Электронная библиотека » Нина Чернова » » онлайн чтение - страница 24

Текст книги "Общая экология"


  • Текст добавлен: 22 ноября 2013, 19:37


Автор книги: Нина Чернова


Жанр: Биология, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 24 (всего у книги 30 страниц) [доступный отрывок для чтения: 10 страниц]

Шрифт:
- 100% +
8.6.5. Влияние ослабления или усиления пресса хищников на динамику популяций и структуру сообществ

Ярким примером того, к чему приводит снятие пресса потребителей на популяции жертв, являются масштабные «нашествия» чужеродных видов, попадающих в подходящие для размножения условия на других материках. На родине такие виды испытывают влияние активных регуляторов, занимают соответственные экологические ниши в биоценозах и, как правило, не считаются вредителями в хозяйственной практике человека. В новой среде, не имея специализированных врагов, эти виды за короткие сроки дают взрывы численности, нарушая структуру сложившихся сообществ. С экологических позиций впервые обзор и анализ таких событий был сделан английским зоологом Ч. Элтоном, одним из основоположников популяционной экологии. Вводя понятие «взрыв» применительно к непомерному увеличению численности какого-либо вида, Ч. Элтон объяснял, что он намеренно употребляет это слово, так как оно обозначает «внезапное освобождение сил, проявление которых сдерживалось ранее другими силами».

«Нашествия» иноземных видов, занос которых преднамеренно или случайно осуществляется человеком, широко распространены в современном мире и часто вызывают большие осложнения в хозяйственной деятельности. Относительно немногие примеры успешной борьбы с ними связаны, как правило, с интродукцией естественных врагов, т. е. воссозданием системы биоценотической регуляции. Если на «захваченной» видом территории постепенно складывается новый комплекс регуляторов, тогда его численность идет на убыль. Однако для некоторых вселенцев этот процесс происходит достаточно медленно. Таким примером является опасный вредитель картофеля колорадский жук Leptinotarsa septemlineata, распространение которого в Европе началось после заноса из Америки в 20-х годах прошлого века с западных берегов Франции. Постепенно распространяясь на восток, колорадский жук занял в настоящее время всю европейскую территорию, картофелеводческие районы Сибири, обнаружен на Дальнем Востоке и острове Сахалин (рис. 141). Жук и его личинки имеют ядовитую гемолимфу, спасающую их от насекомоядных птиц и других позвоночных. У колорадского жука на евроазиатской территории до сих пор не сформировался эффективный комплекс потребителей. Потери урожая картофеля от колорадского жука составляют в среднем до 40 %.



Рис. 141. Распространение колорадского жука по территории России (на 1990 г.)


Другим примером современного «нашествия» вида, изменившего всю структуру сообщества, является размножение в Черном море гребневика Mnemiopsis leigyi, занесенного с балластными водами судов от побережья Северной Америки (рис. 142). Этот гребневик обладает гигантским репродуктивным потенциалом, производя ежесуточно до 10 000 яиц. Личинки тоже могут продуцировать яйца, из которых развиваются взрослые гребневики. При наличии пищи общая масса мнемиопсиса может удваиваться за 2–3 суток. Гребневик питается ветвистоусыми и веслоногими рачками, другим мелким зоопланктоном, икрой и личинками рыб. Впервые мнемиопсис был отмечен в Черном море в 1987 г. Уже через три года его масса составила 3–4 кг, а местами до 12 кг под каждым квадратным метром воды. Одновременно резко упала численность медуз Aurelia aurita, господствовавших до этого в планктоне (рис. 143). Выедая кормовой планктон, икру и личинок рыб, гребневик вызвал резкое падение общего их улова. Например, вылов ставриды сократился, со 110–115 тыс. т всего до 3 тыс. т. В Азовском море запасы тюльки – корма для хищных рыб – сократились в 400 раз, а ее добыча упала с 50–70 тыс. т до 100 т. В последующие годы численность гребневика понизилась, но он по-прежнему выедал основную массу зоопланктона (рис. 144). С 1997 г. в Черном море стал встречаться другой гребневик – Веrое ovata, распространенный на севере Атлантики и в Баренцевом море. Для него мнемиопсис явился хорошей кормовой базой, и численность последнего упала на порядок величин. В некоторых местах акватории он вообще не встречался. Снова стала размножаться медуза аурелия. Однако обилие Beroe в Черном море неустойчиво, этот гребневик адаптирован к более высокой солености воды. Появление и размножение его происходит волнами, а в период спада снова размножается Mnemiopsis.


Рис. 142. Гребневик мнемиопсис – внешний вид (из И. Е. Виноградова и Э. А. Шукшиной, 1993)



Рис. 143. Колебания биомассы аурелии и мнемиопсиса в глубоководной части Черного моря (в пересчете на углерод, по И. Е. Виноградову и Э. А. Шукшиной, 1993)



Рис. 144. Колебание биомассы в открытых районах Черного моря некоторых групп планктонных организмов, которыми питается мнемиопсис (по И. Е. Виноградову и Э. А. Шукшиной, 1993): 1– саггиты; 2 – веслоногий рачок Calanus luxinus; 3 – мелкие рачки и личинки донных животных


Чрезмерное усиление пресса хищников на популяцию какого-либо вида в сообществе может отозваться через сеть трофических зависимостей на довольно далеких уровнях. Например, можно выстроить цепь причинных связей между усилением промысла минтая и других рыб в районе Берингова моря и исчезновением зарослей прибрежных водорослей – ламинарий. Усиленный рыбный промысел (при котором человек выступает в роли мощного хищника) стал одной из причин падения численности питающихся рыбой сивучей и нерпы – основной добычи крупных хищных дельфинов – косаток. С 1991 г. косатки стали охотиться в прибрежных водах на каланов, на которых не нападали раньше, добывая пищу в открытом океане. С начала 90-х годов на Алеутских островах исчезло 40 тыс. каланов, являющихся заповедным видом. Численность этих зверей за 7 лет сократилась почти в 10 раз. Каланы питаются в основном морскими ежами, обилие которых в результате возросло тоже на порядок величин. Морские ежи – главные враги бурых водорослей, заросли которых у побережья сократились за 10 лет в 12 раз.

8.6.6. Математическое моделирование в экологии

Надорганизменные системы, которые изучает экология – популяции, биоценозы, экосистемы, – чрезвычайно сложны. В них возникает множество взаимосвязей, сила и постоянство которых непрерывно меняются. Одни и те же внешние воздействия могут привести к различным, иногда прямо противоположным результатам, в зависимости от того, в каком состоянии находилась система в момент воздействия.

Предвидеть ответные реакции системы на действие конкретных факторов можно лишь через сложный анализ существующих в ней количественных взаимоотношений и закономерностей. В экологии поэтому широкое распространение получил метод математического моделирования как средство изучения и прогнозирования природных процессов.

Суть метода заключается в том, что с помощью математических символов строится абстрактное упрощенное подобие изучаемой системы. Затем, меняя значение отдельных параметров, исследуют, как поведет себя данная искусственная система, т. е. как изменится конечный результат.

Модели строят на основании сведений, накопленных в полевых наблюдениях и экспериментах. Чтобы построить математическую модель, которая была бы адекватной, т. е. правильно отражала реальные процессы, требуются существенные эмпирические знания. Отразить все бесконечное множество связей популяции или биоценоза в единой математической схеме нереально. Однако, руководствуясь пониманием, что в надорганизменных системах имеется внутренняя структура и, следовательно, действует принцип «не все связи существенны», можно выделить главные связи и получить более или менее верное приближение к действительности.

В построении математических моделей сложных процессов выделяются следующие этапы.

1. Прежде всего, те реальные явления, которые хотят смоделировать, должны быть тщательно изучены: выявлены главные компоненты и установлены законы, определяющие характер взаимодействия между ними. Если неясно, как связаны между собой реальные объекты, построение адекватной модели невозможно. На этом этапе должны быть сформулированы те вопросы, ответ на которые должна дать модель. Прежде чем строить математическую модель природного явления, надо иметь гипотезу о его течении.

2. Разрабатывается математическая теория, описывающая изучаемые процессы с необходимой детальностью. На ее основе строится модель в виде системы абстрактных взаимодействий. Установленные законы должны быть облечены в точную математическую форму. Конкретные модели могут быть представлены в аналитической форме (системой аналитических уравнений) или в виде логической схемы машинной программы. Модель природного явления есть строгое математическое выражение сформулированной гипотезы.

3. Проверка модели – расчет на основе модели и сличение результатов с действительностью. При этом проверяется правильность сформулированной гипотезы. При значительном расхождении сведений модель отвергают или совершенствуют. При согласованности результатов модели используют для прогноза, вводя в них различные исходные параметры.

Следует, однако, отметить, что сама по себе математическая модель не может служить абсолютным доказательством правильности той или иной гипотезы, так как может оказаться, что разные гипотезы приводят к сходным результатам, но она служит одним из путей анализа реальности.

Расчетные методы в случае правильно построенной модели помогают увидеть то, что трудно или невозможно проверить в эксперименте, позволяют воспроизводить такие процессы, наблюдение которых в природе потребовало бы много сил и больших промежутков времени. В математических моделях можно «проигрывать» разные варианты – вычленять разные связи, комбинировать отдельные факторы, упрощать или усложнять структуру систем, менять последовательность и силу воздействий – все это дает возможность лучше понять механизмы, действующие в природных условиях.

Моделируют различные по характеру процессы, происходящие в реальной среде, как, например, отдельные типы экологических взаимодействий хищник – жертва, паразит – хозяин, конкурентные отношения, мутуализм и др. Математическими моделями описываются и проверяются разные варианты динамики численности, популяций, продукционные процессы в экосистемах, условия стабилизации сообществ, ход восстановления систем при разных формах нарушений и многие другие явления. Сами методы математического моделирования биологических систем развиваются, совершенствуются и разнообразятся.

Например, одну из простейших математических моделей для системы паразит – хозяин в динамике численности насекомых разработал в 1925 г. статистик А. Лотка, который вывел следующие уравнения:



где N1– численность популяции хозяина; N2 – численность популяции паразита; r1– удельная скорость увеличения популяции хозяина; d2 – удельная скорость гибели популяции паразита; p1 и р2– константы. График процесса паразитической инвазии, построенный по таким уравнениям, обнаруживает, что в результате взаимодействия двух видов должны возникать осцилляции (колебания) с постоянной амплитудой, которая зависит от соотношения между скоростями увеличения численности двух видов.

В это же время математик В. Вольтерра выявил сходные закономерности для системы хищник – жертва, обрабатывая статистические данные рыбного промысла. Один из выведенных им законов – «закон периодического цикла» – гласит, что процесс уничтожения одного вида другим может привести к периодическим колебаниям численности популяций обоих видов, зависящих только от коэффициентов роста популяций хищника и жертвы и от исходной относительной численности.

В период, когда были сделаны эти расчеты, экологи вели поиск причин циклических колебаний численности, которые были обнаружены к тому времени у ряда видов. Делались попытки отыскать внешние факторы (космические, солнечные, атмосферные), ответственные за периодические изменения популяций. Модели А. Лотки и В. Вольтерра позволили выдвинуть идею, что периодический колебательный режим в популяциях может возникнуть в результате межвидовых отношений и без внешнего периодического воздействия. Эта идея оказалась плодотворной для дальнейшего развития теории динамики численности популяций. Однако сама модель являлась не адекватной, т. е. не описывала действительность, так как в природе практически не обнаруживаются подобные непрерывные осцилляции с постоянной амплитудой у пар видов, связанных по типу хищник – жертва или паразит – хозяин.

Уравнения А. Лотки и В. Вольтерра были чрезвычайно упрощенными, так как исходили из целого ряда нереальных допущений: что изменение численности популяции одного вида немедленно вызывает ответную реакцию популяции другого вида, что «аппетиты» хищника беспредельны, поиски жертв случайны, что плодовитость хищников пропорциональна численности всей популяции жертв.

Как показал Г. Ф. Гаузе (1934, 1935), даже в условиях упрощенного эксперимента с простейшими трудно добиться соблюдения этих допущений. В его опытах с инфузориями удалось получить лишь два цикла хищник – жертва, после чего система пришла к разрушению. В природе колебания численностей имеют более сложный характер. Во взаимодействиях хищника и жертвы широко распространен эффект «запаздывания» из-за разницы в скоростях размножения, играют роль такие показатели, как степень насыщения («функциональная реакция») хищников, время, затрачиваемое ими на поиск и поимку добычи, способность переключаться на другую пищу, защитные приспособления жертв, размещение их в пространстве и территориальное поведение, возрастная и половая структура популяций и многое другое. Кроме того, рост численности популяций может сдерживаться и другими причинами, в том числе внутривидовыми взаимоотношениями.

В 1933 г. А. Никольсон, несколько усложнив математическую модель Лотки и введя в систему дополнительных хозяев и паразитов, показал, что это ослабляет осцилляции. В 1936 г. А. Н. Колмогоров разработал новые подходы и описал также возможности устойчивого стационарного состояния системы взаимодействующих через трофические связи видов. Позднее для систем хищник – жертва, паразит – хозяин было предложено множество других моделей. С введением в модели дополнительных параметров сильно усложняется математический аппарат и техника расчетов. Многие из этих ограничений позволило снять использование электронно-вычислительных машин.

В экологии сначала преобладали математические модели, основанные на предположениях о существовании в природе четких причинно-следственных зависимостей между популяциями в сообществах (так называемый детерминистский подход). В настоящее время меняется сам подход к математическому моделированию в экологии. Разработаны так называемые имитационные модели, основное внимание в которых уделяется именно разнообразию внутренней структуры популяций и сообществ. Вместо отбрасывания «несущественных» связей математики пытаются определить роль внутреннего разнообразия в поддержании существования надорганизменных систем.

Математическое моделирование широко применяется при решении экологических проблем, связанных с антропогенными воздействиями на природную среду. В современных математических моделях выделяют тактические и стратегические модели. Тактические модели экосистем и популяций служат для экологического прогнозирования их состояния, в том числе при разного рода экзогенных воздействиях. Стратегические модели строят в основном с исследовательскими целями, для вскрытия общих законов функционирования биологических систем, таких, как стабильность, разнообразие, устойчивость к воздействиям, способность возвращаться в исходное состояние. В задачи стратегических моделей входит изучение с помощью ЭВМ последствий разных стратегий управления экосистемами, чтобы иметь возможность выбрать оптимальную.

Модели, которые описывают взаимодействие общества и природы и в которых учитывают не только экологические, но и экономические, демографические и социальные показатели, называют эколого-экономическими моделями. Такие модели разрабатывают для долгосрочного прогнозирования экономического роста и общей оценки влияния человеческой деятельности на природную среду.

Глава 9. ЭКОСИСТЕМЫ

9.1. Понятие об экосистемах. Учение о биогеоценозах

Сообщества организмов связаны с неорганической средой теснейшими материально-энергетическими связями. Растения могут существовать только за счет постоянного поступления в них углекислого газа, воды, кислорода, минеральных солей. Гетеротрофы живут за счет автотрофов, но нуждаются в поступлении таких неорганических соединений, как кислород и вода. В любом конкретном местообитании запасов неорганических соединений, необходимых для поддержания жизнедеятельности населяющих его организмов, хватило бы ненадолго, если бы эти запасы не возобновлялись. Возврат биогенных элементов в среду происходит как в течение жизни организмов (в результате дыхания, экскреции, дефекации), так и после их смерти, в результате разложения трупов и растительных остатков. Таким образом, сообщество образует с неорганической средой определенную систему, в которой поток атомов, вызываемый жизнедеятельностью организмов, имеет тенденцию замыкаться в круговорот.

Понятие об экосистемах. Любую совокупность организмов и неорганических компонентов, в которой может осуществляться круговорот веществ, называют экосистемой. Термин был предложен в 1935 г. английским экологом А. Тенсли, который подчеркивал, что при таком подходе неорганические и органические факторы выступают как равноправные компоненты и мы не можем отделить организмы от конкретной окружающей их среды. А. Тенсли рассматривал экосистемы как основные единицы природы на поверхности Земли, хотя они и не имеют определенного объема и могут охватывать пространство любой протяженности.

Для поддержания круговорота веществ в системе необходимо наличие запаса неорганических молекул в усвояемой форме и трех функционально различных экологических групп организмов: продуцентов, консументов и редуцентов.

Продуцентами выступают автотрофные организмы, способные строить свои тела за счет неорганических соединений. Консументы– это гетеротрофные организмы, потребляющие органическое вещество продуцентов или других консументов и трансформирующие его в новые формы. Редуценты живут за счет мертвого органического вещества, переводя его вновь в неорганические соединения. Классификация эта относительная, так как и консументы, и сами продуценты выступают частично в роли редуцентов, в течение жизни выделяя в окружающую среду минеральные продукты обмена веществ.

В принципе круговорот атомов может поддерживаться в системе и без промежуточного звена – консументов, за счет деятельности двух других групп. Однако такие экосистемы встречаются скорее как исключения, например на тех участках, где функционируют сообщества, сформированные только из микроорганизмов. Роль консументов выполняют в природе в основном животные, их деятельность по поддержанию и ускорению циклической миграции атомов в экосистемах сложна и многообразна.

Масштабы экосистемы в природе чрезвычайно различны. Неодинакова также степень замкнутости поддерживаемых в них круговоротов вещества, т. е. многократность вовлечения одних и тех же атомов в циклы. В качестве отдельных экосистем можно рассматривать, например, и подушку лишайников на стволе дерева, и разрушающийся пень с его населением, и небольшой временный водоем, луг, лес, степь, пустыню, весь океан и, наконец, всю поверхность Земли, занятую жизнью.

В подушке лишайников мы найдем все необходимые компоненты экосистемы. Продуценты – симбиотические водоросли, осуществляющие фотосинтез. В качестве консументов выступают некоторые мелкие членистоногие, питающиеся живыми тканями лишайника, а также грибные гифы, по существу паразитирующие на клетках водорослей. И гифы грибов, и большинство микроскопических животных, обитающих в лишайниковых подушках (клещи, коллемболы, нематоды, коловратки, простейшие), выступают и в роли редуцентов. Грибные гифы живут не только за счет живых, но и за счет погибших клеток водорослей, а мелкие животные-сапрофаги перерабатывают отмершие слоевища, в разрушении которых им помогают многочисленные микроорганизмы. Степень замкнутости круговорота в такой системе очень невелика: значительная часть продуктов распада выносится за пределы лишайника – вымывается дождевыми водами, осыпается вниз со ствола. Кроме того, часть животных мигрирует в другие местообитания. Тем не менее часть атомов успевает пройти несколько циклов, включаясь в тела живых организмов и освобождаясь из них, прежде чем покинет данную экосистему.

В некоторых типах экосистем вынос вещества за их пределы настолько велик, что их стабильность поддерживается в основном за счет притока такого же количества вещества извне, тогда как внутренний круговорот малоэффективен. Таковы проточные водоемы, реки, ручьи, участки на крутых склонах гор. Другие экосистемы имеют значительно более полный круговорот веществ и относительно автономны (леса, луга, степи на плакорных участках, озера и т. п.). Однако ни одна, даже самая крупная, экосистема Земли не имеет полностью замкнутого круговорота. Материки интенсивно обмениваются веществом с океанами, причем большую роль в этих процессах играет атмосфера, и вся наша планета часть материи получает из космического пространства, а часть отдает в космос.

В соответствии с иерархией сообществ жизнь на Земле проявляется и в иерархичности соответствующих экосистем. Эко-системная организация жизни является одним из необходимых условий ее существования. Запасы биогенных элементов, из которых строят тела живые организмы, на Земле в целом и на каждом конкретном участке на ее поверхности небезграничны. Лишь система круговоротов могла придать этим запасам свойство бесконечности, необходимое для продолжения жизни. Поддерживать и осуществлять круговорот могут только функционально различные группы организмов. Таким образом, функционально-экологическое разнообразие живых существ и организация потока извлекаемых из окружающей среды веществ в циклы – древнейшее свойство жизни.

Учение о биогеоценозах. Параллельно с развитием концепции экосистем успешно развивается учение о биогеоценозах, автором которого был академик В. Н. Сукачев (1942).

«Биогеоценоз – это совокупность на известном протяжении земной поверхности однородных природных явлений (атмосферы, горной породы, растительности, животного мира и мира микроорганизмов, почвы и гидрологических условий), имеющих свою специфику взаимодействия этих слагаемых ее компонентов и определенный тип обмена веществами и энергией между собой и другими явлениями природы и представляющая собой внутренне противоречивое единство, находящееся в постоянном движении, развитии» (В. Н. Сукачев, 1964).

«Экосистема» и «биогеоценоз» – близкие по сути понятия, но если первое из них приложимо для обозначения систем, обеспечивающих круговорот любого ранга, то «биогеоценоз» – понятие территориальное, относимое к таким участкам суши, которые заняты определенными единицами растительного покрова – фитоценозами. Наука о биогеоценозах – биогеоценология – выросла из геоботаники и направлена на изучение функционирования экосистем в конкретных условиях ландшафта в зависимости от свойств почвы, рельефа, характера окружения биогеоценоза и составляющих его первичных компонентов – горной породы, животных, растений, микроорганизмов.

В биогеоценозе В. Н. Сукачев выделял два блока: экотоп – совокупность условий абиотической среды и биоценоз– совокупность всех живых организмов.

Экотоп часто рассматривают как абиотическую среду, не преобразованную растениями (первичный комплекс факторов физико-географической среды), а биотоп– как совокупность элементов абиотической среды, видоизмененных средообразующей деятельностью живых организмов. Во внутреннем сложении биогеоценоза выделяют такие структурно-функциональные единицы, как парцеллы (термин предложен Н. В.Дылисом). Биогеоценотические парцеллы включают в себя растения, животное население, микроорганизмы, мертвую органику, почву и атмосферу по всей вертикальной толще биогеоценоза, создавая его внутреннюю мозаику. Биогеоценотические парцеллы различаются визуально по растительности: высоте и сомкнутости ярусов, видовому составу, жизненному состоянию и возрастному спектру популяций доминирующих видов. Иногда они хорошо отграничены по составу, строению и мощности лесной подстилки. Названия им дают обычно по растениям, доминирующим в разных ярусах. Например, в волосистоосоковом дубо-ельнике можно выделить такие парцеллы, как елово-волосистоосоковая, елово-кисличная, крупнопапоротниковая в окнах древесного яруса, дубово-снытевая, дубово-осиново-медуничная, березово-елово-мертвопокровная, осиново-снытевая и др.

Внутри каждой парцеллы создается свой фитоклимат. Весной в тенистых еловых парцеллах снег лежит дольше, чем на участках под листопадными деревьями или в окнах. Поэтому активная жизнь весной в парцеллах наступает в разные сроки, переработка детрита также идет с разной скоростью. Границы между парцеллами могут быть как относительно четкими, так и размытыми. Взаимосвязь осуществляется как в результате кондиционирования условий среды (теплообмен, изменение освещения, перераспределение осадков и т. п.), так и в результате материально-энергетического обмена. Происходит разброс растительного опада, перенос пыльцы, спор, семян и плодов воздушными потоками и животными, перемещение животных, поверхностный сток осадков и талых вод, передвигающих минеральные и органические вещества. Все это поддерживает биогеоценоз как единую, внутренне разнородную экосистему.

Роль разных парцелл в строении и функционировании биогеоценозов неодинакова, наиболее крупные парцеллы, занимающие большие пространства и объем, называют основными. Их бывает немного. Именно они определяют внешний облик и строй биогеоценоза. Парцеллы, занимающие небольшие площади, называют дополняющими. Число их всегда больше. Одни парцеллы более устойчивы, другие подвержены значительным и быстрым изменениям. По мере взросления и старения растений парцеллы могут сильно изменить состав и структуру, ритмы сезонного развития, по-разному участвовать в круговороте веществ.



Рис. 145. Окна возобновления основных пород в лесном биогеоценозе (по О. В. Смирновой, 1998)


Мозаичность лесных биогеоценозов и появление новых парцелл часто связаны с образованием в лесах окон, т. е. нарушением древесного яруса в связи с вывалом старых деревьев, вспышек массовых вредителей – насекомых, поражением грибами, деятельностью крупных копытных. Создание такой мозаичности совершенно необходимо для устойчивого существования леса и возобновления главенствующих пород деревьев, подрост которых часто не может развиваться под материнскими кронами, так как требует иных условий освещения и минерального питания. Окна возобновления для разных пород должны иметь достаточную пространственную протяженность (рис. 145). В восточноевропейских широколиственных лесах ни один вид не может переходить к плодоношению в окнах, соизмеримых всего с проекциями крон одного-двух взрослых деревьев. Даже наиболее теневыносливым из них – букам, кленам – требуются освещенные парцеллы в 400–600 м2, а полный онтогенез светолюбивых видов – дуба, ясеня, осины может завершаться только в крупных окнах не менее 1500–2000 м2.

На основании детального изучения структуры и функционирования биогеоценозов в экологии в последнее время развивается концепция мозаично-циклической организации экосистем. С этой точки зрения устойчивое существование многих видов в экосистеме достигается за счет постоянно происходящих в ней естественных нарушений местообитаний, позволяющих новым поколениям занимать вновь освободившееся пространство.

Биогеоценология рассматривает поверхность Земли как сеть соседствующих биогеоценозов, связанных между собой через миграцию веществ, но тем не менее, хотя и в разной степени, автономных и специфичных по своим круговоротам. Конкретные свойства участка, занятого биогеоценозом, придают ему своеобразие, выделяя из других, исходных по типу.

Обе концепции – экосистем и биогеоценозов – дополняют и обогащают друг друга, позволяя рассматривать функциональные связи сообществ и окружающей их неорганической среды в разных аспектах и с разных точек зрения.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10
  • 3.3 Оценок: 6

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации