молочной кислоты в организме.

Часть молочной кислоты (свыше 60 %), образовавшейся за время работы, подвергается полному окислению до СО2 и воды. За счет выделившейся энергии аэробного окисления часть молочной кислоты (до 20 % общего количества, образовавшегося за время работы) превращается в гликоген в ходе процесса глюконеогенеза, а другая часть используется для новообразования аминокислот и в последующем может быть обнаружена в составе вновь синтезируемых тканевых белков. И только незначительная ее часть экскретируется с мочой и потом.

Максимум накопления молочной кислоты в крови, так же, как и скорость ее устранения в период отдыха после работы, обнаруживают прогрессирующее увеличение с ростом мощности выполняемого упражнения. Устранение молочной кислоты после работы заметно ускоряется, если вовремя будут выполняться упражнения умеренной интенсивности. Наибольшая скорость устранения молочной кислоты, накопившейся за время работы, достигается в случае, когда интенсивность «восстановительного упражнения» составляет 35–40 % величины индивидуального VO2max.

Выполнение интенсивных упражнений в течение длительного времени приводит к усилению распада белков в работающих мышцах, в результате чего в мышцах и крови увеличивается концентрация конечного продукта белкового распада – аммиака. Максимальная концентрация аммиака в крови после напряженной мышечной работы обычно достигается на 5-6-й мин восстановительного периода и быстро уменьшается с увеличением времени отдыха.

После интенсивной мышечной деятельности в крови увеличивается концентрация ионов водорода. Динамика этих изменений зеркально отражает картину изменений концентрации молочной кислоты. Наибольшие концентрации Н+ наблюдаются в течение первых 2-3-х мин отдыха после окончания работы и возвращаются к нормальным значениям в течение 20 мин восстановления. Близкая картина наблюдается в изменениях концентрации неорганического фосфата в крови. Динамика неорганического фосфата в период отдыха после интенсивного упражнения тесно связана со скоростью ресинтеза КрФ в работающих мышцах. Если выполнение работы сопровождалось значительным потоотделением, то в восстановительном периоде восполняются тканевые запасы воды и минеральных солей, которые должны привноситься с продуктами питания.

Таким образом, как видно из вышеизложенного, процесс восстановления – это сложное явление, охватывающее множество функций, происходящих в организме после завершения физических нагрузок. Среди этих функций можно выделить:


1. Восстановление водного баланса

При выполнении интенсивных и длительных нагрузок спортсмен может потерять до 5–6 л жидкости, что приводит к обезвоживанию организма и, как следствие, к значительному снижению работоспособности. Использование напитков во время длительных физических нагрузок необходимо. Желательно применять каждые 15–20 мин по 100 мл напитков. Температура потребляемых напитков должна быть 8-12 °C, т. к. охлажденный напиток замедляет повышение температуры тела и учащение сердечного ритма, а также увеличивает скорость всасывания жидкости. Обезвоживание не только снижает спортивные результаты, но и увеличивает время, необходимое для восстановления организма. Добавление в напитки легкоусвояемых углеводов, минералов, витаминов, аминокислот способствует более быстрому восстановлению организма. Большое значение имеет концентрация углеводов в напитках – 6-10 %-ная концентрация способствует быстрому восстановлению водного баланса, т. к. углеводы ускоряют усвоение жидкости. Восстановление гидратации происходит в течение нескольких часов (до 6 ч) после нагрузки, т. к. скорость всасывания жидкости в ЖКТ не превышает 800 мл/ч.

2. Восстановление баланса минералов и витаминов

С каждым литром пота теряется до 4-х граммов натрия, поэтому при нагрузках, продолжающихся длительное время, могут возникнуть серьезные патологии, связанные с потерей натрия. Кроме того, происходит потеря других минералов и витаминов. Поэтому спортсменам необходимо применять комплексы, содержащие минералы: Na, K, Mg, Ca, железо, а также витамины С, Е и группы В. Наиболее эффективно применять комплексы, содержащие все необходимые минералы и витамины в нужном соотношении.

3. Восстановление энергетического баланса организма

Этот аспект восстановления особенно важен в видах спорта, требующих проявления выносливости. Вместе с процессами регидратации скорость синтеза гликогена в мышцах служит главным фактором быстрого восстановления. Поэтому сразу после тренировки и в первые 1,5–2 ч желательно употреблять углеводы с высоким гликемическим показателем. Жиры желательно употреблять через 3–6 ч после нагрузки. Спортсменам силовых видов спорта следует делать акцент на потребление белков и аминокислот. Кроме того, одновременный прием углеводов и белков позволяет не только ускорить процессы общего восстановления, но и способствует локальному восстановлению работающих мышц.

4. Восстановление целостности мышечной массы

Этот процесс происходит медленнее, чем предыдущие процессы восстановления. Для полноценного восстановления мышц необходимы два условия: наличие в мышечных волокнах «анаболизаторов» (веществ, повышающих синтез белка), а также «строительного» материала для мышц – аминокислот. Анаболизаторами, как мы уже говорили, служат аминокислоты и смеси аминокислот (аргинин, орнитин, лизин, глутамин, лейцин, изолейцин, валин, триптофан), пептиды и пептоны, продукты углеводного и жирового обменов, креатин, инозин, витамины (кальция пантотенат, карнитина хлорид, кислота никотиновая и др.), микроэлементы (пиколинат хрома, ванадий и др.), а также природные адаптогены (экдистен, форсколин, пантокрин, апилак) и пр.

Главным фактором анаболических реакций, развивающихся в период восстановления после нагрузок, является поступление в организм дополнительных белков и аминокислот. Особая роль в восстановлении мышц принадлежит ВСАА (незаменимым аминокислотам с разветвленной цепочкой – лейцину, изолейцину и валину), а также аргинину, глутамину и некоторым другим. В данном случае аминокислоты являются и «анаболизаторами», и «строительным» материалом для восстановления целостности мышц.

По данным последних исследований, большое значение в восстановлении мышц играют L-карнитин и креатин.

5. Восстановление иммунных функций

Интенсивные и продолжительные тренировки отрицательно влияют на иммунную систему спортсменов. Прием иммунокорректоров, углеводов, незаменимых аминокислот, витаминов, минералов, антиоксидантов, адаптогенов (эхинацеи, облепихи, мумиё, продуктов пчеловодства) и т. п. помогает сохранить иммунитет, а также помочь в его восстановлении.

6. Восстановление функций нервной системы

Этот вид восстановления протекает медленнее всего. Нервное восстановление обеспечивается целым комплексом мер, в котором спортивное питание играет вспомогательную роль. Применяемые ингредиенты: седативные средства (валериана, зверобой, кора белой ивы, пустырник), витамины, минералы, антиоксиданты, адаптогены и пр.

5. Нутриенты, обладающие антиоксидантным и антигипоксическим эффектами

Нутриенты, оказывающие антиоксидантный эффект

Принято выделять два типа антиоксидантов: поступающие извне вместе с пищей (витамины, минералы и т. п.), а также те, которые организм вырабатывает самостоятельно (глутатион).

Также антиоксиданты можно разделить на водорастворимые и жирорастворимые. Первые защищают от реакций окисления содержимое цитоплазмы и внутриклеточных органелл, крови, лимфы и других биологических жидкостей. Вторые антиоксиданты защищают клеточные мембраны, липопротеины крови и т. п. (табл. 4).


Таблица 4

Водо– и жирорастворимые антиоксиданты


Как мы уже упоминали, окислительная реакция, вызванная физическими нагрузками, имеет две фазы: первая атака свободных радикалов происходит во время и сразу после нагрузки, а вторая – через 24–72 ч. Это позволило научно обосновать необходимость приема антиоксидантов не только после нагрузки или на ночь, но и в течение всего дня.

Кроме вышеперечисленных антиоксидантов также применяют: цитохром С, цистеин, энзимы, селен, адаптогены (Винитрокс (Vinitrox), Асаи экстракт, Гинкго билоба, Куркумин и т. д.), мёд, цветочную пыльцу, мумиё.

Антиоксиданты лучше использовать в виде комбинаций, а не по отдельности. Например, жирорастворимый витамин Е защищает клеточные мембраны, а водорастворимый витамин С будет выполнять свои функции или непосредственно в клетке, или за ее границами.

Однако прием антиоксидантов не приводит к существенному улучшению спортивных достижений. Их прием благотворно влияет на состояние здоровья и ускорение восстановления спортсменов. По результатам исследований, антиоксиданты способствуют улучшению функций иммунной системы при тяжелых физических нагрузках.

Следует помнить, что адекватные дозы антиоксидантов защищают организм, а очень высокие могут оказывать противоположное действие.

Способ применения антиоксидантов: рекомендуется принимать 2–3 раза в день.


Нутриенты, оказывающие антигипоксический эффект

Антигипоксанты – это средства, повышающие устойчивость организма к кислородной недостаточности. Основная гипоксическая нагрузка возникает в тех мышцах, которые выполняют большую работу, что является причиной резкого утомления. Резко выраженная гипоксия может быть причиной нарушения энергетического обмена и более серьезных изменений в организме спортсменов. Антигипоксанты оказывают положительное влияние на течение энергетических процессов в клетке – они активируют аэробное окисление и гликолиз, улучшают утилизацию лактата и пирувата, способствуют восстановлению транспорта электронов в дыхательной цепи, стимулируют альтернативные пути метаболизма.

К антигипоксантам в спортивном питании относятся:

• ферменты дыхательной цепи переноса электронов (цитохром С, кофермент Q10);

• препараты, способствующие ускорению метаболизма янтарной кислоты (глутаминовая кислота, аспарагиновая кислота);

• субстраты для утилизации по альтернативным метаболическим путям (фруктозомонофосфат, фруктозодифосфат, АТФ);

витаминные препараты (тиамин, рибофлавин, никотиновая кислота, пиридоксин);

• полифенолы (олифен).

К ферментам дыхательной цепи переноса электронов относят цитохром С (цитомак) и кофермент Q10 (убихинон). Оба этих переносчика выполняют сходные функции в мембране митохондрии: кофермент Q10 функционирует в толще мембраны, а цитохром С – на ее поверхности. Кофермент Q10 является переносчиком ионов водорода в дыхательной цепи, а также угнетает процессы перекисного окисления липидов. Цитохром С осуществляет перенос электронов на одном из последних этапов дыхательной цепи, тем самым снижая гипоксию.

Наиболее эффективно применение препаратов, воздействующих на все комплексы дыхательной цепи. Одновременное использование кофермента Q10 с цитохромом С, рибофлавином и никотиновой кислотой заметно повышает устойчивость организма к гипоксии.

Антигипоксическое действие глутаминовой и аспарагиновой аминокислот заключается в том, что они превращаются в гамма-аминомасляную кислоту (ГАМК), которая превращается в янтарную кислоту. Янтарная кислота принимает Н+ от окисляемых субстратов в дыхательной цепи и увеличивает энергообеспеченность клеток.

Субстраты для утилизации по альтернативным метаболическим путям (фруктозомонофосфат, фруктозодифосфат, АТФ) утилизируются в цикле анаэробного гликолиза, повышая уровень окислительного фосфорилирования и образования АТФ и уменьшая расходование глюкозы. Кроме того, они уменьшают сродство кислорода к гемоглобину и улучшают коронарное кровообращение.

К витаминным препаратам, обладающим антигипоксическим действием, относятся препараты витаминов группы В (тиамин, рибофлавин, никотиновая кислота, пиридоксин). Эти препараты в качестве коферментов обеспечивают высокую активность ферментов, катализирующих реакции окислительного фосфорилирования, в том числе реакции образования и утилизации янтарной кислоты.

К полифенольным препаратам относится олифен (гипоксен). Благодаря полифенольной структуре он оказывает непосредственное влияние на дыхательную цепь митохондрий.

Способ применения антигипоксантов: применяются перед нагрузкой, а в случае нахождения в условиях высокогорья рекомендуется принимать 3 раза в день.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 | Следующая
  • 4.8 Оценок: 5

Правообладателям!

Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.


Популярные книги за неделю


Рекомендации