Текст книги "Шпаргалка по неорганической химии"
Автор книги: Ольга Макарова
Жанр: Химия, Наука и Образование
сообщить о неприемлемом содержимом
Текущая страница: 4 (всего у книги 8 страниц)
28. Азот. Сигма– и пи-связи
Азот (N) стоит во 2 периоде, V группе главной подгруппы. Порядковый номер – 7, Ar – 14,008. Строение молекулы::N = N: молекула N2 – самая прочная из всех двухатомных за счет наличия тройной связи малой длины (энергия связи – 946 кДж). Связь в молекуле ковалентная неполярная. Самая короткая и прочная, соединяющая центры атомов – δ-связь, расположенная на пересечении плоскостей рх– и рz– орбиталей, которые, перекрываясь, образуют 2, более длинные π-связи, расположенные в 2-х взаимно перпендикулярных плоскостях по отношению друг к другу.
Физические свойства: бесцветный газ, без запаха и вкуса; малорастворим в воде: в 1 л H2O растворяется 15,4 мл N2 при t° = 20 °C и p = 1 атм; t кипения =-196 °C; t плавления =-210 °C. Природный азот состоит из двух изотопов с атомными массами: 14 и 15.
Химические свойства: электронная конфигурация: 1s22s22p3 – на внешнем уровне 5 валентных электронов. Характерная валентность – 3 и 4. Наиболее характерные степени окисления: -3, -2, -1, +2, +3, +4, +5, 0. Вобычных условиях N2 подобен инертному газу.
При обычной температуре азот реагирует только с литием: 6Li + N20 = 2Li3N-3; с остальными металлами реагирует при высоких температурах: 3Mg + N20 = MgЗN2-3; 2Аl + N2 = 2АlN.
В реакциях с металлами азот проявляет окислительные свойства: N20 = 2N-3.
Реагирует c водородом (500 °C, kat, p):
N20 + 3H2 = 2N-3HЗ, здесь азот также окислитель.
При высокой температура (электрическая дуга, 3000–4000 °C) взаимодействует с кислородом воздуха: N20 + O2 = 2N+2O (в природе – во время грозы).
Азот при этом проявляет свойства восстановителя: N20→2N+2.
С кислородом азот образует несколько оксидов: N2O, NO, N2O3, NO2, N2O5 и NO3.
Получение.
1. В промышленности азот получают путем сжижения воздуха с последующим испарением и отделением азота от других газовых фракций воздуха. Полученный азот содержит примеси благородных газов (аргона).
2. В лаборатории получают чистый азот термическим разложением нитрата аммония:
Нахождение в природе: в природе азот встречается в основном в свободном состоянии. Основное природное содержание азота в воздухе – объемная доля его в воздухе φ=78,09 %. В небольшом количество соединения азота находится в почве; азот входит в состав аминокислот, образующих через посредство пептидных связей белки; содержится в молекулах нуклеиновых кислот – ДНК и РНК – в составе азотистых оснований (нуклеотидов): гуанина, аденила, тимидила, цити-зила и уридила. Общее содержание азота в земной коре – 0,01 %.
29. Общая характеристика подгруппы азота
Подгруппа азота – пятая группа, главная подгруппа периодической системы Д.И. Менделеева. В нее входят элементы: азот (N); фосфор (P); мышьяк (As); сурьма (Sb); висмут (Bi). Общая электронная формула элементов подгруппы азота: ns2np3 – на внешнем энергетическом уровне эти элементы содержат пять валентных электронов, на что указывает номер группы – два электрона на s-подуровне и три не-спаренных электрона на р-подуровне. Это р-эле-менты. У каждого последующего нижестоящего атома нарастает энергетический уровень (N – 2s22p3; P – 3s23p3; As – 4s24p3; Sb – 5s25p3; Bi – 6s26p3), в связи с чем увеличивается радиус атома, уменьшается энергия ионизации, энергия сродства к электрону, электроотрицательность, ослабевают неметаллические свойства – усиливаются металлические.
Характерны следующие степени окисления: N – +1, +2, +3, +4, +5, 0, -1, -3, -5; P – от +1 до +5 (кроме +2), 0, -2, -3; все остальные: +3, +5, -3. Характерные валентности: 3, 4, 5.
Азот пятивалентным быть не может – максимальная его валентность равна четырем, т. к. наивысшая валентность равна числу возможных квантовых ячеек на внешнем уровне – у азота их четыре (одна s– и три р-орбитали), следовательно, число ковалентных связей тоже четыре.
Итак, азот в невозбужденном состоянии имеет валентность три, а в возбужденном (при переходе электронов с s-подуровня) – четыре.
У фосфора и всех последующих элементов подгруппы имеется d-подуровень, куда могут переходить электроны с s– и р-подуровней, и в возбужденном состоянии они имеют валентность пять.
Водородные соединения элементов соответствуют формуле: RН3: NН3 – аммиак; РН3 – фосфин; AsН3 – арсин; SbН – стибин; BiН – висмутин. Все соединения – газы, химическая стойкость каждого последующего ослабевает, что связано с ростом порядкового номера элементов, ослабевания неметаллических свойств и усиления металлических.
Кислородные соединения подгруппы азота отвечают составу: R2О3, R2О5, которые соответствуют кислотам типа: НRО2; НRО3; Н3RO4 – ортокислоты (азот ортокислоты не образует).
Характер оксидов элементов в направлении сверху вниз закономерно изменяется: N2О3, Р2О3 обладают кислотными свойствами; As2О3, Sb2О3 имеют амфотерные свойства; Bi2О3 – основные свойства. R2О5 образуют только кислотные оксиды и соответствуют кислотам: НRО3, Н3RO4 (кроме азота). Сила кислот НRО3 сверху вниз убывает.
Резкие изменения наблюдаются и у простых веществ элементов подгруппы азота: азот, фосфор, мышьяк – неметаллы; сурьма и висмут – металлы.
30. Аммиак
Физические свойства: аммиак (NH3) – бесцветный газ с резким запахом, растворим в воде, в 2 раза легче воздуха; при охлаждении до -33,4 °C и нормальном давлении превращается в прозрачную жидкость, при 77,8 °C затвердевает. Массовая доля аммиака в концентрированном растворе – 25 %. Раствор NH3 в воде – аммиачная вода или нашатырный спирт. Медицинский нашатырный спирт – 10 %. При низкой температуре образует в растворе кристаллогидрат NH3 · Н2О. Строение молекулы: характерна sp3-гибридизация. В образовании молекулы участвуют 3 неспаренных р-электрона азота и 1s – атомов водорода. Молекула имеет форму правильной пирамиды, в вершине которой стоят атомы азота, а в углах – водорода.
Химические свойства:
1) при растворении NH3 в воде образуются гидратированные молекулы аммиака и частично ионы аммония – NH4+ и ОН-ионы – водный раствор аммиака имеет слабощелочную реакцию.
2) NH3 взаимодействует с кислотами: NH3 + Н2SO4 = NH4НSO4;
3) аммиак – сильный восстановитель. Из СuО при нагревании восстанавливает Сu: 3СuО + 2NH3 = Сu + N2 + 3Н2О;
4) в кислороде NH3 горит желтым пламенем: 4NH3 + 3О2 = 2N2↑ + 6Н2О;
5) кислородом воздуха NH3 окисляется в присутствии катализаторов: Pt, Cr2O3, Rh: 4NH3 + 5О2 = 4NО↑ + 6Н2О;
6) при замещении водорода на металлы образуются амиды: Na + NH3 = NaNH2 + 1/2 Н2;
7) водород в NH3 может замещаться на галогены. При действии на раствор хлорида аммония газообразным хлором образуется хлорид азота: NH4Cl + 3Cl2 = 4HCl + NCl3.
Нашатырь (хлорид азота).
Получение: в промышленности до концаХ1Х века аммиак получали как побочный продукт при коксовании каменного угля, который содержит до 1–2 % азота.
В начале XX века были разработаны новые промышленные способы получения аммиака, основанные на связывании или фиксации атмосферного азота.
В 1904 году появился циамидный способ, основанный на способности азота при высокой температуре взаимодействовать с карбидом кальция, образуя циамид кальция CaCN2, который при воздействии с водяным паром при давлении 0,6 МПа легко разлагается на аммиак и карбонат кальция:
Позднее появился другой способ получения аммиака – прямое взаимодействие азота и кислорода под воздействием электрических разрядов, но эта реакция была обратимой, пока для нее не нашли оптимальные условия. Этими условиями явились высокое давление и низкая температура, использование катализаторов – губчатого железа с добавками активаторов (оксиды алюминия, калия, кальция, кремния, магния).
31. Соли аммония
Соли аммония – сложные вещества, включающие катионы аммония NH4+ и кислотные остатки.
Физические свойства: соли аммония – твердые кристаллические вещества, хорошо растворимые в воде.
Химические свойства: аммоний обладает свойствами металла, поэтому строение его солей подобно солям щелочных металлов, т. к. ионы NH4+ и ионы щелочных металлов (калия) имеют примерно одинаковые радиусы. В свободном виде аммоний не существует, т. к. он химически нестоек и мгновенно разлагается на аммиак и водород. Доказательством металлического характера аммония является наличие амальгамы аммония – сплав аммония с ртутью, схожего с таковой щелочных металлов. При обработке амальгамы аммония холодным раствором сульфата меди, амальгама вытеснит n-е количество меди:
Соли аммония имеют ионную решетку и обладают всеми свойствами типичных солей:
1) являются сильными электролитами – подвергаются диссоциации в водных растворах, образуя катион аммония и анион кислоты:
2) подвергаются гидролизу (соль слабого основания и сильной кислоты):
среда кислая, рН<7, лакмус красный;
3) вступают в обменную реакцию с кислотами и солями:
4) взаимодействуют с растворами щелочей с образованием аммиака – качественная реакция на ион аммония:
соли аммония определяют по запаху выделившегося в результате реакции аммиака, а также по синей окраске лакмуса;
5) разлагаются при нагревании:
Получение: NH3 + HNO3 = NH4NO3 (нитрат аммония); 2NH4OH + H2SO4 = (NH4)2SO4 (cульфат аммония) + 2Н2O.
Применение: соли аммония широко применяются на практике: сульфат аммония – (NH4)2SO4, нитрат аммония – NH4NO3, дигидрофосфат аммония – NH4Н2РO4 и гидрофосфат аммония – (NH4)2НРO4 используются в качестве минерального удобрения. Преимущество удобрения – повышенное содержание в нем аммиака. Используется хлорид аммония (NH4Cl) – нашатырь.
32. Оксиды азота
С кислородом N образует оксиды: N2O, NO, N2O3 NO2, N2O5 и NO3. Оксид азота I – N2O – закись азота, «веселящий газ». Физические свойства: бесцветный, со сладковатым запахом, растворим в воде, t плавления -91 °C, t кипения -88,5 °C. Анестезирующее средство.
Химические свойства: разлагается при 700 °C: 2N2O→2N2 + O2 поддерживает горение и является окислителем; взаимодействует с водородом: N2+1O + H2→N20 + Н2O.
Получение: NH4NO3→N2O + 2Н2O. N2O соответствует азотноватистая кислота: Н2N2O2, но при действии Н2O и щелочей он не образует ни Н2N2O2, ни ее солей. N2O – несолеобразующий.
Оксид азота (II) NO – окись азота. Физические свойства: бесцветный газ, плохо растворим в воде, t плавления -164 °C, t кипения -152 °C.
Химические свойства: NO обладает окислительно-восстановительными свойствами:
1) при обычной температуре устойчив, при понижении t димеризуется в N2O2;
2) при 700 °C разлагается: 2NO→2N2 + O2↑ поддерживая горение, является восстановителем;
3) с водородом. Смесь равных объемов NO и H2 взрывается: 2NO + 2H2 = N2↑ + Н2O, где NO – окислитель;
4) с галогенами: 2NO + Сl2 = 2NOСl↑ (нитрозилхлорид). NO – несолеобразующий.
Получение:
1) в лаборатории: 3Cu + 8HNO3(разб.) = 3Cu(NO3)2 + 2NO + 4H2O;
2) в промышленности: каталитическое окисление аммиака: 4NH3 +5O2 = 4NO↑ + 6H2O;
3) NO образуется в грозу: N2 + O2 = 2NO↑.
Оксид азота (III) N203. Физические свойства: темно-синяя жидкость (при низких t), t плавления -102 °C, t кипения 3,5 °C. Химические свойства: N2O3 – ангидрид азотистой кислоты HN02. При взаимодействии с водой и щелочами соответственно дает НNO2 и ее соли – нитриты: N2O + 2NaOH = 2NaNO2 + H2O.
Получение: NO2 + NO = N2O3.
Оксид азота (IV) – NO2. Физические свойства: ядовитый газ бурого цвета с резким запахом; t плавления —11,2 °C, t кипения – 21 °C. Химические свойства: кислотный ангидрид:
Реагирует со щелочами: 2NO2 + 2NaOH = NaNO2 + NaNO3 + H2O.
Окислитель: N+4O2 + S+4O2 = S+6O3 + N+2O. Димеризуется при низких температурах: 2NO2(бурый газ)→N2O4(бесцветная жидкость).
Получение: 2NO + O2 = 2NO2; Cu + 4HNO3(конц.) = Cu(NO3)2 + 2NO2 + 2H2O. Оксид азота (V) – N2O5. Физические свойства: малостойкое белое кристаллическое вещество. Сильный окислитель. Химические свойства: ангидрид HN03.
Разлагается со взрывом: 2N2O5→4NO2 + О2.
Получение:
33. Азотная кислота
Азотная кислота – бесцветная, «дымящаяся» на воздухе жидкость с едким запахом. Химическая формула HNO3.
Физические свойства. При температуре 42 °C застывает в виде белых кристаллов. Безводная азотная кислота закипает при атмосферном давлении и 86 °C. С водой смешивается в произвольных соотношениях.
Под воздействием света концентрированная HNO3 разлагается на оксиды азота:
HNO3 хранят в прохладном и темном месте. Валентность азота в ней – 4, степень окисления – +5, координационное число – 3.
HNO3 – сильная кислота. В растворах полностью распадается на ионы. Взаимодействует с основными оксидами и основаниями, с солями более слабых кислот. HNO3 обладает сильной окислительной способностью. Способна восстанавливаться с одновременным образованием нитрата до соединений, в зависимости от концентрации, активности взаимодействующего металла и условий:
1) концентрированная HN03, взаимодействуя с малоактивными металлами, восстанавливается до оксида азота (IV) NO2:
2) если кислота разбавленная, то она восстанавливается до оксида азота (II) NO:
3) более активные металлы восстанавливают разбавленную кислоту до оксида азота (I) N2O:
До солей аммония восстанавливается очень разбавленная кислота:
Au, Pt, Rh, Ir, Ta, Ti не реагируют с концентрированной HNO3, а Al, Fe, Co и Cr – «пассивируются».
4) с неметаллами HNO3 реагирует, восстанавливая их до соответствующих кислот, а сама восстанавливается до оксидов:
5) HNO3 окисляет некоторые катионы и анионы и неорганические ковалентные соединения.
6) вступает во взаимодействие со многими органическими соединениями – реакция нитрования.
Промышленное получение азотной кислоты: 4NH3 + 5O2 = 4NO + 6H2O.
Аммиак – NO переходит в NO2, который с водой в присутствии кислорода воздуха дает азотную кислоту.
Катализатор – платиновые сплавы. Получаемая HNO3 не более 60 %. При необходимости ее концентрируют. Промышленностью выпускается разбавленная HNO3 (47–45 %), а концентрированная HNO3 (98–97 %). Концентрированную кислоту перевозят в алюминиевых цистернах, разбавленную – в цистернах из кислотоупорной стали.
34. Фосфор
Фосфор (Р) находится в 3-м периоде, в V группе, главной подгруппы периодической системы Д.И. Менделеева. Порядковый номер 15, заряд ядра +15, Аr = 30,9738 а.е. м… имеет 3 энергетических уровня, на энергетической оболочке 15 электронов, из них 5 валентных. У фосфора появляется d-подуровень. Электронная конфигурация Р: 1s22s22p63s23p33d0. Характерна sp3-гибридизация, реже sp3d1. Валентность фосфора – III, V. Наиболее характерная степень окисления +5 и -3, менее характерные: +4, +1, -2, -3. Фосфор может проявлять и окислительные и восстановительные свойства: принимать и отдавать электроны.
Строение молекулы: способность образования π-связи менее выражена, чем у азота – при обычной температуре в газовой фазе фосфор представлен в виде молекул Р4, имеющих форму равносторонних пирамид с углами по 60°. Связи между атомами ковалентные, неполярные. Каждый атом Р в молекуле связан стремя другими атомами σ-связями.
Физические свойства: фосфор образует три аллотропных модификации: белый, красный и черный. Каждая модификация имеет свою температуру плавления и замерзания.
Химические свойства:
1) при нагревании Р4 обратимо диссоциирует:
2) свыше 2000 °C Р2 распадается на атомы:
3) фосфор образует соединения с неметаллами:
Непосредственно соединяется со всеми галогенами: 2Р + 5Cl2 = 2РCl5.
При взаимодействии с металлами фосфор образует фосфиды:
Соединяясь с водородом, образует газ фос-фин: Р4 + 6Н2 = 4РН3↑.
При взаимодействии с кислородом образует ангидрид Р2О5: Р4 + 5О2 = 2Р2О5.
Получение: фосфор получают прокаливанием смеси Са3(РO4)2 с песком и коксом в электропечи при температуре 1500 °C без доступа воздуха: 2Са3(РO4)2 + 1 °C + 6SiO2 = 6СаSiO3 + 1 °CO + P4↑.
В природе фосфор в чистом виде не встречается, а образуется в результате химической активности. Основными природными соединениями фосфора являются минералы: Са3(РO4)2 – фосфорит; Са3(РO4)2·СаF2 (или СаCl) или Са3(РO4)2·Са(ОН)2 – апатит. Велико биологическое значение фосфора. Фосфор входит в состав некоторых растительных и животных белков: белок молока, крови, мозговой и нервной ткани. Большое его количество содержится в костях позвоночных животных в виде соединений: 3Са3(РO4)2·Са(ОН)2 и 3Са3(РO4)2·СаСО3·Н2О. Фосфор является обязательным компонентом нуклеиновых кислот, играя роль в передачи наследственной информации. Фосфор содержится в зубной эмали, в тканях в форме лецитина – соединения жиров с фосфорноглицериновыми эфирами.
35. Аллотропные модификации фосфора
Фосфор образует несколько аллотропных видоизменений – модификаций. Явление аллотропных модификаций у фосфора вызвано образованием различных кристаллических форм. Белый фосфор (Р4) имеет молекулярную кристаллическую решетку, красный и черный – атомную. Различие в строении кристаллической решетки обуславливает и различие в их физических и химических свойствах. Белый фосфор – сильный яд, даже в малых дозах действует смертельно. В твердом состоянии получается при быстром охлаждении паров фосфора. В чистом виде совершенно бесцветен, прозрачен, по внешнему виду похож на воск: на холоде хрупок, при температуре выше 15 °C – мягкий, легко режется ножом; в воде нерастворим, но хорошо растворяется в сероуглероде – СS2 и в органических растворителях; легко плавится, летуч. Прочность связи в молекуле невелика, чем обусловлена высокая химическая активность. Белый фосфор быстро окисляется на воздухе, при этом светится в темноте – превращение химической энергии в световую; самовоспламеняется на воздухе, при слабом нагревании, незначительном трении. С кислородом реагирует без поджигания, даже под водой, образуя сначала Р2О3, затем P2O5:
При длительном нагревании белый фосфор превращается в красный. Белый фосфор применяется для изготовления боеприпасов артиллерийских снарядов, авиабомб, предназначенных для образования дымовых завес. Широкого применения не имеет.
Красный фосфор – порошок красно-бурого цвета, неядовит, нелетуч, нерастворим в воде и во многих органических растворителях и сероуглероде; не воспламеняется на воздухе и не светится в темноте. Только при нагревании до 260 °C воспламеняется. При сильном нагревании, без доступа воздуха, не плавясь (минуя жидкое состояние) испаряется – сублимируется. При охлаждении превращается в белый фосфор. Идет на изготовление спичек: красный фосфор в смеси с сульфидом сурьмы, железным суриком, с примесью кварца и клея наносят на поверхность спичечной коробки. Головка спичек состоит в основном из бертолетовой соли, молотого стекла, серы и клея. При трении головки о намазку коробки красный фосфор воспламеняется, поджигает состав головки, а от него загорается дерево. Также красный фосфор применяется в приготовлении фармацевтических препаратов.
Черный фосфор получается при сильном нагревании и при высоком давлении белого фосфора. Черный фосфор тяжелее других модификаций. Применяется очень редко – как полупроводник в составе фосфата галлия и индия в металлургии.
36. Оксиды фосфора и фосфорные кислоты
Элемент фосфор образует ряд оксидов, наиболее важными из них являются оксид фосфора (III) P2O3 и оксид фосфора (V) P2O5.
Оксид фосфора (III), или фосфористый ангидрид (P2O3) получают при медленном окислении фосфора, сжигая его в недостатке кислорода. Представляет собой воскообразную кристаллическую белую массу с температурой плавления 22,5 °C. Ядовит.
Химические свойства:
1) вступает в реакцию с холодной водой, образуя при этом фосфористую кислоту H3PO3;
2) взаимодействуя с щелочами, образует соли – фосфиты;
3) является сильным восстановителем.
Взаимодействуя с кислородом, окисляется до оксида фосфора (V) P2O5.
Оксид фосфора (V), или фосфорный ангидрид (P2O5) получают при горении фосфора на воздухе или в кислороде. Представляет собой белый кристаллический порошок, с температурой плавления 36 °C.
Химические свойства:
1) взаимодействуя с водой, образует орто-фосфорную кислоту H3PO4;
2) имея свойства кислотного оксида, вступает в реакции с основными оксидами и гидроксидами;
3) способен к поглощению паров воды.
Фосфорные кислоты.
Фосфорному ангидриду соответствует несколько кислот. Главная из них – ортофосфорная кислота H3PO4. Фосфорная кислота обезвоженная представлена в виде бесцветных прозрачных кристаллов, имеющих температуру плавления 42,35 °C и хорошо растворяющихся в воде.
Образует три вида солей:
1) средние соли – ортофосфаты;
2) кислые соли с одним атомом водорода;
3) кислые соли с двумя атомами водорода.
Получение фосфорной кислоты:
1) в лаборатории: 3P + 5HNO3 + 2H2O = 3H3PO4 +5NO↑;
2) в промышленности: а) термический метод; б) экстракционный метод: Ca3(PO4)2 + 3H2SO4 = CaSO4↓ + 2 H3PO4.
Природные фосфаты восстанавливают до свободного фосфора, который сжигают на воздухе, либо в кислороде. Продукт реакции растворяют в воде.
Остальные фосфорные кислоты в зависимости от способа соединения групп PO4 образуют 2 вида кислот: полифосфорные кислоты, которые состоят из цепочек – PO3—О—PO3—… и метафосфорные кислоты, которые состоят из колец, образованных PO4.
Применение: ортофосфорную кислоту используют при производстве удобрений, химических реактивов, органических соединений, для приготовления защитных покрытий на металлах. Фосфаты используют в производстве эмалей и фармацевтике. Метафосфаты входят в состав моющих средств.
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.